## The difference case, no solutions

$[>$
$[>$
5
Load Ifs.zip from http://www.ccas.ru/ca/ media/lfs.zip
This archive includes two files: Ifs.ind and Ifs.lib.
Put these files to some directory, for example to "/usr/userlib"
$[>$
[
"
$>$
libname := "/usr/userlib/lfs.lib", libname :
$>$ eq $:=\operatorname{Matrix}\left(\left[\left[x^{\wedge} 2+102 x+101, x^{\wedge} 3+104 x^{\wedge} 2+305 x+202\right]\right.\right.$,
$\left.\left.\left[x^{\wedge} 2-x-2, x^{\wedge} 3+x^{\wedge} 2-4 x-4\right]\right]\right) \cdot y(x+2)+$
Matrix ([[-x^2-99x+202, $-x+2]$,
$[x-2,(x-2) /(x+101)]]) \cdot y(x+1)+$
Matrix ([[-x-101, $-(x+101) /(x+100)]$,
$[-x,-x /(x+100)]]) \cdot y(x)=0 ;$
$e q 1:=\left[\begin{array}{cc}x^{2}+102 x+101 & x^{3}+104 x^{2}+305 x+202 \\ x^{2}-x-2 & x^{3}+x^{2}-4 x-4\end{array}\right] \cdot y(x+2)$
$+\left[\begin{array}{cc}-x^{2}-99 x+202 & -x+2 \\ x-2 & \frac{x-2}{x+101}\end{array}\right] \cdot y(x+1)+\left[\begin{array}{cc}-x-101 & -\frac{x+101}{x+100} \\ -x & -\frac{x}{x+100}\end{array}\right] \cdot y(x)=0$

There is no rational solutions, the empty list is returned.
For this system, the indicial polynomial has no roots. The algorithm with checkpoints stops early.
$>s t:=$ time ( ) :LFS:-RationalSolution(eq1, $y(x)$, earlyterminate $=$ true $) ;$ time ()$-s t ;$
[ ]
0.067
[> restart;
[> libname $:=$ "/usr/userlib/lfs.lib", libname :
$>$
$>$ eq $:=\operatorname{Matrix}\left(\left[\left[x^{\wedge} 2+102 x+101, x^{\wedge} 3+104 x^{\wedge} 2+305 x+202\right]\right.\right.$,

$$
\left.\left.\left[x^{\wedge} 2-x-2, x^{\wedge} 3+x^{\wedge} 2-4 x-4\right]\right]\right) \cdot y(x+2)+
$$

Matrix ([[-x^2-99x+202, $-x+2]$, $[x-2,(x-2) /(x+101)]]) \cdot y(x+1)+$
Matrix ([[-x-101, $-(x+101) /(x+100)]$, $[-x,-x /(x+100)]]) \cdot y(x)=0:$
[
The algorithm without checkpoints found a universal denominator $U(x)$ (its degree is equal 205), made the substitution $y(x)=z(x) / U(x)$ in the given system, fond the indicia
polynomial for the new system, and stopped because the indicial polynomial has no roots
$>$ st $:=$ time ( ) :LFS:-RationalSolution (eq1, $y(x)$, earlyterminate $=$ false $)$; time ( $)-$ st;
[]
4.019
> degree(eval(LFS:-System(eq1, $y(x))$ )[universal_denominator], $x)$ 205

## The differential case, no solutions

[> restart;
>> libname := "/usr/userlib/lfs.lib", libname :
v
> eq :=
Matrix ([[2, 0],
$\left.\left.\left[0, x^{\wedge} 2+x\right]\right]\right) . \operatorname{diff}(y(x), x \$ 2)+$
Matrix ([[1, 1],
$\left.\left.\left[x, x^{\wedge} 2+5 x+2\right]\right]\right) . \operatorname{diff}(y(x), x)+$
Matrix ([ [-1, 1],
$[x+1,2 x+4]]) \cdot y(x)=0 ;$
$e q 2:=\left[\begin{array}{cc}2 & 0 \\ 0 & x^{2}+x\end{array}\right] \cdot\left(\frac{d^{2}}{d x^{2}} y(x)\right)+\left[\begin{array}{cc}1 & 1 \\ x & x^{2}+5 x+2\end{array}\right] \cdot\left(\frac{d}{d x} y(x)\right)+\left[\begin{array}{cc}-1 & 1 \\ x+1 & 2 x+4\end{array}\right]$

- $y(x)=0$
[
There is no rational solutions.
The indicial polynomial for this
The indicial polynomial for this system has the integer root $\$ n^{\wedge *}=-3 \$$, then the algorithm with checkpoints found a universal denominator $U(x)(\operatorname{deg} U(x)=2)$ and after that stopped because $\$ \mathrm{n}^{\wedge *}+\backslash \mathrm{deg} \mathrm{U}(\mathrm{x})<0 \$$
$>$ st $:=$ time ( ) :LFS:-RationalSolution $(e q 2, y(x)$, earlyterminate $=$ true $)$; time ()$-s t ;$
[]
0.175
> restart;
[> libname $:=$ "/usr/userlib/lfs.lib", libname :
$>$
> eq 2:=
Matrix ([ [2, 0],
$\left.\left.\left[0, x^{\wedge} 2+x\right]\right]\right) . \operatorname{diff}(y(x), x \$ 2)+$
Matrix ([[1, 1],
$\left.\left.\left[x, x^{\wedge} 2+5 x+2\right]\right]\right) . \operatorname{diff}(y(x), x)+$
Matrix ([[-1,1],
$[x+1,2 x+4]]) \cdot y(x)=0:$
[
The algorithm without checkpoints takes near the same time:
$>s t:=$ time ( ) :LFS:-RationalSolution(eq2, $y(x)$, earlyterminate $=$ false $)$; time ( $)-s t$; [ ]
0.100
> LFS:-System(eq2, $y(x))$ [universal_denominator]

