
A Note on Application of Program

Specialization

to Computer Algebra

Andrei P. Nemytykh
Program Systems Institute of RAS

Russia

5th International Conference “Computer Algebra”

Moscow, June 26-28, 2023

1 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Introduction

In this talk I am going to discuss some experiments with a general-

purpose program transformation tool aiming at running time

optimization.

The experiments demonstrate that the tool is able to solve some

of computer algebra tasks.

The tasks to be solved are formulated in terms of the subject

language of the transformation tool.

2 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Introduction

Аutomatic program specialization

Given an input program p, program specialization aims at running

time optimization of p w.r.t. its syntactic structures.

The simplest example is to generate a definition of a partial

subfunction of the partial function defined by p.

One may wonder in some of syntactic properties of the program

q resulted by specialization rather than running time of q.

3 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Introduction

Аutomatic program specialization

I will:

show a couple of corollaries of widely known mathematical

constructions, which derived by a general purpose program

transformation tool, a specializer;

shortly introduce those properties of the tool, that allow it to

achieve desirable results.

4 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

The Idea

Аutomatic program specialization

The idea of using such a tool for generating mathematical formulae

was originated from Alexandr Korlyukov.

5 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

The Idea

A specialized program represents a residual code that may be of

interest in itself and even is not intended to be evaluated with

some input.

Let theorem be a program with two parameters condition1 and

condition2. Then deriving a corollary theoremcondition1 from

theorem and condition1 is a good example demonstrating

Korlyukov’s idea:

theoremcondition1(condition2) = theorem(condition1,condition2)

6 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

The Idea

A specialized program represents a residual code that may be of

interest in itself and even is not intended to be evaluated with

some input.

theoremcondition1(condition2) = theorem(condition1,condition2)

The corollary theoremcondition1 can be more useful than the

general theorem when we are in the scope of condition1.

In general, automatic generating a good transparent statement of

the corollary is nontrivial (and even undecidable) since the subject

programming language of the specializer used is Turing complete.

7 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Divisibility Criteria by Program Specialization

Let an N = dndn−1 . . .d0 ∈ N, where dn > 0 and 0 ≤ di ≤ 9, be

given in the decimal system.

Divisibility criteria

are ways of telling whether one natural number divides another

without actually carrying the division through. Divisibility criteria are

constructed in terms of the digits that compose a given number. The

criteria have to be simpler than the direct division of the second

number by the first one.

Let N be the number whose divisibility by another number q we

are going to investigate.

8 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Divisibility Criteria by Program Specialization

Let an N = dndn−1 . . .d0 ∈ N, where dn > 0 and 0 ≤ di ≤ 9, be

given in the decimal system.

The following equality (formula) being an equality criterion of

remainders of dividing two sums by q ∈ N is usually called divisibility

criterion for divisibility into q. Here the function % returns the

remainder of dividing the first argument by the second.

Divisibility Criterion

(
n∑︁

k=0

10kdk =
n∑︁

k=0

(10k%q)dk) (mod q)

The right-hand side of this equality satisfies the requirement above.

9 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Term Rewriting System

Now we translate the right-hand side (
∑︀n

k=0(10
k%q)dk)%q of the

equality into terms of our presentation programming language R that

is a simplified version of Refal.

$ENTRY divide { qs (dse) = <div 1 0 qs (dse)>; }

div {
ms ress qs () = ress; /* (

∑︀n
k=0 10

kdk)%q = */
ms ress qs (dse ds)

/* ((((10 * (10i−1%q))%q)di +
∑︀i−1

k=0(10
k%q)dk))%q */

= <div <% <* ms 10> qs> <+ ress <* ds ms>> qs (dse)>;
}

10 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

The Presentation Programming Language R

𝒜 is a union of a set of symbols and the natural numbers.

The data set defined by: d ::= (d1) | d1 d2 | 𝛼 | empty, where 𝛼 ∈ 𝒜.

It is a free monoid w.r.t. the concatenation denoted by the blank.

The second constructor is unary. It is denoted with its

parenthesis only (that is without a name) and is used for

constructing tree structures.

