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1. In [1, 2], very instructive results concerning the ability of different numerical methods
to resolve properly unstable thin shear layers described by the incompressible Navier–
Stokes equations were presented. An interesting aspect of the studies was the scheme-
induced artifact that manifested in the form of spurious vortices when the meshes used
in the calculations seemed to be quite refined giving the impression that the solutions
were mesh-converged. It was shown that further refining of meshes removed these artifacts
completely and gave “true” solutions to the problem.

From [1, 2], a question may arise concerning the mesh size needed to get the “true”
solution for given input data and its dependence on the methods used in the calculations.
The results presented in [1, 2] show that though the performances of the tested methods may
differ (especially in comparisons of centered and upwind schemes), meshes sufficient in
most cases for the resolution of stable oscillation-free solutions are about the same for fixed
input data. In this note, we try to show that the number of grid points in the computational
domain needed to resolve thin shear layers properly can be considerably decreased (at least
by a factor of 4) when more accurate schemes are used. Other aims are to enlarge the
“database” of scheme performances presented in [1, 2] and add new observations based on
high-accuracy calculations.

2. We consider the double-periodic problems of [1, 2], namely the roll-up of the shear
layers given initially by the Cartesian velocities

u = tanh(ρ(y− 0.25)) for y ≤ 0.5, tanh(ρ(0.75− y)) for y > 0.5 (1)

v = δ sin(2πx) (2a)

v = δ sin(2π(x + 0.25)), (2b)

where (2a) and (2b) are the initial perturbations used in [1] and [2], respectively.
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The incompressible Navier–Stokes equations written in the vorticity–stream function
form (ω–ψ) were discretized in the following manner. For convective terms, the fifth-order
compact upwind differencing (CUD-II-5) described in [3] was used while the fourth-order
compact formulas were applied to the second derivatives in the viscous terms and the
Laplace operator in the Poisson equation. The velocity components were also discretized
using the fourth-order compact differencing forψ . Though its overall order is 4, the scheme
differs from the conventional fourth-order schemes considered in [1, 2] in that it contains
very small numerical constants in its truncation errors, especially in those for nonlinear
terms. Besides, using CUD allows one to obtain with great ease arbitrary Reynolds number
oscillation-free thin layer solutions for coarse and fine meshes without adding artificial
dissipation mechanisms apart from the built-in fifth-order CUD dissipation.

Though the important point in the thin layers problems seems to be the spatial discretiza-
tions, high-order time-stepping methods were used in the present calculations. They were
the fourth-order Runge–Kutta method and the newly proposed highly accurate fifth-order
time integrator [4] applicable to hyperbolic and parabolic PDE and stiff ODE systems.
Figure 1 shows the CUDL1-norms of the solution errors versus grid point numbers for the
travelling wave exact solution presented in [2]. For comparison, the most accurate results
obtained in [2] via difference techniques (by using the fourth-order centered scheme for
theω–ψ formulation), as well as via the pseudospectral method, are also shown. As can be
seen, the accuracy of the CUD method is intermediate between those of the difference and
the pseudospectral methods used in [2], but the convergence order is the highest.

The calculations were carried out for input data identical to those of [1] [ρ = 100, Re=
1/20,000, initial perturbation (2a) withδ = 0.05] and [2] [ρ = 80, Re= 1/10,000, initial
perturbation (2b) withδ = 0.05] and had approximately the same meshes. They will be
referred to as Cases A and B, respectively.

In [1], the spurious vortex (say, att = 0.8) is seen in the case of 256× 256 mesh
but disappears when the 512× 512 mesh is used. The vorticity contours of the present

FIG. 1. Convergence curves for the travelling wave example of [2]:L1 norms of the velocityu errors (Err)
vs number of grid points (N). The computed convergence rates are (from top to bottom) fourth-order centered
scheme [2] (VScent): 4.01 [2], present (CUD-II-5): 4.94, and pseudospectral [2] (PSpect): 4.00 [2].
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FIG. 2. Removing spurious vortex by refining meshes: vorticity contours for the thin layer example of [1]
(Case A). The meshes are 129× 129 (top) and 257× 247 (bottom).

calculations corresponding to the same time moment are shown in Fig. 2 for 127× 127
mesh (top) and 257× 257 mesh (bottom). They are indiscernible from those of [1] though
they were obtained with meshes two times coarser. The results for Case B (not presented
here) show the same tendency. For example, when the robust methods are compared, the
127× 127 mesh rather than the 256× 256 mesh of [2] suffices to provide artifact-free
mesh-converged solutions without any evidence of spurious oscillations.

