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Simple lower bounds are important for planning calculations because a

sufficiently large rank ensures the applicability of some algorithms. The

rank of an n× n matrix over a field can be calculated using a polynomial

number of processors and performing only O(log22 n) algebraic operations

per processor (Chistov, 1985). The matrix rank is as hard as matrix

multiplication (Cheung, Kwok, and Lau, 2013).

In practice, calculating the matrix rank requires a lot of time. Unfortu-

nately, the rank calculation method implemented using the NumPy library,

which is based on the singular value decomposition, is not suitable because

of possible errors associated with the use of floating point numbers.
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To show the computational complexity of the matrix rank over Z, we have

used Python 3.10.4 and NumPy 1.22.4. The calculations were carried out

on a personal computer with Intelr Core i5-3570 and 16 GB RAM.

Time (in seconds) it takes to calculate the rank of a random n×n matrix.

Order n 105 120 136 153 171 190 210 231

Time (s) 6 11 18 30 50 79 120 190

The listings with examples are available at http://lab6.iitp.ru/-/qualg
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Let us denote by K an arbitrary field of characteristic not equal to two.

Let us consider an n×n matrix over the field K, where every entry outside

the leading diagonal belongs to the set {0,1}, but every diagonal entry is

neither 0 nor 1. How small can its rank be?

This problem has a simple geometric interpretation. Let us consider an

affine space over the field K with a fixed system of Cartesian coordinates.

A point is identified with a column, where entries are coordinates of the

point in this coordinate system. A column of zeros and ones corresponds

to a (0,1)-point, i.e., to a vertex of the unit cube. In matrices under con-

sideration, each column corresponds to a point in a straight line passing

through two adjacent (0,1)-points, but this point does not coincide with

any (0,1)-point. Moreover, different columns of the matrix correspond

to non-parallel straight lines.



Example. For the 3 × 3 matrix having neither 0 nor 1 in the leading

diagonal






1/2 0 1
0 −1 1
0 1 −1






,

the rank equals two. Three columns correspond to three points belonging

to a straight line L. The straight line L is given by the system of two

equations 1− 2x1 + x2 = 0 and x2 + x3 = 0. But the straight line L does

not pass through any (0,1)-point.

The rank of a matrix A is related to the dimensionality of the affine hull

L of all points corresponding to columns of A. If L passes through the

origin, then rank(A) = dim(L), else rank(A) = dim(L) + 1.

Theorem 1. Given an n×n matrix A over the field K, where every entry

outside the leading diagonal belongs to the set {0,1}, but every diagonal

entry is neither 0 nor 1. The rank of the matrix A is at least n/2.

The lower bound is tight. Let ⌈·⌉ denote rounding up.



Theorem 2. For every odd n, there is an n×n matrix A over the field K

such that every entry outside the leading diagonal belongs to the set

{0,1}, every diagonal entry is neither 0 nor 1, no (0,1)-point belongs to

the affine hull of all points corresponding to columns of the matrix A,

and the equality rank(A) = ⌈n/2⌉ holds.

Proof. Let us consider the n× n matrix

A =































1/2 0 1 0 1 · · · 0 1

0 −1 1 0 0 · · · 0 0
0 1 −1 0 0 · · · 0 0
0 0 0 −1 1 · · · 0 0
0 0 0 1 −1 · · · 0 0
... ... ... ... ... . . . ... ...
0 0 0 0 0 · · · −1 1
0 0 0 0 0 · · · 1 −1































.

Let us denote by B a (n− 1)× (n− 1) matrix obtained by removing both

first column and first row from the matrix A.

Obviously, rank(A) = rank(B) + 1. The matrix B is block-diagonal with

2× 2 blocks. All blocks are degenerate. Thus, rank(B) = (n− 1)/2.

Next, rank(A) = rank(B) + 1 = (n+1)/2 = ⌈n/2⌉.



Every column of the matrix

A =































1/2 0 1 0 1 · · · 0 1
0 −1 1 0 0 · · · 0 0
0 1 −1 0 0 · · · 0 0
0 0 0 −1 1 · · · 0 0
0 0 0 1 −1 · · · 0 0
... ... ... ... ... . . . ... ...
0 0 0 0 0 · · · −1 1
0 0 0 0 0 · · · 1 −1































is a solution to the inhomogeneous system of equations
{

2x1 − x2 − · · · − x2k − · · · − xn−1 = 1
x2k + x2k+1 = 0, 1 ≤ k ≤ (n− 1)/2

This system defines the affine hull, which does not pass through any

(0,1)-point.



Theorem 3. Given an even n and an n × n matrix A over the field K,

where every entry outside the leading diagonal belongs to the set {0,1},

but every diagonal entry is neither 0 nor 1. If no (0,1)-point belongs to

the affine hull of all points corresponding to columns of the matrix A,

then the rank of the matrix A is at least (n/2) + 1.

Example. For 2 × 2 matrices under consideration, the rank equals one

for matrices having reciprocal entries in the leading diagonal
(

1/α 1
1 α

)

,

where α 6∈ {0,1}. Two points corresponding to columns of this matrix

belong to a straight line that passes through the origin, i.e., through a

(0,1)-point. This straight line is given by the equation x2 = αx1.

So, if no (0,1)-point belongs to the affine hull of all points corresponding

to columns of the matrix A, then rank(A) = 2.



For n > m, a projection Kn → Km is so-called orthographic when the

projection forgets some coordinates.

It is important that the image of any (0,1)-point is again a (0,1)-point.

The term was historically used to denote orthogonal projections from

three-dimensional space onto a plane over reals.

Let ⌊·⌋ denote rounding down.

Corollary 1. For subspaces L ⊂ Kn, if dimL < ⌊n/2⌋ and L does not

pass through any (0,1)-point, then there is an orthographic projection

onto some coordinate hyperplane such that the image of L does not pass

through any (0,1)-point.

Corollary 2. Given a positive integer s. There is an s-dimensional affine

subspace L ⊂ K2s+1 such that L does not pass through any (0,1)-point,

but under the orthographic projection onto any coordinate hyperplane,

the image of L passes through some (0,1)-point.
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