$ENTRY divide { qs (dse) = <div 1 0 qs (dse)>; }

div {
ms ress qs () = ress; /* (

∑︀n
k=0 10

kdk)%q = */
ms ress qs (dse ds)

/* ((((10 * (10i−1%q))%q)di +
∑︀i−1

k=0(10
k%q)dk))%q */

= <div <% <* ms 10> qs> <+ ress <* ds ms>> qs (dse)>;
}

11 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

The Presentation Programming Language R

Programs in R are term rewriting systems. The semantics is based on

pattern matching and call-by-value evaluation. The rewriting rules are

ordered for matching from the top to the bottom.

Every function is unary. An example of a function call:

<div 1 0 qs (dse)>

The function devide below is defined by means of one rewriting

rule, while the function div - by means of two rules.

$ENTRY divide { qs (dse) = <div 1 0 qs (dse)>; }

div {
ms ress qs () = ress; /* (

∑︀n
k=0 10

kdk)%q = */
ms ress qs (dse ds)

/* ((((10 * (10i−1%q))%q)di +
∑︀i−1

k=0(10
k%q)dk))%q */

= <div <% <* ms 10> qs> <+ ress <* ds ms>> qs (dse)>;
}

12 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

The Presentation Programming Language R

Programs in R are term rewriting systems.

There exist two types of variables: namee and names:
an e-variable can take any data as its value,

an s-variable ranges over 𝒜.

For every rewriting rule its set of variables from the left side

includes its set of variables from the right side.

$ENTRY divide { qs (dse) = <div 1 0 qs (dse)>; }

div {
ms ress qs () = ress; /* (

∑︀n
k=0 10

kdk)%q = */
ms ress qs (dse ds)

/* ((((10 * (10i−1%q))%q)di +
∑︀i−1

k=0(10
k%q)dk))%q */

= <div <% <* ms 10> qs> <+ ress <* ds ms>> qs (dse)>;
}

13 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Term Rewriting System

We translate the right side (
∑︀n

k=0(10
k%q)dk)%q of the equality into

terms of the language R that is a simplified version of Refal.

Given a divisor q0 we are going to specialize the program w.r.t.

the following initial configuration:

<divide q0 (dse d0s)>

$ENTRY divide { qs (dse) = <div 1 0 qs (dse)>; }

div {
ms ress qs () = ress; /* (

∑︀n
k=0 10

kdk)%q = */
ms ress qs (dse ds)

/* ((((10 * (10i−1%q))%q)di +
∑︀i−1

k=0(10
k%q)dk))%q */

= <div <% <* ms 10> qs> <+ ress <* ds ms>> qs (dse)>;
}

14 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Divisibility Criteria Derived by Program Specialization

The initial configuration:

<divide 3 (dse d0s)>

The residual program generated by the specializer used:

$ENTRY divide1 { (dse d0s) = <F19 (dse) d0s>; }

F19 { /*
∑︀n

k=0 dk

... 3 */
() x2s = x2s;
(x1e x3s) x2s = <F19 (x1e) <+ x2s x3s >>; }

The initial configuration:

<divide 18 (dse d0s)>

The residual program generated by the specializer used:

$ENTRY divide1 { (dse d0s) = <F19 (dse) d0s>; }

F19 { /* d0 + 10
∑︀n

k=1 dk

... 18 */
() x2s = x2s;
(x1e x3s) x2s = <F19 (x1e) <+ x2s <× x3s 10>>>; }

15 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Divisibility Criteria Derived by Program Specialization

The initial configuration:

<divide 8 (dse d0s)>

The residual program generated by the specializer used:

$ENTRY divide1 { /* d0 + 2d1 + 4d2

... 8 */
(d0s) = d0s;
(d1s d0s) = <+ d0s <× d1s 2>>;
(x1e d2s d1s d0s) = <+ <+ d0s <× d1s 2>> <× d2s 4>>;

}

The initial configuration:

<divide 10 (dse d0s)>

The residual program generated by the specializer used:

