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Introduction

@ We consider the problem of symbolic summation of
trigonometric series containing roots of a transcendental
equation instead of natural numbers of harmonics.

@ We present a continuation of our previous work on ordinary
Fourier series. This work was recently published. [Malyshev,
Malykh, Sevastyanov, Zorin, Mathematics, 2025].
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Problem Formulation

Today we consider series of the type

u= ngin)\x,x €10,1, PecR[\,QecR[\.
A

Summation is carried out over the positive roots of the equation
Acos A+ hsin A =0, h > 0.

Expressions for P and @ as functions of lambda are given. It is
required to determine the expression for u in its final form.
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Motivation and ldea

These series can be considered as Fourier series in eigenfunctions of
the Sturm-Liouville problem:

v + Xy =0, ze(0,1)
y(0) =0, o'(1)+hy(1)=0,h>0.

Eigenfunctions:
Y = sin A\x

Square of the norm of an eigenfunction:

5 1h?+h+ )2
YAz 50,0 = RN RSV

Let's consider the summation:

h% + \?
U—Z Y v sin Az, x € 10,1], ay € R(N).
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Usual Fourier Series: h = oo

Usual case: A € N. This occurs when replacing [0, 1] with [0, 7]
and formally replacing the final value A > 0 with h = oo.

(0.9}
u= Zan sinnz, z € (0,7, an € R(n).
n=1

Let us show how such a series can be summed, following our
previous work [Malyshev at all, Mathematics, 2025].
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Annihilation usual series (h = c0). Step 1.

Theorem

Let an, € R(n). Then there exists a linear differential expression
L e R| i | and a polynomial A,, € R[n], that the sum of the series

dx?
oo
u = Z a, sin ne
n=1
is a solution in the sense of ®' of the linear differential equation

Liul =) Apsinnz, A, €R[n]. (1)
n=1

4

Let us introduce the notation L, for the operator L € R[D?] that
annihilates the denominator @,, € R[n].
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Basic Divergent Series for h = 0o

Note that

In the space ®' the following formulas are valid

and
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Annihilation usual series (h = 00). Step 2.

o
o Note that the distribution Y B, sinnz, B, € R[n]is a
n=1
finite sum of a constant, a d-function, a cot, and their

derivatives, denoted by f.

o It is necessary to find a solution to the equation L[u] = f in
the space ©'.

o If f does not contain cot, the solution is easy to find. This is
the so-called case of A.N. Krylov series.
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On the solution of the differential equation in A.N.

Krylov case

Theorem

Let the operator L have order q"— the largest order of
differentiation in the expression L. Let

q—1
f:a+oz05(x)+2anD”5(a:), a€eR a, € R
n=1

Let the operator L have no zero eigenvalue under the periodicity
boundary conditions. Then there exists a unique function u
satisfying the equation L{u] = f in the sense of ©'. This function is
expressed in the finite form of piecewise elementary functions of the
variable x, this expression can be found in a finite number of steps. )
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Example of A.N. Krylov's series

Example

o 3
n .
u = E S1n nax
1+ nt
n=1

Cf. [Krylov], [Pak], [Tolstov].

Lu] = (D* 4+ 1)u = D35 (), x € [—m,m;

u(—m) =u(m) =0, D?u(—7) = D?u(—7) = 0.

The solution to the problem is the result of the summation:

h - 2rt+x T h 2+
E COS 2 COS V2 COS V2 COS V2

2 cosh mv/2 — cos mv/2

+7h(z) cosh L ocos =

VoG

u =
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Fourier series with parameter 0 < h < 00

The summation over the positive roots of equation
Acos A+ hsin A = 0:

h? + \?
u—ZaAh2+Z+)\2 sin Az, x € [0,1], ay € R(A).

Basic divergent series:

In the sense of the space D'(—1,1) the following equalities hold:

o1 _MEAEN k41, 2k+1
Z)\ h2+h+>\zsm)\x:2.(_1) .D 5(z), k € NU{0}
A
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Annihilation with parametr 0 < h < co. Step 1.

h? 4 )2 P,
u—ZaAh2+h+)\2 sin Az, x €1[0,1], aA:@ER()\).
Let Q) € R[N\

Qx = g A gy A ZVD g

Then the operator Ly € R[D?] has the form:

Lo = (—1)NqnD* + (—1)N gy D*N D 4+ o

ZP)‘hQ—i—h 2 sin Az
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Annihilation with parametr 0 < h < co. Step 2.

ZP)‘h2+h+)\2 sin Az

Let P\ € R[)\] is an odd function \. Then

- RN 1 3 d

d= degPA.
It remains to find L~—!. Boundary conditions of the third kind:

ul|x:1 + hu‘wzl = 07 ul|x:—1 - hu|x:—1 = 07

u"'p=1 + b |p=1 = 0,0 =1 — B |p=—1 = 0, etc.
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Annihilation with parametr 0 < h < o0

Let the annihilation operator Lg have no zero eigenvalue under
boundary conditions of the third kind. Let the polynomial Py
contain only odd powers of \. Then the series u is expressed in the
finite form of piecewise elementary functions on the segment
[—1,1].
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N.S. Koshliakov Polynomials for 0 < h < oo

A generalization of Bernoulli polynomials proposed by
N.S.Koshliakov in 1935.

h2 4+ X2 sin\x -
Z B2 4+ I+ A2 \2kFT Koky1-
A

6

xXr
9K, = £ p(a)—
7= 3600
b g 2% 43h43
5040(h + 1) 720~ 360(h + 1)2

N h3 +6h% + 150 +15 5 2h* 4+ 183 + 72h2 + 147h + 126
Tr — 9
270(h% + 2h + 1)(h + 1) 945(h3 4 3h? +3h 4+ 1)(h + 1)

x € [-1,1].
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Example, h =1
SEE
Series:
= Z A+ X sin \x
‘e — A5+ 204 4+ A% 42
Annihilation:

L[u] = (D* + 1)u = D35(x), xz € [-1,1];

() a1 = (o) ey = 0 = (") gms = (" ") 1. |

_ = x _= x =z T = x
U = c1e V2 CcoS ——=—coe V2 sin ——+czev2 cos ——+cgev2 sin ——+
' V2 Vo V2 V2
x x
+h(x) cosh — cos —
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Example, h =1

The sum of the first six
terms of the series

AP+ A3
u = Z G + sin A\x
A

+ 22X+ X242

and the final expression for the sum of the series.
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We don't know

In the sense of generalized functions, one can obtain equalities:

1~ =
u]h:m:§c0t§
o= L 1
Uh=0= 5 Ginz

What happens for an arbitrary finite value of A7 Having defined the
sum of this series in a convenient finite form, we can hope to be
able to sum even more series.
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Conclusions

@ A generalization of summation using annihilation is obtained
for the case of Fourier series over the roots of a transcendental
equation.

@ The proposed scheme can be transferred to other variants of

trigonometric series with roots of transcendental equations, cf.
[Repnikov, Khukhryansky, Bardakov].

@ Some questions remain unclear, perhaps other methods of
summation are required for them.
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