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Introduction

We consider the problem of symbolic summation of
trigonometric series containing roots of a transcendental
equation instead of natural numbers of harmonics.
We present a continuation of our previous work on ordinary
Fourier series. This work was recently published. [Malyshev,
Malykh, Sevastyanov, Zorin, Mathematics, 2025].
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Problem Formulation

Today we consider series of the type

u =
∑
λ

P

Q
sinλx, x ∈ [0, 1], P ∈ R[λ], Q ∈ R[λ].

Summation is carried out over the positive roots of the equation

λ cosλ+ h sinλ = 0, h > 0.

Expressions for P and Q as functions of lambda are given. It is
required to determine the expression for u in its final form.
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Motivation and Idea

These series can be considered as Fourier series in eigenfunctions of
the Sturm-Liouville problem:

y′′ + λ2y = 0, x ∈ (0, 1)

y(0) = 0, y′(1) + hy(1) = 0, h > 0.

Eigenfunctions:
yλ = sinλx

Square of the norm of an eigenfunction:

‖yλ‖2L2(0,1)
=

1

2

h2 + h+ λ2

h2 + λ2

Let’s consider the summation:

u =
∑
λ

aλ
h2 + λ2

h2 + h+ λ2
sinλx, x ∈ [0, 1], aλ ∈ R(λ).
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Usual Fourier Series: h =∞

Usual case: λ ∈ N. This occurs when replacing [0, 1] with [0, π]
and formally replacing the final value h > 0 with h =∞.

u =

∞∑
n=1

an sinnx, x ∈ [0, π], an ∈ R(n).

Let us show how such a series can be summed, following our
previous work [Malyshev at all, Mathematics, 2025].
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Annihilation usual series (h =∞). Step 1.

Theorem

Let an ∈ R(n). Then there exists a linear differential expression
L ∈ R[ d2

dx2
] and a polynomial An ∈ R[n], that the sum of the series

u =

∞∑
n=1

an sinnx

is a solution in the sense of D′ of the linear differential equation

L[u] =

∞∑
n=1

An sinnx, An ∈ R[n]. (1)

Let us introduce the notation LQ for the operator L ∈ R[D2] that
annihilates the denominator Qn ∈ R[n].
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Basic Divergent Series for h =∞

Note that

Lemma
In the space D′ the following formulas are valid

∞∑
n=1

ĉosnx = πδ̂(x, 0)− 1̂

2

and
∞∑
n=1

ŝinnx =
1

2
ĉot

x

2
.
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Annihilation usual series (h =∞). Step 2.

Note that the distribution
∞∑
n=1

Bn sinnx, Bn ∈ R[n] is a

finite sum of a constant, a δ-function, a cot, and their
derivatives, denoted by f .
It is necessary to find a solution to the equation L[u] = f in
the space D′.
If f does not contain ĉot, the solution is easy to find. This is
the so-called case of A.N. Krylov series.
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On the solution of the differential equation in A.N.
Krylov case

Theorem

Let the operator L have order q"— the largest order of
differentiation in the expression L. Let

f = α+ α0δ(x) +

q−1∑
n=1

αnD
nδ(x), α ∈ R, αn ∈ R.

Let the operator L have no zero eigenvalue under the periodicity
boundary conditions. Then there exists a unique function u
satisfying the equation L[u] = f in the sense of D′. This function is
expressed in the finite form of piecewise elementary functions of the
variable x, this expression can be found in a finite number of steps.
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Example of A.N. Krylov’s series

Example

u =

∞∑
n=1

n3

1 + n4
sinnx

Cf. [Krylov], [Pak], [Tolstov].

L[u] = (D4 + 1)u = πD3δ(x), x ∈ [−π, π];

u(−π) = u(π) = 0, D2u(−π) = D2u(−π) = 0.

The solution to the problem is the result of the summation:

u =
π

2

cosh x√
2
cos 2π+x√

2
− cos x√

2
cosh 2π+x√

2

coshπ
√
2− cosπ

√
2

+πh(x) cosh
x√
2
cos

x√
2
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Fourier series with parameter 0 < h <∞

The summation over the positive roots of equation
λ cosλ+ h sinλ = 0:

u =
∑
λ

aλ
h2 + λ2

h2 + h+ λ2
sinλx, x ∈ [0, 1], aλ ∈ R(λ).