$ENTRY divide1 { (d1s d0s) = d0s; } /* d0

... 10 */

16 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Other Divisibility Criteria Derived by the Specializer

Examples of divisibility criteria dndn−1 . . .d0 by

6: 4×
∑︀n

k=1 dk + d0

... 6

6674
... 6 ⇔ (4(6+ 6+ 7) + 4) = 80

... 6 ⇔ 32
... 6 ⇔ 14

... 6

2022
... 6 ⇔ (4(2+ 2) + 2) = 18

... 6 ⇔ 12
... 6 ⇔ 6

... 6

37:
∑︀n/3

k=0(26× d3k+2 + 10× d3k+1 + d3k)
... 37

2023
... 37 ⇔ (2+ 20+ 3) = 25

... 37

18446744073709551615
... 37 ⇔ 1010

... 37 ⇔ 11
... 37

12: 4×
∑︀n

k=2 dk + 10×d1 + d0

... 12

999:
∑︀n/3

k=0(100× d3k+2 + 10× d3k+1 + d3k)
... 999

17 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

The Specialization Tasks -Performance Times

The Divisibility Criteria Specialization Tasks

Experimental average times taken by generating divisibility criteria
(including input, parsing and output times) by

3 : 0m 0,045s 12 : 0m 0,054s

6 : 0m 0,046s 18 : 0m 0,042s

8 : 0m 0,058s 37 : 0m 0,064s

10 : 0m 0,039s 999 : 0m 0,062s

The computer resources:

processor name : AMD A6-6420K APU
cpu MHz : 3100.000

MemAvailable : 743376 kB
Oper. System : #80-20.04.1-Ubuntu x86_64 GNU/Linux

18 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

F ⊊M ⊊ K

Given an algebraic closed field K of characteristic 0 and its subfield F

there is a classical constructive method building finite extensions of F

inside of K.

The method is uniform both on K and its subfield set.

Given a non-constant polynomial p(x) ∈ F[x] which is
irreducible over F, the field of fractions of F[x]/p(x) is an
extension of F, which is isomorphic to the extension of F by a
root x0 of p(x), x0 ∈ K.

For instance, Q(i) ∼= Q[x]/(x2 + 1).

19 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Uniformness of the Construction

Theorem

Any finite extention of the field F may be constructed by means of a
finite sequence of simple extensions of algebraic fields.

F = M0 ⊊M1 ⊊ . . . ⊊Mn−1 ⊊Mn = M

The Procedure

generating a simple extension of a given field is unform over the set of

subfields F of the field K of characteristic 0.

Given fields F,K and a polynomial q(x)∈F[x] irreducible over F.
The problem is to implement a small program library of

arithmetic for F[x]/q(x), parameterized by F,K and q(x).

20 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Formulation of the Problem

F ⊊M ⊊ K, the algebraic closed field K of characteristic 0.

F = Q, K = C

Given a polynomial q(x) ∈ Q[x] irreducible over Q.
The problem is to implement a small program library of

arithmetic for Q[x]/q(x), parameterized by q(x).

21 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Task №1

F ⊊M ⊊ K, the algebraic closed field K of characteristic 0.

F = Q, K = C, q0(x) = x2 + 1 ∈ Q[x] irreducible over Q.

These constructions are implemented as an R-program including two

modules FieldExt.ref+ Q.ref:

FieldExt.ref: constructions of ring F[x] and simple extension of F of

characteristic 0, parameterized by F.

Q.ref: arithmetic functions in Q;

The arithmetic functions of Q are declared as external for the module

FieldExt.ref.

22 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Task №1

F ⊊M ⊊ K, the algebraic closed field K of characteristic 0.

F = Q, K = C, q0(x) = x2 + 1 ∈ Q[x] irreducible over Q.

The constructions are implemented as an R-program including two

modules FieldExt.ref+ Q.ref:

FieldExt.ref: constructions of ring F[x] and simple extension of F of

characteristic 0, parameterized by F.

Q.ref: arithmetic functions in Q;

The arithmetic functions of Q are declared as external for the module

FieldExt.ref.

