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1. Introduction

It is well known that high accuracy and high resolution methods are the most appropriate tools
when numerically simulating small scale phenomena in fluid flows. In the case of finite difference
schemes, the desired properties can be achieved by using high order approximations. Comparing
with low-order schemes (say, with second-order ones), merits of high-order schemes come from
larger domains of wave numbers supported by grids where phase and (possibly) amplitude er-
rors are small. Comparing with low-order schemes (say, second order ones), considerably coarser
meshes can be used with near minimum numbers of nodes falling into small scales subdomains
to be properly resolved. To suppress spurious numerical solution oscillations, low-dissipative
high-order schemes are preferable when dealing with high gradients solutions. Sometimes, some
optimization is used to enlarge domains of small phase and amplitude errors [1]. However, an-
other important issue seems to be how actually small are the errors in the physically relevant
ranges of wave numbers supported by meshes. In this context, constructing as high order ap-
proximations as possible may be of importance. Following that strategy, we use our approach to
create formally arbitrary order approximations to derivatives (or other grid functionals) without
increasing numbers of nodes in stencils but increasing number of basis operators in their linear
combinations (”multioperators”). The idea was first proposed in [2] and extensively used in our
further investigations and computational practice. Some details of the technique can be found,
for example, in [3], [4]. It can be especially efficient when using parallel machines. The scope
of target problems includes (but is not limited to) DNS, LES, acoustics and other small scale
phenomena. In the present paper, we consider its application to development of 2D thin shear
layer instability with generating and decaying turbulence. Before doing so, we present brief
outlines of a scheme with 9th order multioperators based approximations to convection terms.

2. Arbitrary order multioperators approximations

General formulations. For completeness, we present brief outlines of the multioperators princi-
ple. Suppose that there is a family of operators Lh(s) dependent on, at least, one parameter
s and approximating a linear operator L on a grid ωh. Suppose further that for sufficiently
smooth function f ∈ U for each grid point with number j one has

[Lf ]j = Lh(si)[f ]j +
m+M−2

∑

k=m

akjck(si)h
k + O(hm+M−1) (1)

where h is some parameter characterizing mesh size, akj are independent of h coefficients and
[·]h : U → Uh(ωh) is a projection operator into a space Uh of grid functions defined on ωh.
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The coefficients akj may be considered as high derivatives values at xj. Assume also that the
determinant

detA 6= 0 (2)

where A = {aij}, a1j = 1, aij = cm+i−2(sj) i = 2, 3, . . . ,M, j = 1, 2, . . . ,M for all M .
Then it is possible to find coefficients γi, i = 1, 2, . . . ,M such that (1) reduces to [Lf ]j =
∑M

i=1 γiLh(si)[f ]j + O(hm+M−1) for arbitrary M . The linear combination LM =
∑M

i=1 γiLh(si)
was named in [2] as multioperator while Lh(si), i = 1, 2, . . . ,M may be viewed as basis opera-
tors. It is worth noting that the action of LM on a known grid functions can be calculated in a
parallel manner using at least M processors, each processor being involved in the synchronous
calculations of the basis operators actions. Thus m+M−1 order can be achieved without adding
complexity to approximating formulas, the corresponding execution times being independent of
M when neglecting data transfer exchange.

The expression Lh(si)[f ]j may be viewed as an approximation to any grid functional gen-
erated by a linear operator L (for example, quadratures, interpolation formulas etc.) but it is
not necessary satisfy (2). It turned out that the one-parametric families of Compact Upwind
Differencing operators (CUD) from [5] fit neatly into a class of Lh(si) serving as basis operators.
They are rational functions of three-point operators providing third- and fifth- order differencing
formulas, parameter s defining either upwind or downwind discretizations of convection terms.
Clearly, high orders of multioperators are not sufficient property when constructing numerical
methods. Thus each multioperator needs individual treatment to meet some desirable properties
(for example, upwinding in the case of fluid dynamics). Initially, third-order CUD were used as
basis operators to create fifth- and seventh- order upwind schemes for fluid dynamics [6]. Later,
multioperators based on centered compact approximations (not necessary to derivatives) with
artificially introduced parameters were proposed [4]. Recently, a novel one-parametric family of
non-centered compact approximations with two diagonal inversions and related multioperators
were described [7]. Skipping the details, we concentrate on the scheme with a version of ninth-
order approximation to the convection terms of the Navier-Stokes equations used in the thin
shear layers calculations.

