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 In the creation of new materials, a situation occurs when the 
volumetric heat capacity and the thermal conductivity of substance 
depend only on temperature and this dependences are unknown. 
 
 In this context, the problem arises of determining the temperature 
dependence of the volumetric heat capacity and thermal 
conductivity from experimental observations of temperature field 
dynamics. 
 
 A similar problem arises when a complex thermal process is 
described by a simplified mathematical model. An example is the 
mathematical simulation of heat transfer in complex porous 
composite materials, where a noticeable role is played by radiation 
heat transfer. 
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Formulation of the Problem 
 

,  ,  (1) 

,            ,      (2) 

,           , .  (3) 

 
Consider the sample of substance that has the shape of a right 

parallelepiped of length , width , and height . 
 

, ,   the Cartesian coordinate of the point ; 
  the time; 

; 
  the temperature at the point  at the time ; 

  the volumetric heat capacity of the material; 
  the thermal conductivity; 

଴ , డொ   given functions. 
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The Cost Functional 1 :  
 

ଶ
ொ

௵

଴
 

  given parameter; 
  given experimental temperature field. 

 
The optimal control problem is to find the optimal control  

and the corresponding optimal solution  to the problem (1-3) 

that minimizes functional . 

 
 

The optimal control problem always has more than one solution: 

∗ ∗ − solution      ∗ ∗ – solution. 

Additional condition:   for example,   
஼(்)

௄(்)
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Optimal Control Problem in the Discrete Case 
 

1). The desired functions  and ,  were approximated by continuous 
piecewise linear functions. 
 
2). The domain was broken up by grid planes ௡ ௡ୀ଴

ே , ௜ ௜ୀ଴
ூ , 

௟ ௟ୀ଴
௅  and ௝

௝ୀ଴

௃
 into a series of parallelepipeds. In each of the resulting parallelepipeds, the 

law of thermal balance must be met. The result is a finite difference scheme that approximates 
the mixed problem (1)-(3). 
 
3). To solve the direct problem, the iterative version of locally one-dimensional scheme was 

used. 
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4). The Cost functional approximation: 
 

଴ ଵ ெ ଴ ଵ ெ  
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5). The Optimal Control Problem was solved numerically by gradient method. It is known that 

when using gradient methods, it is extremely important to determine the exact values of 

gradients. The gradient of the Cost function was calculated with the help of Fast Automatic 

Differentiation technique. 
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Fast Automatic Differentiation Technique 
 

Let we have a continuously differentiable scalar function 
(Cost function) 

)(),,( uzzwhereuzW 
 

 
Let we have a continuously differentiable vector function 

(Phase constraints) 

nuz 0),( 
 

 

The function   
)),(()( uuzWu 

   is a complex function 
(Function of Control) 

 
Idea: Lagrange multiplier method     
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Advantages of FAD-methodology 
 

1). Canonical formulas 
 

2). Precision 
 

3). Effectiveness 
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The Cost functional approximation: 
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Direct  Problem: 
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Conjugate  Problem: 
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Gradient of the Cost function 
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Important facts: 

1. The gradient is accurate for the selected approximation of the optimal control problem. 

2. The conjugate variables used are the same for both components of gradient.  
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Results of Numerical Calculations 
 

Several series of calculations were performed. 
 

First series of calculations 
 

The results were based on the fact that the function 
. 

is the analytical solution to the equation 

௦ ௦  

for       ,  . 

Functions   ଴ ,    డொ     are the trace of      on the parabolic boundary of  

region . 

An "analytical" field       was used as an experimental temperature field   . 

൫௦∈ொ,௧∈(଴,ఏ)൯
,    

(௦∈ொ,௧∈(଴,ఏ))
=6.5. 
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Fig. 1. Temperature distribution density. 

 

Parameters: 

1). . 
 
2). The uniform grid with   30   intervals along the axes and  100  along the axis 𝑡 was used. 
 
3). The segment [𝑎, 𝑏] was partitioned into   40   intervals. 
 
4). .         
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First series,   first example 

  addition condition. 

     

Fig. 2. Volumetric heat capacity.       Fig. 3. Thermal conductivity. 

 

1). The Cost function decreased from 3.39*10-03 at the initial approximation to 9.85*10-30. 

2). The maximum relative deviation of the temperature field changed from 3.46*10-02 to 1.72*10-14. 

3). The gradient modulus of the objective function decreased by 14 orders of magnitude. 

 

Conclusion:   The is not  
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First series,   second example 

,    addition condition. 

     

Fig. 4. Volumetric heat capacity.       Fig. 5. Thermal conductivity. 

 

1). The Cost function decreased from 3.39*10-03 at the initial approximation to 9.35*10-30. 

2). The maximum relative deviation of the temperature field changed from 3.46*10-02 to 2.65*10-14. 

3). The gradient modulus of the objective function decreased by 15 orders of magnitude. 

 

Conclusion:   The is  
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Second series of calculations 
 

The experimental temperature field      was constructed by  solving the direct problem  

with special input data: 

 

1). The temperature on the parabolic boundary of the region was equal to the trace of the function 

ଶ ଶ ଶ

 

 

2). ,   . 
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About field    : 
 

൫௦∈ொ,௧∈(଴,ఏ)൯
,   

൫௦∈ொ,௧∈(଴,ఏ)൯
. 

 

 

Fig. 6. Temperature distribution density. 

 

There is too little experimental data outside the segment   . 

There will be difficulties in restoring the desired parameters.  
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,    addition condition. 

     

Fig. 7. Volumetric heat capacity.       Fig. 8. Thermal conductivity. 

 

1). The Cost function decreased from 2.21*10-3 at the initial approximation to 1.87*10-9. 

2). The gradient modulus of the objective function decreased by 7 orders of magnitude. 

Conclusions:    The parameters are not reconstructed where there  

         is too little experimental data 

The solution is unique  
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Conclusions: 
 

 1). When considering the problem of simultaneous identification the volumetric heat capacity 

and the thermal conductivity over the temperature field in the three-dimensional case, the 

density of the distribution of experimental data along a given temperature segment plays an 

important role. For those temperature values at which there are few experimental data, the 

desired parameters are practically not identified. 

2). The solution of the inverse problem may be not unique. To identify a single solution, it is 

recommended to impose additional conditions on the solution. 

3). The use of the FAD technique allows one to obtain an exact gradient of the functional for 

the chosen approximation of the direct problem. This allows one to achieve the minimum of 

the functional (and construct control functions) with high accuracy using gradient optimization 

methods. Apparently, this approach is one of the ways to regularize the problem.  
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