The initial configuration from the module FieldExt.ref:

<F_Arith #opers ((#ce) (#de)) ((#ae) (#be)) (⌞x2 + 1⌟)>

23 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Subtask №1−1

F ⊊M ⊊ K, the algebraic closed field K of characteristic 0.

F = Q, K = C, q0(x) = x2 + 1 ∈ Q[x] irreducible over Q.

The constructions are implemented as an R-program including two

modules FieldExt.ref+ Q.ref:

FieldExt.ref: constructions of ring F[x] and simple extension of F of

characteristic 0, parameterized by F.

Q.ref: arithmetic functions in Q;

The arithmetic functions of Q are declared as external for the module

FieldExt.ref.

The initial configuration from the module FieldExt.ref:

<F_Arith Inv ((#ce) (#de)) ((#ae) (#be)) (⌞x2 + 1⌟)>

24 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Subtask №1−1

The initial configuration from the module FieldExt.ref:

<F_Arith Inv ((#be) (#ae)) (⌞x2 + 1⌟)>

The specialization result by the supercompiler SCP4

$ENTRY formulai {
(be) ae = ⌞

⌜(−be/(be2+ae2))x+ (ae/(be
2+ae

2))⌝⌟ ;
}

Rough outline - encoding; ae,be ∈ Q.

First approximation.

25 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Subtask №1−1

The arithmetic functions of Q are declared as external for the module

FieldExt.ref. Their definitions and properties are unavailable for SCP4.

The initial configuration from the module FieldExt.ref:

$EXTERN Q_Div, Q_Mul, Q_Sub, Q_Add;
<F_Arith Inv ((#be) (#ae)) (⌞x2 + 1⌟)>

The specialization result by the supercompiler SCP4

$ENTRY formulai {
(be) ae = ⌞

⌜(−1/be)/(1−ae(0− (ae/be))/be)x +
(0− (0+ 1× ((0− (ae/be))/be)))/(1−ae(0− (ae/be))/be)

⌝
⌟ ;

}

Encoding; ae,be ∈ Q.
Q_Div = /, Q_Mul = ×, Q_Sub = −, Q_Add = +;

Approximation.

26 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Subtask №1−1

The arithmetic functions of Q are declared as external for the module

FieldExt.ref. Q_Div = /, Q_Mul = ×, Q_Sub = −, Q_Add = + .

Their definitions and properties are unavailable for SCP4.

The specialization result by the supercompiler SCP4

$ENTRY formulai {
(be) ae = ⌞

⌜(−1/be)/(1−ae(0−(ae/be))/be)x +
(0−(0+ 1×((0−(ae/be))/be)))/(1−ae(0−(ae/be))/be)

⌝
⌟ ;

}

Even the simplest field properties are unavailable for SCP4.

Encoding; ae,be ∈ Q.

Approximation.

27 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Subtask №1−1

The initial configuration ArithInv(be,ae)

$EXTERN Q_Div, Q_Mul, Q_Sub, Q_Add;
<F_Arith Inv ((#be) (#ae)) (⌞x2 + 1⌟)>

The specialization result by the supercompiler SCP4

$ENTRY formulai {
(be) ae = ⌞

⌜(−1/be)/(1−ae(0−(ae/be))/be)x +
(0−(0+ 1×((0−(ae/be))/be)))/(1−ae(0−(ae/be))/be)

⌝
⌟ ;

}

This residual program reflects that SCP4 recognized uniformness of

the theoretical construction implemented. Let TQ(be,ae) stand for the

evaluation time of the right hand side above, then

∃C ∈ R s.t.∀ be,ae∈ Q, be ̸= 0:

Timespec(⌞
⌜ArithInv(be,ae)

⌝
⌟)≤C×Timerun([[ArithInv(be,ae)]])−TQ(be,ae)

28 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Task №2

F ⊊M ⊊ K, the algebraic closed field K of characteristic 0.

F = Q, K = C, q0(x) = x2 − 2 ∈ Q[x] irreducible over Q.