Multioperators based on fifth-order CUD. Introducing uniform mesh ωh = {xj = jh, h =
const, j = 0,±1,±2, . . .} and three-point operators ∆(s) = (∆0−s∆2)/2, ∆0uj = uj+1−uj−1,
∆2uj = uj+1 − 2uj + uj−1, we consider the following fifth-order CUD operator from [5] as a
generator of multioperators

L5(s, σ) =
1

h

[

∆(σ) +
σ

2
R−1(s, σ)Q(s, σ)

(

E +
1

12
∆2

)−1

∆2

]

, (3)

where s and σ are parameters satisfying sgn s = sgn σ, |σ| = 2/
√

5,

Q(s, σ) = E + (−1/15σ − s/4) ∆0 + (1/6 + s/15σ) ∆2,

R(s, σ) = E + (1/10σ − s/4) ∆0 + (1/6 − s/10σ) ∆2,

Considering the Hilbert space of grid functions defined on ωh with the inner product (uh, vh) =
h

∑∞
j=−∞ ujvj , L5 is positive (negative) if s > 0 (s < 0) [5]. Moreover, L5(s)

∗ = −L5(−s) thus
providing upwinding when dealing with convection terms.

The Taylor expansion series for its action on a sufficiently smooth functions u(x) looks as

L5[u]j = (ux)j +

[

h5

6!
p1(s)u

(6)
x +

h6

7!
p2(s)u

(7)
x + · · · + h8

9!
p4(s)u

(9)
x

]

+ O(h9) (4)

where pk – kth-order polynomials in s. For example, p1, p2, p3 are given by

p1 = −
√

5

1800
− 1

144
s, p2 =

53

37800
+

√
5

720
s− 1

288
s2, p3 = − 41

√
5

216000
+

1

8640
s +

√
5

1440
s2 − 1

576
s3
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We fix five values of s to improve the conditioning of the resulting system we define them as
zeroes of the Chebyshev fifth-order polynomial for the interval [smin, smax]: 0 < smin = s1 <

· · · < s5 = smax. Introducing the sum L59 =
5

∑

i=1
γiL5(si),

5
∑

i=1
γi = 1, and requiring that the

coefficients for hk, k = 5, 6, 7, 8 are equal to zero, we obtain the following linear system for
γi, (i = 1, · · · , 5) with the known RHS rj, j = 1, 2, 3, 4









1 1 . . . 1
s1 s2 . . . s5

· · · · · · · · · · · ·
s4
1 s4

2 . . . s4
5

















γ1

γ2

· · ·
γ5









=









1
r1

· · ·
r4









(5)

Its solution gives L59(smin, smax)[u]j = [ux]j + O(h9). It can be
shown that L59(smin, smax)∗ = −L59(−smin,−smax). To organize
upwinding, all we need is to find a pair (smin, smax) providing
L59(smin, smax) > 0. This can be accomplished by calculating the
real part of L̂59, the Fourier transform of L59, as a function of the
Fourier variable kh where k is the wave number and the required
pair. The pair for which ℜL̂59 > 0 can be viewed as an admissible
one. The calculations showed that the positivity region corresponds

Figure 1. to negative values of smin, smax. It is marked with ”+” in Fig. 1
where parameters d and c are defined by smax + smin = 2c, smax −

smin = 2d. The spectral properties of L59 can be illustrated by using the simple IVP for
advection equation

∂u/∂t + a ∂u/∂x = 0, u(x, 0) = exp(ikx) (6)

in which (∂u/∂x)j is discretized by L59. Considering exp(ikxn), n = ±1,±2, . . . , as the eigen
function of L59 in the space of bounded grid functions with the norm ‖uh‖ = max |ui|, i =
0,±1,±2, . . . and defining the eigenvalues as a function of α = kh where k is the nondimensional
wave number by L59e

iαn = (p(α) + iq(α))eiαn, n = 0,∓1,∓2, . . . ; 0 ≤ α ≤ 2π

uj(t) = e−apeik(xj−a∗t) (7)

where a∗ is the ”numerical” phase velocity given by a∗ = aq(α)/α. The exact solution of (6)
can be obtained from (7) via substitution p → 0 a∗ → a. The dissipation parameter p which is
formally equal to ℜL̂59 should be positive in the case of a stable scheme.