Basic divergent series:

Theorem
In the sense of the space D′(−1, 1) the following equalities hold:

∑
λ

λ2k+1 h2 + λ2

h2 + h+ λ2
sinλx = 2·(−1)k+1 ·D2k+1δ(x), k ∈ N∪{0}
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Annihilation with parametr 0 < h <∞. Step 1.

u =
∑
λ

aλ
h2 + λ2

h2 + h+ λ2
sinλx, x ∈ [0, 1], aλ =

Pλ
Qλ
∈ R(λ).

Let Qλ ∈ R[λ2]:

Qλ = qNλ
2N + qN−1λ

2(N−1) + ...+ q0.

Then the operator LQ ∈ R[D2] has the form:

LQ = (−1)NqND2N + (−1)N−1qN−1D2(N−1) + ...+ q0.

LQu =

∞∑
n=1

Pλ
h2 + λ2

h2 + h+ λ2
sinλx
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Annihilation with parametr 0 < h <∞. Step 2.

LQu =

∞∑
n=1

Pλ
h2 + λ2

h2 + h+ λ2
sinλx

Let Pλ ∈ R[λ] is an odd function λ. Then

∞∑
n=1

Pλ
h2 + λ2

h2 + h+ λ2
sinλx = β1·D1δ(x)+β3·D3δ(x)+...+βd·Ddδ(x)

d = degPλ.

It remains to find L−1. Boundary conditions of the third kind:

u′|x=1 + hu|x=1 = 0, u′|x=−1 − hu|x=−1 = 0,

u” ’|x=1 + hu′′|x=1 = 0, u′′′|x=−1 − hu′′|x=−1 = 0, etc.
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Annihilation with parametr 0 < h <∞

Theorem
Let the annihilation operator LQ have no zero eigenvalue under
boundary conditions of the third kind. Let the polynomial Pλ
contain only odd powers of λ. Then the series u is expressed in the
finite form of piecewise elementary functions on the segment
[−1, 1].
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N.S. Koshliakov Polynomials for 0 < h <∞

A generalization of Bernoulli polynomials proposed by
N.S.Koshliakov in 1935.∑

λ

h2 + λ2

h2 + h+ λ2
sinλx

λ2k+1
= K2k+1.

−2K7 =
x6

360
h(x)−

− h

5040(h+ 1)
x7 − x6

720
− h2 + 3h+ 3

360(h+ 1)2
x5+

+
h3 + 6h2 + 15h+ 15

270(h2 + 2h+ 1)(h+ 1)
x3−2h4 + 18h3 + 72h2 + 147h+ 126

945(h3 + 3h2 + 3h+ 1)(h+ 1)
x,

x ∈ [−1, 1].
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Example, h = 1

Example
Series:

u =
∑
λ

λ5 + λ3

λ6 + 2λ4 + λ2 + 2
sinλx

Annihilation:

L[u] = (D4 + 1)u = D3δ(x), x ∈ [−1, 1];

(u′+u)|x=1 = (u′−u)|x=−1 = 0 = (u′′′+u′′)|x=1 = (u′′′−u′′)|x=−1.

u = c1e
− x√

2 cos
x√
2
+c2e

− x√
2 sin

x√
2
+c3e

x√
2 cos

x√
2
+c4e

x√
2 sin

x√
2
+

+h(x) cosh
x√
2
cos

x√
2
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Example, h = 1

The sum of the first six
terms of the series

u =
∑
λ

λ5 + λ3

λ6 + 2λ4 + λ2 + 2
sinλx

and the final expression for the sum of the series.
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We don’t know

u =
∑
λ

h2 + λ2

h2 + h+ λ2
sinλx =??

In the sense of generalized functions, one can obtain equalities:

u|h=∞ =
1

2
ĉot

x

2

u|h=0 =
1

2

1̂

sinx

What happens for an arbitrary finite value of h? Having defined the
sum of this series in a convenient finite form, we can hope to be
able to sum even more series.
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Conclusions

A generalization of summation using annihilation is obtained
for the case of Fourier series over the roots of a transcendental
equation.
The proposed scheme can be transferred to other variants of
trigonometric series with roots of transcendental equations, cf.
[Repnikov, Khukhryansky, Bardakov].
Some questions remain unclear, perhaps other methods of
summation are required for them.
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