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The problem

We consider a system of the form
y1(x + 1) = a1,1(x)y1(x) + · · ·+ a1,m(x)ym(x)

. . .
ym(x + 1) = am,1(x)y1(x) + · · ·+ am,m(x)ym(x)

with ai ,j(x) ∈ K (x), where K is an algebraically closed field of
characteristic 0.

A short notation:
y(x + 1) = A(x)y(x)

where A(x) is an (m×m)-matrix, and y(x) = (y1(x), . . . , ym(x))T .
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h(x) is called a hypergeometric term over K if
h(x + 1)

h(x)
∈ K (x).

For example,

h(x) = (−1)x :
h(x + 1)

h(x)
= −1.

h(x) = x! = Γ(x + 1) :
h(x + 1)

h(x)
= x + 1.

h(x) =
x−1∏
k=n0

r(k) :
h(x + 1)

h(x)
= r(x).

Denote by HK the K -linear space of finite linear combinations of
hypergeometric terms over K with coefficients in K .
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A basis of solutions belonging to Hm
K of

y(x + 1) = A(x)y(x)

consists of elements of the form

h(x)R(x),

where h(x) is a hypergeometric term and R(x) ∈ K (x)m.

We propose an algorithm to find such basis.
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The cyclic-vector method

Let c [0](x) be a row vector with m random entries.

Compute

c [1](x) = c [0](x + 1)A(x);

c [2](x) = c [1](x + 1)A(x);
. . .

c [m−1](x) = c [m−2](x + 1)A(x).

Set

B(x) =


c [0](x)

c [1](x)
...

c [m−1](x)

 .
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If B(x) is an invertible matrix then c [0](x) is a cyclic vector and

B(x+1)A(x)B−1(x) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 0 0 . . . 1
u0(x) u1(x) u2(x) . . . um−1(x)


is a companion matrix for A(x).
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The system y(x + 1) = A(x)y(x) is equivalent to

v(x + m) = u0(x)v(x) + · · ·+ um−1(x)v(x + m − 1).

For any v(x) ∈ HK (x) we get y(x) ∈ Hm
K by

B(x)y(x) =


v(x)

v(x + 1)
...

v(x + m − 1)

 .

– M. Petkovšek. Hypergeometric Solutions of Recurrences with Polynomial Coefficients.

Symbolic Computation. 1992.

– M. van Hoeij. Finite singularities and hypergeometric solutions of linear recurrence

equations. J. Pure Appl. Algebra. 1999.
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For

B(x+1)A(x)B−1(x) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 0 0 . . . 1
u0(x) u1(x) u2(x) . . . um−1(x)


we can compute u(x) = (u0(x), . . . , um−1(x)) by

u(x)B(x) = c [m−1](x + 1)A(x).

A. Bostan, F. Chyzak, E. de Panafieu. Complexity estimates for two
uncoupling algorithms, ISSAC’2013 Proceedings , 85–92.
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The resolving equation and matrix

Let c [0](x) = (1, 0, . . . , 0︸ ︷︷ ︸
m−1

).

Compute

c [1](x) = c [0](x + 1)A(x);

c [2](x) = c [1](x + 1)A(x);
. . .

c [k−1](x) = c [k−2](x + 1)A(x);

c [k](x) = c [k−1](x + 1)A(x).

Set

B(x) =


c [0](x)

c [1](x)
...

c [k−1](x)

 .

k is the least integer (1 ≤ k ≤ m) such that c [0], c [1], . . . , c [k] are
linearly dependent over K (x):

u0(x)c [0](x) + u1(x)c [1](x) + · · ·+ uk(x)c [k](x) = 0.
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The equation

u0(x)y1(x) + u1(x)y1(x + 1) + · · ·+ uk(x)y1(x + k) = 0

is called the y1-resolving equation, and the (k ×m)-matrix B(x) is
called the y1-resolving matrix.
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The case of k = m

Find a basis of all hypergeometric solutions for y1-resolving equation:
h1(x), . . . , hk1(x), k1 ≤ m.

For each hj(x) we get

B(x)y(x) =


hj(x)

hj(x + 1)
...

hj(x + m − 1)

 .

If hj (x+1)
hj (x)

= rj(x) then y(x) = hj(x)z(x) and

B(x)z(x) =


1

rj(x)
rj(x)rj(x + 1)

...
rj(x) · · · rj(x + m − 2)

 .
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The case of k < m

By y1-resolving equation, we can find all solutions of

y(x + 1) = A(x)y(x) such that y1(x) 6= 0.

For y1(x) = 0, we have

B(x)y(x) = 0.

There exist m− k entries yi1(x), . . . , yim−k
(x) such that the other k

entries can be expressed as linear forms in them.
The vector ỹ(x) = (yi1(x), . . . , yim−k

(x))T satisfies

ỹ(x + 1) = Ã(x)ỹ(x),

where Ã(x) is an (m − k)× (m − k)-matrix.
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Compute a resolving sequence of equations and find their basises of
solutions belonging to HK : h1(x), . . . , hk1(x).
Let

h̃1(x), . . . , h̃k2(x)

be all non-similar hypergeometric terms from h1(x), . . . , hk1(x):

h̃i (x)

h̃j(x)
/∈ K (x), i 6= j .
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For each h̃j(x) substitute

y(x) = h̃j(x)z(x)

into the given system, where z(x) = (z1(x), . . . , zm(x))T ∈ K (x)m.

If h̃j (x+1)

h̃j (x)
= rj(x) then we get a new system

z(x + 1) =
1

rj(x)
A(x) z(x).

– S. Abramov, M. Barkatou. Rational solutions of first order linear difference

systems. ISSAC’98.

– S. Abramov, A. Gheffar, D. Khmelnov. Factorization of polynomials and gcd

computations for finding universal denominators. CASC’2010.

– S. Abramov, A. Gheffar, D. Khmelnov. Rational Solutions of linear dfference

equations: universal denominators and denominator bounds. Programming and Computer

Software. 2011.
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If Rj ,1(x), . . . ,Rj ,sj (x) ∈ K (x)m is a basis for rational solutions of

z(x + 1) =
1

rj(x)
A(x) z(x)

then we obtain K -linearly independent hypergeometric solutions

h̃j(x)Rj ,1(x), . . . , h̃j(x)Rj ,sj (x)

of y(x + 1) = A(x) y(x). Consider all such h̃j(x) for j = 1, . . . , k2.
The solutions

h̃1(x)R1,1(x), . . . , h̃1(x)R1,s1(x), . . . ,

h̃k2(x)Rk2,1(x), . . . , h̃k2(x)Rk2,sk2
(x)

generate over K all the solutions of the given system which have the
form h(x)R(x).
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The algorithm is implemented in Maple 18 as the procedure
HypergeometricSolution in a package LRS (Linear Recurrence
Systems) (available on http://www.ccas.ru/ca/doku.php/lrs).

Besides the resolving procedure, we implemented also the search for
hypergeometric solutions based on the cyclic vector approach. We
tested HypergeometricSolution for various systems and compared
the CPU time for the resolving and the cyclic-vector methods.

For systems with A(x) of size 4× 4 and 16× 16 the CPU time is

0.303 and 345.046 sec

(our algorithm) vs

0.410 and 1063.747 sec

(the cyclic vector).
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