Fig. 2 shows functions p(α) and a∗/a = q(α) for an admissible pair
(dashed lines) compared with those in the case of L5 operator for
some s value (solid lines). They define the corresponding amplitude
and phase errors. The errors are characterized by the deviations from
0 and 1 respectively. The curves of this type visually typical for all
high-order schemes. They show that the errors are small at least for
α = kh < π/2 (that is, for the wave length Λ > 4h. However, their
actual values in that range influencing accuracy of the harmonics

Figure 2. representation essentially depend on approximation orders. The
interval π/2 ≤ kh < π corresponds to the scales poorly resolved by

meshes with sizes h. As is evident from the graphs, considerable damping of the harmonics
may be expected in that region. Thus the multioperator has high-order dissipative mechanism
serving as a built-in filter of non-physical oscillations. It is worth noting that the admissible
values of smin and smax can be used to control to some extent the dispersion and dissipation.

Application to fluid dynamics. We illustrate convection terms multioperators discretization
using non-linear conservation law

∂u/∂t + ∂f(u)/∂x = 0 (8)
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To construct semi-discretized schemes with positive spatial discretizations (in the ”frozen coef-
ficients” sense), we use the flux splitting

f(u) = f+ + f−, f+ = (f(u) + cu)/2, f− = (f(u) − cu)/2, c = const > 0 (9)

Supposing that smin, smax are chosen to define L59 > 0, we construct the following approxima-
tion

∂f(u)/∂x|x=xj
= L59fj + O(h9), L59fj = L+

59f
+
∣

∣

x=xj
+ L−

59f
−
∣

∣

x=xj
,

L±
59 = L59(∓smin,∓smax). It is easy to see that L59f > 0 for f(u) = au, a = const.

Now the linearly stable semi-discretized scheme for (8) can be written as

∂u/∂t + L59f = 0. (10)

Fully discretized schemes for (8) can be obtained by specifying a time stepping procedure de-
pending on a particular problem. For unsteady problems, the Runge-Kutta methodology can be
used. Scheme (10) can be easily extended to multidimensional and/or vector-valued functions.

In all cases, they are conservative meaning that actions L59fj can be presented as the differ-
ence of numerical fluxes L59fj = q59, j+1/2 − q59, j−1/2., the last being obtained from the similar
representation for L59fj by summation with the γ coefficients.

Numerical example. To illustrate comparative accuracy of the above scheme, we consider
the following popular test problem (see for example [1])

∂u/∂t + ∂(u2/2)/∂x = 0

with u(0, x) = 1 + 0.5 sin(πx) and periodic boundary condition u(t,−1) = u(t, 1). The exact
solution is smooth up to t = 2/π and can be easily obtained via the iteration procedure de-
scribed in [1]. It allows to calculate the numerical solution errors and the corresponding mesh
convergence orders given by

Ec(n) = max
j=0,n−1

|unum
j − uexact

j |, kc = log2 Ec(n)/Ec(2n)

where n is the number of grid points. In the Table, the results of calculations with the fourth-
order Runge-Kutta time stepping are presented for the schemes with L5, L59 and fifth-order
WENO scheme [8].

Table
n 8 16 32 64 128 256 512

WENO-5 Ec 6.47e-2 1.25e-2 1.20e-3 9.50e-5 3.31e-6 8.66e-8 2.25e-9
kc 2.37 3.38 3.66 4.84 5.26 5.27

L5 Ec 3.99e-2 6.10e-3 4.35e-4 1.63e-5 5.11e-7 1.56e-8 4.83e-10
kc 2.71 3.81 4.74 5.00 5.03 5.01

L59 Ec 3.30e-2 2.89e-3 1.30e-4 2.17e-6 1.30e-8 3.46e-11 7.51e-14
kc 3.51 4.47 5.91 7.38 8.55 8.85

As seen, the least accurate is the WENO scheme while the scheme with L59 shows
dramatic increase of accuracy with increasing n. It should be noted that more refined
mesh requires higher-precision arithmetics.
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3. Application to shear layer instability.

Problem formulation. We consider the following double periodic problem for the incom-
pressible Navier-Stokes equations. At an initial time moment t = 0, two thin shear layers
are specified in the form of the Cartesian velocities components u and v given by

u = th
[

ρ
(

y − 1
4

)]

for y ≤ 1
2
, u = th

[

ρ
(

3
4
− y

)]

for y > 1
2
,

v = δ sin(2πmx),

where ρ and δ defines the layers thickness and the initial perturbation of the y-component
respectively, m being a number of the perturbation harmonics.

The above formulation was considered in [9],[10] where
various schemes were tried to simulate the time evo-
lution of the layers. The calculations carried out for
relatively small time interval (t ≤ 1.2) revealed an
interesting fact. It turned out that during the lay-
ers rolling up process a spurious vortices do appear
even if sufficiently refined 256 × 256 mesh is used.
The artifact disappeared in the case of 512 × 512
mesh. In [11], the same problem was used to test
the fifth-order CUD scheme from [5]. It was found
that the obtained solutions were visually the same as
the above mentioned, the only difference being due
to coarser 128 × 128 and 256 × 256 meshes used in
the calculations. It is worth noting that our recent

Figure 3. calculations with the WENO-5 scheme showed that
the artifact still exists when using 272× 272 meshes.