3. To add new information to that presented in [1, 2], inviscid solutions were calculated
for the above-mentioned cases by setting Re=∞. The reasons are as follows. In the present
double-periodic case, the viscous terms can be considered as non-singular perturbations to
the Euler equations (this is not true when solid boundaries are encountered). By neglecting
them, one can clearly see the vorticity-production capabilities of discrete non-linear terms.
When this is done, there is no loss of essential flow features, since viscous patterns simply
mimic inviscid ones.

Figures 3 and 4 show the vorticity isolines att = 0.8 andt = 1.0 corresponding to the
inviscid analogues of Cases A and B, respectively, using under-resolving (top) and well-
resolving (bottom) meshes. From these figures, two conclusions may be drawn.

First, artifacts in the form of three spurious vortices do exist in the inviscid case calculated
by the present method with relatively coarse meshes.

Second, in comparison with the viscous case, more refined meshes are needed to remove
them completely, that is, 513× 513 and 257× 257 for the input parameters of Cases A and
B, respectively.

The results upon which the first conclusion is based add some new information to that
presented in [1, 2]. In fact, there are three vortices which are clearly seen in Fig. 3 and slightly
masked by the viscosity in Fig. 2. A close examination of Fig. 8 of [1] also indicates the
presence of three extra vortices (though the middle one is the most pronounced). In Case B,
both our results and Fig. 3 of [2] show the presence of only one extra vortex. It may be



THIN SHEAR LAYERS 155

FIG. 3. Removing spurious vortex by refining meshes in the inviscid case: vorticity contours for the thin layer
example of [1] with Re=∞. The meshes are 257× 257 (top) and 513× 513 (bottom).

explained by the fact that the other two seen in Fig. 4 are sufficiently close to the main
vortices to be merged with them by the action of viscous forces.

Based on the above viscous–inviscid results, the following simplified scenario may be sug-
gested. In the inviscid case, the truncation errors arising from nonlinear term discretization

FIG. 4. Removing spurious vortex by refining meshes in the inviscid case: vorticity contours for the thin layer
example of [2] with Re=∞. The meshes are 129× 129 (top) and 257× 257 (bottom).
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(more precisely, their parts with skew-symmetric CUD components) are responsible for
producing the artifacts. Despite the presence of high-order derivatives, those errors may be
viewed as forcing terms playing the role of small non-singular perturbations to the Euler
equations in our double-periodic case (a similar suggestion was formulated in [2]). Due to
the unstable nature of the thin shear layers, they provoke considerable changes in numer-
ical solutions. In general, these changes may depend on the layer parameters and initial
perturbations. In the case of (2a) and (2b), there are three extra vortices.

When meshes are refined, the magnitude of the vorticity-producing parts of the forcing
terms rapidly decreases (asO(h6) for the present CUD method, whereh is the mesh
size). For someh, they become negligible when compared with theO(h5) dissipative
terms due to the self-adjoint CUD components andO(h4) truncation errors introduced by
the Laplace operator, and theψ-derivative discretizations (which are assumed to be non-
vorticity-producing). As a result, the artifacts became invisible, the most powerful middle
vortex being the last to visually disappear.

In the case of the Navier–Stokes equations, the vorticity-producing terms should be com-
pared withO(1/Re) viscous ones, rather than with other high-order parts of the truncation
errors. As a result, the viscous terms “kill” the artifacts when coarser meshes than those in
the inviscid calculations are used. The reduced number of grid points needed to remove the
artifacts in Case B both in CUD and as reported in [2] also fits neatly into the speculations.
Indeed, the Re number is two times smaller in this case, thus defining more powerful viscous
forces; they remove the artifacts when coarser meshes are used.

