Load Ifs.zip from http://www.ccas.ru/ca/ media/lfs.zip
This archive includes two files: Ifs.ind and Ifs.lib.
Put these files to some directory, for example to "/usr/userlib"
libname := "/usr/userlib/lfs.lib", libname :

The system with polymonial coefficients

$[>\operatorname{Matrix}(2,2,[[x, x],[x, x]]) \cdot \operatorname{diff}(y(x), x)+$
$\operatorname{Matrix}\left(2,2,\left[\left[1, x^{2}+1\right],[-x, 0]\right]\right) \cdot y(x)=0$

$$
\left[\begin{array}{ll}
x & x \tag{1.1}\\
x & x
\end{array}\right] \cdot\left(\frac{\mathrm{d}}{\mathrm{~d} x} y(x)\right)+\left[\begin{array}{cc}
1 & x^{2}+1 \\
-x & 0
\end{array}\right] \cdot y(x)=0
$$

[$>$ LFS:-InducedRecurrence ((1.1), $y(x), c(n))$

$$
\left[\begin{array}{cc}
n+1 & n+1 \tag{1.2}\\
n & n
\end{array}\right] \cdot c(n)+\left[\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right] \cdot c(n-1)+\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \cdot c(n-2)=0
$$

> LFS:-EG('lead', (1.2), c(n))

$$
\left[\begin{array}{cc}
-n-2 & 0 \tag{1.3}\\
n & n
\end{array}\right] \cdot c(n)+\left[\begin{array}{cc}
0 & -n-1 \\
-1 & 0
\end{array}\right] \cdot c(n-1)=0, \text { true }
$$

The procedure returns a list of Vectors of truncated series that forms a basis of Laurent solution space of the given system:
> LFS:-LaurentSolution((1.1), $y(x), c(n))$

$$
\left[\left[\begin{array}{c}
\frac{2}{x^{2}}+1+\left(\sum_{n=1}^{\infty} c_{1}(n) x^{n}\right) \tag{1.4}\\
-\frac{2}{x^{2}}-\frac{2}{x}+1+\left(\sum_{n=1}^{\infty} c_{2}(n) x^{n}\right)
\end{array}\right]\right]
$$

The system with series coefficients

$\left[>\operatorname{Matrix}\left(2,2,\left[\left[1+x^{\wedge} 2, x^{\wedge} 2+\operatorname{Sum}\left(x^{\wedge} k, k=3\right.\right.\right.\right.\right.$.. infinity) $]$, $\left[x^{\wedge} 2+\operatorname{Sum}\left(\operatorname{Xi}(k) * x^{\wedge} k, k=3 .\right.\right.$. infinity $), x^{\wedge} 2+\operatorname{Sum}\left((k+1){ }^{*} x^{\wedge} k, k=3\right.$.. infinity)]]) . $\operatorname{theta}(y(x), x, 1)+$
$\operatorname{Matrix}\left(2,2,\left[\left[x^{\wedge} 2+\operatorname{Sum}\left(x^{\wedge} k / k!, k=3 .\right.\right.\right.\right.$. infinity $), x^{\wedge} 2+3 * \operatorname{Sum}\left(x^{\wedge} k, k=3\right.$
.. infinity)],

$$
\begin{array}{r}
{\left[1+x+x^{\wedge} 2+\operatorname{Sum}\left(\left(k^{\wedge} 2+2 * k+1-(k+1)^{\wedge} 2\right) * x^{\wedge} k, k=3 . . \operatorname{infinity}\right),\right.} \\
x+x^{\wedge} 2-\operatorname{Sum}\left(x^{\wedge} k, k\right.
\end{array}
$$

$=3 .$. infinity $)]]) \cdot y(x)=0$

$$
x^{2}+1 \quad x^{2}+\left(\sum_{k=3}^{\infty} x^{k}\right)
$$

$$
x^{2}+\left(\sum_{k=3}^{\infty} \Xi(k) x^{k}\right) x^{2}+\left(\sum_{k=3}^{\infty}(k+1) x^{k}\right)
$$

$$
\begin{equation*}
\cdot \theta(y(x), x, 1) \tag{2.1}
\end{equation*}
$$

$$
+\left[\begin{array}{cc}
x^{2}+\left(\sum_{k=3}^{\infty} \frac{x^{k}}{k!}\right) & x^{2}+3\left(\sum_{k=3}^{\infty} x^{k}\right) \\
1+x+x^{2}+\left(\sum_{k=3}^{\infty}\left(k^{2}+2 k+1-(k+1)^{2}\right) x^{k}\right) & x+x^{2}-\left(\sum_{k=3}^{\infty} x^{k}\right)
\end{array}\right] \cdot y(x)=0
$$

The number of computed initial terms of the induced recurrence with infinity order can be set by the option 'terms':
$>L F S$:-InducedRecurrence((2.1), theta, $y(x), c(n)$, terms $=3)$

$$
\left[\begin{array}{ll}
n & 0 \tag{2.2}\\
1 & 0
\end{array}\right] \cdot c(n)+\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right] \cdot c(n-1)+\left[\begin{array}{cc}
n-1 & n-1 \\
n-1 & n-1
\end{array}\right] \cdot c(n-2)+\ldots=0
$$

The procedure returns a list of Vectors of truncated series that forms a basis of Laurent solution space of the given system:
> LFS:-LaurentSolution((2.1), theta, $y(x), c(n))$

$$
\left[\left[\begin{array}{c}
-1+\left(\sum_{n=1}^{\infty} c_{1}(n) x^{n}\right) \tag{2.3}\\
\frac{1}{x}+1+\left(\sum_{n=1}^{\infty} c_{2}(n) x^{n}\right)
\end{array}\right]\right.
$$

The truncation degree of solutions can be set be the option 'degree':
> LFS:-LaurentSolution((2.1), theta, $y(x), c(n)$, 'degree' $=3$)

$$
\left.\begin{array}{c}
-1-x^{2}-\frac{101 x^{3}}{18}+\left(\sum_{n=4}^{\infty} c_{1}(n) x^{n}\right) \\
\frac{1}{x}+1+6 x+\frac{29 x^{2}}{18}+\frac{425 x^{3}}{288}+\left(\sum_{n=4}^{\infty} c_{2}(n) x^{n}\right) \tag{2.4}
\end{array}\right]
$$