$$
\begin{equation*}
x(x+1) \tag{2.4}
\end{equation*}
$$

## The difference case, there are solutions

[> restart;
[> libname
[>
[> eq:=

Matrix ([ [0, 0],
$\left[x^{\wedge} 3+5 x^{\wedge} 2+9 x+5\right.$,
$\left.\left.\left.x^{\wedge} 3+5 x^{\wedge} 2+9 x+5\right]\right]\right) \cdot y(x+2)+$
Matrix ([[2 $\left.x^{\wedge} 2-2,2\left(x^{\wedge} 2-1\right) /(x+101)\right]$,
$\left[x^{\wedge} 3-x^{\wedge} 2-x+1\right.$,

The algorithms with and without checkpoints takes not large difference of the time if there are rational solution
> st := time( ):LFS:-RationalSolution(eq3, y(x), earlyterminate = true); time( ) - st;

$$
\left[\left[\begin{array}{c}
-\frac{1}{\left(x^{2}+1\right)(x+99)} \\
\frac{x+100}{\left(x^{2}+1\right)(x+99)}
\end{array}\right],\left[\begin{array}{c}
-\frac{x^{3}+100 x^{2}-59600 x+100}{x\left(x^{2}+1\right)(x+99)} \\
\frac{x^{3}-59501 x^{2}-5960099 x+100}{x\left(x^{2}+1\right)(x+99)}
\end{array}\right]\right.
$$

84.679
[> restart;
[> libname $:=$ "/usr/userlib/lfs.lib", libname:
—>
> eq3:=
Matrix ([ [0, 0],

$$
\left[x^{\wedge} 3+5 x^{\wedge} 2+9 x+5\right.
$$

$$
\left.\left.\left.x^{\wedge} 3+5 x^{\wedge} 2+9 x+5\right]\right]\right) \cdot y(x+2)+
$$

Matrix([ $\left[2 x^{\wedge} 2-2,2\left(x^{\wedge} 2-1\right) /(x+101)\right]$,
[ $x^{\wedge} 3-x^{\wedge} 2-x+1$,
$\left.\left.\left.\left(x^{\wedge} 3-x^{\wedge} 2-x+1\right) /(x+101)\right]\right]\right) \cdot y(x+1)+$
Matrix ([ [ $\left.-2 x^{\wedge} 2+2 x,-2 x(x-1) /(x+100)\right]$,
$\left[-2 x^{\wedge} 3+x^{\wedge} 2-2 x-1\right.$,
$-\left(x^{\wedge} 4+102 x^{\wedge} 3+99 x^{\wedge} 2+102 x+100\right) /$

$$
(x+100)]]) \cdot y(x):
$$



$$
\left[\left[\left[\begin{array}{c}
-\frac{1}{\left(x^{2}+1\right)(x+99)} \\
\frac{x+100}{\left(x^{2}+1\right)(x+99)}
\end{array}\right],\left[\begin{array}{c}
-\frac{x^{3}+100 x^{2}-59600 x+100}{x\left(x^{2}+1\right)(x+99)} \\
\frac{x^{3}-59501 x^{2}-5960099 x+100}{x\left(x^{2}+1\right)(x+99)}
\end{array}\right]\right.\right.
$$

### 74.040

[> degree(eval(LFS:-System(eq3, $y(x)))$ [universal_denominator], $x$ )

$$
\begin{align*}
& \left.\left.\left.\left(x^{\wedge} 3-x^{\wedge} 2-x+1\right) /(x+101)\right]\right]\right) \cdot y(x+1)+ \\
& \text { Matrix ([[-2 } \left.x^{\wedge} 2+2 x,-2 x(x-1) /(x+100)\right] \text {, } \\
& {\left[-2 x^{\wedge} 3+x^{\wedge} 2-2 x-1\right. \text {, }} \\
& -\left(x^{\wedge} 4+102 x^{\wedge} 3+99 x^{\wedge} 2+102 x+100\right) / \\
& (x+100)]]) \cdot y(x) \text {; } \\
& \text { eq } 3:=\left[\begin{array}{cc}
0 & 0 \\
x^{3}+5 x^{2}+9 x+5 & x^{3}+5 x^{2}+9 x+5
\end{array}\right] \cdot y(x+2)  \tag{3.1}\\
& +\left[\begin{array}{cc}
2 x^{2}-2 & \frac{2\left(x^{2}-1\right)}{x+101} \\
x^{3}-x^{2}-x+1 & \frac{x^{3}-x^{2}-x+1}{x+101}
\end{array}\right] \cdot y(x+1) \\
& +\left[\begin{array}{cc}
-2 x^{2}+2 x & -\frac{2 x(x-1)}{x+100} \\
-2 x^{3}+x^{2}-2 x-1 & -\frac{x^{4}+102 x^{3}+99 x^{2}+102 x+100}{x+100}
\end{array}\right] \cdot y(x)
\end{align*}
$$