The constructions are implemented as an R-program including two

modules FieldExt.ref+ Q.ref. The arithmetic functions of Q are

declared as external for the module FieldExt.ref.

29 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Subtask №2×

The initial configuration from the module FieldExt.ref:

<F_Arith Mul ((#ce) (#de)) ((#ae) (#be)) (⌞x2 − 2⌟)>

The specialization result by the supercompiler SCP4

$ENTRY formula2m {
(ce) (de) (ae) be = ⌞

⌜(deae+cebe)x+ (debe+2ceae)
⌝
⌟ ;

}

Rough outline - encoding; ae,be,ce,de ∈ Q.

First approximation.

30 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Arithmetic in Finite Field Extensions

Specialization Subtask №2×

The initial configuration from the module FieldExt.ref:

<F_Arith Mul ((#ce) (#de)) ((#ae) (#be)) (⌞x2 − 2⌟)>

The specialization result by the supercompiler SCP4

$ENTRY formula2m {
(ce)(de)(ae) be=⌞

⌜((deae+cebe)−0×(ceae))x+(debe−(−2((ceae)/1)))⌝⌟;
}

Encoding; ae,be,ce,de ∈ Q.

Q_Div = /, Q_Mul = ×, Q_Sub = −, Q_Add = +;

Approximation.

31 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

The Specialization Tasks -Performance Times

Arithmetic in Finite Field Extensions Specialization Tasks

The size of the source module FieldExt.ref is about 70 lines including

comments.

Experimental average times taken by generating arithmetic operations
(including input, parsing and output times)

Inv in Q[x]/(x2 + 1) : 0m 0,122s

× in Q[x]/(x2 − 2) : 0m 0,114s

The computer resources:

processor name : AMD A6-6420K APU
cpu MHz : 3100.000

MemAvailable : 743376 kB
Oper. System : #80-20.04.1-Ubuntu x86_64 GNU/Linux

32 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Some of Properties of the Specializer Used

How it Does Work

The residual programs above were produced by the
supercompiler SCP4,

a specializer based on a specialization method known as
Turchin’s supercompilation.

The language R specified above is a functional programming
language,

for the sake of simplicity only R-programs defining partial
predicates rather than arbitrary partial functions will be
considered below.

33 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Some of Properties of the Specializer Used

How it Does Work

Any R-program P can be seen as an evaluation tree,

as a rule infinite,

i.e. any recursion is unfolded.

The edges are labeled with P-patterns.

Parameterized states of P label the tree nodes.
They are predicates.

The tree root is labeled with the initial parameterized state.

34 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Some of Properties of the Specializer Used

SCP vs. TM

Turing machine

A few simple instructions moving a pointer along a tape and
writing/reading the tape cells.

The programmer juggles with the instructions during
generating source programs.

In general, even very simple properties of program behavior
are undecidable.

35 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Some of Properties of the Specializer Used

SCP vs. TM

The supercompiler

A number of simple instructions moving a pointer along an
evaluation tree, analyzing and transforming the tree; the
instruction language is Turing complete.

The supercompiler juggles with the instructions while gene-
rating residual programs, trying to solve undecidable prob-
lems. It is forced to approximate the problems to be solved.

In general, even for very simple source programs the super-
compiler behavior is undecidable and very complicated.

Roughly speaking,

the main specialization aim - the efficiency of the target

program contradicts the efficiency of the supercompiler.

36 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Some of Properties of the Specializer Used

Generating Hypotheses and Theorem Proving

Given a program and its initial parameterized state

SCP4 explores the corresponding evaluation tree, starting
from the tree root.

It considers the predicates labeling some of the nodes as
hypotheses to be proven.

Given such a node

SCP4 tries to prove the corresponding hypothesis by
induction on the number of R-machine steps along every
path originating in this node.

There may be a number of hypotheses labeling different nodes to

be simultaneously proven.

37 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Some of Properties of the Specializer Used

Generating Hypotheses and Theorem Proving

The main problems:

How does SCP4 determine the hypotheses-nodes to be proven?

How does it decide that a current hypothesis is too strong (or
too weak) to be automatically proven?

