Slode[Liouvillian_series_sol] - formal power series solutions with Liouvillian

coefficients for a linear ODE

Calling Sequence

Liouvillian_series_sol(ode, var, opts) Liouvillian_series_sol(LODEstr, opts)

Parameters

ode	-	linear ODE with polynomial coefficients
var	-	dependent variable, for example y(x)
opts	-	optional arguments of the form keyword=value
LODEstr	-	LODEstruct data structure

Description

- The Liouvillian_series_sol command returns one formal power series solution or a set of formal power series solutions of the given linear ordinary differential equation with polynomial coefficients. The ODE must be homogeneous.
- If ode is an expression, then it is equated to zero.
- The routine returns an error message if the differential equation **ode** does not satisfy the following conditions.
 - ode must be homogeneous and linear in var
 - ode must have polynomial coefficients in the independent variable of var, for example, x
 - The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
- A homogeneous linear ordinary differential equation with coefficients that are polynomials in x

has a linear space of formal power series solutions $\sum_{n=0}^{\infty} v(n) P_n(x)$ where $P_n(x)$ is one of $(x-a)^n$,

 $\frac{(x-a)^n}{n!}$, $\frac{1}{x^n}$, or $\frac{1}{x^n n!}$, *a* is the expansion point, and the sequence v(n) satisfies a homogeneous

linear recurrence.

• The routine selects such formal power series solutions where v(n) is a Liouvillian sequence for all sufficiently large *n*.

Options

• x=a or 'point'=a

Specifies the expansion point **a**. The default is a = 0. It can be an algebraic number, depending rationally on some parameters, or ∞ .

If this option is given, then the command returns one formal power series solution at **a** with Liouvillian coefficients if it exists; otherwise, it returns **NULL**. If **a** is not given, it returns a set of one formal power series solution with Liouvillian coefficients for the **a=0**.

'free'=C

Specifies a base name C to use for free variables C[0], C[1], etc. The default is the <u>global</u> name _C. Note that the number of free variables may be less than the order of the given equation if the expansion point is singular.

• 'indices'=[n,k]

Specifies names for dummy variables. The default value are the <u>global</u> names _n and _k.The name n is used as the summation index in the power series. The name k is used as the product index.

Examples

> restart; 'mylib' must be a path to the file Slode.mla > libname := mylib, libname: > with(Slode): > ode := diff(y(x),x)*x^3+diff(y(x),x)-2*x^4*y(x)-2*x*y(x)-3* $ode := \left(\frac{d}{dx} y(x)\right) x^3 + \frac{d}{dx} y(x) - 2x^4 y(x) - 2xy(x) - 3x^2 y(x)$ (5.1)> Liouvillian_series_sol(ode,y(x)); $\left\{ \begin{array}{c} -C_{5} + -C_{5} \\ -n^{n-2} \end{array} \right\} \left\{ \begin{array}{c} \frac{1}{\Gamma\left(\frac{1}{2} - n + 1\right)} & irem(-n, 2) = 0 \\ \frac{1}{\Gamma\left(\frac{1}{2} - n - \frac{1}{2}\right)} & irem(-n, 2) = 1 \end{array} \right\} x^{-n}$ (5.2)ode := diff(y(x),x)*(x+1)^3+diff(y(x),x)-2*(x+1)^4*y(x)-2* $(x+1)*y(x)-3*(x+1)^{2}y(x);$ $ode := \left(\frac{d}{dx}y(x)\right)(x+1)^3 + \frac{d}{dx}y(x) - 2(x+1)^4y(x) - 2(x+1)y(x) - 3(x+1)y(x) - 3(x+1$ (5.3) $(+1)^{2} y(x)$ > Liouvillian_series_sol(ode,y(x)); { } (5.4)> Liouvillian_series_sol(ode,y(x), 'indices'=['n','k'], 'free'= ' c', 'point'=-1);

$$\[_c_5 + _c_5 \left\{ \sum_{n=2}^{\infty} \left\{ \begin{array}{l} \frac{1}{\Gamma\left(\frac{1}{2} n + 1\right)} & irem(n, 2) = 0\\ \frac{1}{\Gamma\left(\frac{1}{2} n - \frac{1}{2}\right)} & irem(n, 2) = 1 \end{array} \right\} (x+1)^n \right\}$$
(5.5)

See Also

LODEstruct, LREtools[LiouvillianSolution], Slode, Slode[candidate_points], Slode [hypergeom_series_sol], Slode[rational_series_sol]