Comparisons of the enstrophy decays in the well-resolved case, which confirm certain
of the above suggestions, are presented in Fig. 5. As can be seen, the enstrophy decreases
far more rapidly in the viscous case, showing that the viscous dissipation considerably out-
weighs the numerical dissipation introduced by the self-adjoint part of the CUD operator.
Hence, the latter is not responsible for the coarser meshes needed to obtaining artifact-free
solutions in the present viscous calculations. Theoretically, the CUD dissipation acts only
in the domain of the shortest waves supported by grids. It is likely to influence mainly the
shear layer thickness rather than the relatively large vortex structures. Therefore, the early
disappearance of the spurious effects in the viscous cases may be attributed to the weak
intensity of their contributors and the ability of the CUD scheme to operate well under
conditions of coarse meshes.

FIG. 5. Vorticity decay curves for the well-resolved viscous and inviscid solutions in Case B.
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The behavior of the inviscid decay curves shown in Fig. 5 is worthy of notice. They show
almost constant values fort < t∗(h) and tend to go down with time fort > t∗ despite the
theoretically small numerical dissipation. This may be explained in the following way.

It is well known that norms of deviations of numerical solutions from exact ones are
bounded by norms of truncation errors multiplied by “stiffness” factors independent of
mesh size, which characterize responses of numerical solutions to input data perturbations.
The factors (which, in general, are functions of solutions) may be very large for unstable
problems, thus provoking noticeable differences between numerical and exact solutions even
in the case of very small truncation errors. In the present conservative scheme, the integral
balance is affected mainly by the boundary values. Att < t∗, they = const boundaries are
less disturbed, thus introducing lesser enstrophy losses. As can be expected, the losses for
the 513× 513 meshes are considerably less than those for the 257× 257 meshes. It should
be noted that the flow patterns in both cases are indiscernible.

The above reasoning concerning the artifacts’ appearance and removal seems to be ap-
plicable to other upwind schemes, the difference due only to the magnitudes of truncation
errors of the nonlinear terms. For example, Fig. 8 of [1] shows (as has been already men-
tioned) exactly three spurious vortices in the under-resolved calculations with a dissipative
Godunov-type method. One may assume that they can be attributed to the corresponding
inviscid pattern produced by the Godunov-type discretization.

4. A more complicated problem seems to be the estimation of the relation between initial
perturbations and the vortex-producing ability of schemes in the limit of Re=∞.

To provide an argument confirming their wavenumber 2 suggestion, the authors of [2]
added to the basic initial data (2b) a function which results in a perturbation with twice
the frequency of the initial one. The results of calculations [2] showed the existence of an
additional “true” vortex midway between the main vortices which does not disappear when
meshes are refined (Fig. 9 of [2]). The same picture was obtained with the present method
and two times coarser mesh.

However, using (2a) instead of (2b) with the wavenumber 2 perturbation

ũ = εcos(4πx + 0.25) cos(2πy), ṽ = 2εsin(4πx + 0.25) sin(2πy), ε = .00375

(3)

FIG. 6. Results of adding wavenumber 2 perturbation (3) to “main” perturbation (2b) in the inviscid case:
vorticity contours for the thin layer parameters [2] with Re=∞. The meshes are 129× 129 (a) and 257× 257 (b).
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(that is, the combination which was not considered in [2]) was found to produce a quite
unexpected vortex configuration. In the inviscid case, the main double-vortex pattern was
accompanied by a spurious midway vortex in the under-resolved results. The latter disap-
peared when meshes were refined to give the double-vortex structure for which (contours
are presented in Fig. 6 for the parameters of Case B and Re=∞). The Navier–Stokes
calculations showed the same mesh-converging solution when coarser meshes were used.
Though a wavenumber 2 initial perturbation (3) was added, the pattern shown in the figure
has little in common with that obtained for the wavenumber 2 initial data of [2] (see [2],
Fig. 9).

Hence, additional studies on the role of initial disturbances are needed. From the practical
viewpoint, the open question is to what extent is it possible to reduce the number of grid
points corresponding to mesh-converged solutions by further refining difference schemes.
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