How should (the assumption of) the statement be
weakened?

SCP4 approximates the corresponding solutions. It is based on

variants of Higman–Kruskal relation, being well quasi-orders on the

program states along the evaluation tree paths.

It is possible to manually create annotations in the input program to

be specialized, which may provide some support for SCP4.

38 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Some of Properties of the Specializer Used

How it Does Work

SCP4 approximates the corresponding solutions

How should (the assumption of) the statement be weakened?

Weakening of the assumptions of the statements / Example

In order to prove the exact uniform lower bound of the worst case
complexity of evaluating polynomials anx

n + . . .+ a1x+ a0, it is use-
full to extend the polynomial set to anx

n+ . . . +a1x+a0(mod xn+1)
(S.A. Abramov, Lectures on Complexity of Сomputations, p. 230.

After E.M. Reingold and A. I. Stocks.)

39 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Some of Properties of the Specializer Used

How does it decide that a current hypothesis is too strong (or

too weak) to be automatically proven?

SCP4 approximates the corresponding solutions.

It is possible to manually create annotations in the input program to

be specialized, which may provide some support for SCP4.

The initial configuration Divide(q0) to be specialized:

<divide q0 (dse d0s)>

$ENTRY divide { qs (dse) = <div 1 0 qs (dse)>; }

div {
ms ress qs () = ress; /* (

∑︀n
k=0 10

kdk)%q = */
ms ress qs (dse ds)

/* ((((10 * (10i−1%q))%q)di +
∑︀i−1

k=0(10
k%q)dk))%q */

= <div <% <* ms 10> qs> <+ ress <* ds ms>> qs (dse)>;
}

40 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Some of Properties of the Specializer Used

How it Does Work

The initial configuration Divide(q0) to be specialized:

<divide q0 (dse d0s)>

$ENTRY divide { qs (dse) = <div 1 0 qs (dse)>; }

div {
ms ress qs () = ress; /* (

∑︀n
k=0 10

kdk)%q = */
ms ress qs (dse ds)

/* ((((10 * (10i−1%q))%q)di +
∑︀i−1

k=0(10
k%q)dk))%q */

= <div <% <* ms 10> qs> <+ ress <* ds ms>> qs (dse)>;
}

∃C ∈ R s.t.∀q ∈ N, q ̸= 0: Timespec(⌞
⌜Divide(q)⌝⌟)≤C×q2

41 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Conclusion

Given a specializer Spec of programs written in a programming

language ℒ. It is possible to formulate specialization tasks in such a

way that Spec will attempt:

to compile programs written in a languageℳ into the language ℒ;
Quality of such an indirect compilation is another question.

to verify safety properties of nondeterministic communication

protocols;

to describe root’s sets of some of classes of word equations.

The last item maybe has some relationship to the field of computer

algebra.

Thanks you for your attention!

42 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Appendix

Specialization Subtask №1−1

The arithmetic functions of Q are declared as external for the module

FieldExt.ref. Their definitions and properties are unavailable for SCP4.

The initial configuration from the module FieldExt.ref:

$EXTERN Q_Div, Q_Mul, Q_Sub, Q_Add;
<F_Arith Inv ((#be) (#ae)) (⌞x2 + 1⌟)>

The specialization result by the supercompiler SCP4

$ENTRY formulai {
(be) ae = ⌞

⌜(−1/be)/(1−ae(0− (ae/be))/be)x +
(0− (0+ 1× ((0− (ae/be))/be)))/(1−ae(0− (ae/be))/be)

⌝
⌟ ;

}

Encoding; ae,be ∈ Q.
Q_Div = /, Q_Mul = ×, Q_Sub = −, Q_Add = +;

Approximation.