The occurrence and disappearing of the spurious vortices is illustrated in Fig. 3a,b,c,d.
Fig 3a,b and 3c,d correspond to our ninth-order CUD-9 and WENO-5 calculations.

The results presented in [9], [10] and [11] concerned with small time intervals. Below
we present the complete history of the flow field time evolution with true resolution
of all spatial scales. The smallest ones correspond to 2D turbulent pulsations requiring
according to the general theory O(Re) degrees of freedom for their simulation. To perform
such type of calculations for large time intervals, schemes with very small phase and
amplitude errors are needed.

Schemes outlines. The simulations were carried out using the Navier-Stokes equations
written for the vorticity ω and the stream function ψ. The conservative form of the inviscid
terms of the vorticity transport equation were approximated with the above described
methodology using either L5 or L59 operators. To discretize the second derivatives in the
Poisson equation for ψ and the ψ derivatives needed to calculate the velocities, the sixth-
order centered compact formulas were used. It was found that very small truncation errors
of the centered compact approximation do not noticeably influence the obtained numerical
solutions. The time stepping was performed with the fourth-order Runge-Kutta procedure
using as small time step as needed to exclude its impact on the solutions. The calculations
were carried out for the Reynolds number Re = 4 · 104, Re = 105, Re = 4 · 105, Re = ∞
and meshes 512×512, 1024×1024 2048×2048. For all Re numbers, the mesh convergence
was seen with complete resolution of the smallest scales. As an illustration

General view of the flow evolution. The calculations carried out for the Reynolds
number Re = 4 · 104, Re = 105, Re = 4 · 105, Re = ∞ and meshes 512 × 512, 1024 ×
1024 2048 × 2048. The general scenario given by the numerical solutions for the main
perturbation harmonics (m = 1) in the terms of vorticity contours looks as follows. As
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a result of a small perturbation of the velocity v introduced at t = 0 and then removed,
the shear layers rolling up occurs with forming concentrated vorticity regions connected

Figure 4.

with thin links (Fig. 4a). The links thereafter disrupts and the vorticity regions are
shaped into isolated vortices (Fig.4b). The ensuing flow development is characterized by
forming thin vorticity fibres emanating from the main vortices. The fibres can be viewed
in turn as shear layers degenerating into small vortices. The last dissipate but new small
vortices appear from subsequent emanated fibres. At the latest stages isolated vortices
with opposite signs separated by visually vorticity-free regions are seen (Fig. 4c). The
vortices cores are characterizes by decaying small scales structures.

Figure 5.

In the case of a combination of the main harmonic and subharmonics (m > 1), the
scenario looks like the above described, the only differences being due to the vortices
pairing resulting in a non-symmetric their final arrangement. The general view of the
vorticity field evolution is show in Fig. 5a,b,c,d.

For all considered Re numbers, the mesh convergence was seen with complete resolu-
tion of the smallest scales. As an illustration, the vortex cross-section t = with its fine
details is shown in Fig. 6. ( m = 2, t = 2.2). The peaks seen in the Figure are the cross
sections of the emanating fibres.

In the case Re = ∞, the vorticity field evolution looks like that for Re = 400000.
However there were no mesh convergence since more refined meshes generated finer small
scale vortex structures.
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Figure 6.

Turbulence spectra. Due to the shear layers instability, turbulent fluctuations are gen-
erated at some time moment and then freely decays due to lack of the energy injection.
An analysis of the energy and the enstrophy spectra at successive time moments clearly
indicates their cascade to higher wave numbers. The energy spectra at time t = 2.2 cor-
responding to the main perturbation (m = 1) and that with the subharmonics m = 2, 3, 4
are shown in Fig.7 with the theoretical k−3 curve, the wave number k being normalized
using the computational domain length L = 1. As seen, the difference between curves
corresponds to the large eddies wave numbers while in the highest wave number range
they show closely related behavior.

Figure 7. Figure 8.

In [12], the estimate for the ”critical” time tc for which the so called palinstrophy P (t)
which characterize the rot of rot reaches its maximum is presented. It indicates that it is
approximately proportional to the Reynolds number. In Fig.8, the function is shown for
Re = 40000 and Re = 100000. The obtained tc agrees excellently with the estimate.
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