43 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Appendix

Specialization Subtask №1−1

The residual program:

$EXTERN Q_Div, Q_Mul, Q_Sub, Q_Add;

* p(x) = ((b) (a)) = b*x+a – многочлен; требуется вычислить 1/p(x)

$ENTRY formulai { (be) ae = <C1 (be) (ae) <Q_Div (1) be>>; }

C1 { (e.1) (e.2) e.x1 = /* 0-(a/b) = -a/b */

<C2 (e.1) (e.2) (e.x1) <Q_Sub (0) <Q_Mul (e.2) e.x1>>>; }
. .
* e.x4 = (0-(a/b))/b = -a/b2; e.x6 = 1 - a(0-(a/b))/b = 1 - (-a2/b2),

* e.y3 = (-1/b)/(1 - a(0-(a/b))/b) = -b/(b2 + a2)

C6 { (e.x4) (e.x6) e.y3 = /* e.y4 = 0-(0+1*((0-(a/b))/b)) = a/b2 */

<C7 (e.x6) (e.y3) <Q_Sub (0) <Q_Add (0) <Q_Mul (1) e.x4>>>>;
}
C7 { /* (0-(0+1*((0-(a/b))/b)))/(1 - a(0-(a/b))/b)

= (a/b2)/(1 + a2/b2) = a/(b2 + a2) */

(e.x6) (e.y3) e.y4 , <Q_Div (e.y4) e.x6>: e.y7 = (e.y3) (e.y7); }
* 1/p(x) = (-1/b)/(1-a(0-(a/b))/b)_ _(0-(0+1*((0-(a/b))/b)))/(1-a(0-(a/b))/b)

44 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Appendix

Specialization Subtask №2×

The initial configuration from the module FieldExt.ref:

<F_Arith Mul ((#ce) (#de)) ((#ae) (#be)) (⌞x2 − 2⌟)>

The specialization result by the supercompiler SCP4

$ENTRY formula2m {
(ce)(de)(ae) be=⌞

⌜((deae+cebe)−0×(ceae))x+(debe−(−2((ceae)/1)))⌝⌟;
}

Encoding; ae,be,ce,de ∈ Q.

Q_Div = /, Q_Mul = ×, Q_Sub = −, Q_Add = +;

Approximation.

45 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

Appendix

Specialization Subtask №2×
The residual program:

$EXTERN Q_Div, Q_Mul, Q_Sub, Q_Add;

/* p(x) = ((c) (d)) = c*x+d, q(x) = ((a) (b)) = a*x+b – многочлены;

требуется вычислить p(x)q(x) */

$ENTRY formula2m1 { /* e.y3 = c*a */

(ce) (de) (ae) be = <C1 (ce) (de) (ae) (be) <Q_Mul (ce) ae>>; }

C1 { (e.2) (e.3) (e.4) (e.5) e.y3 = /* e.y6 = d*a */

<C2 (e.2) (e.3) (e.5) (e.y3) <Q_Mul (e.3) e.4>>; }
. .
* e.y9 =(c*a)/1 = c*a; e.y8 = d*b, e.y7 = d*a + c*b

C5 { (e.y7) (e.y8) e.y9 = /* e.z6 = (d*a + c*b) - 0*(c*a) */

<C6 (e.y8) (e.y9) <Q_Sub (e.y7) <Q_Mul (0) e.y9>>>; }
C6 { (e.y8) (e.y9) e.z6 /* (d*b) -(-2*((c*a)/1)) = d*b + 2*c*a */

, <Q_Sub (e.y8) <Q_Mul (′− ′ 2) e.y9>>: e.z7 = (e.z6) (e.z7); }
/* p(x)q(x) = _(((d*a + c*b)-0*(c*a))_ _(d*b-(-2*((c*a)/1))))_

= ((d*a + c*b) (d*b + 2*c*a)) */

46 / 46
5th Intern. Conf. Computer Algebra, Moscow, June 26-28, 2023

▲

	Introduction
	The Idea
	Divisibility Criteria by Program Specialization
	Term Rewriting System
	The Presentation Programming Language R
	Term Rewriting System
	Divisibility Criteria Derived by Program Specialization
	Other Divisibility Criteria Derived by the Specializer
	The Specialization Tasks-Performance Times
	Arithmetic in Finite Field Extensions
	The Specialization Tasks-Performance Times
	Some of Properties of the Specializer Used
	Conclusion
	Appendix

