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Definition of a Gyrostat - I

A gyrostat 1s a mechanical system consisting of several bodies
which possesses the rigid body property, which means that the
mass distribution of the system does not change over time.

] dm
(carrier)

In the simplest case, the gyrostat consists of two bodies. Let us
consider a heavy rigid body with a fixed point (the carrier).
Suppose that there is an axis associated with the body around
which the rotor can rotate.

The angular momentum of the system can be written as
_ r
K,=J,0+J o

In this expression J ,1s the inertia matrix of the carrier with respect to the fixed point; @ is the angular
velocity vector of the carrier; J” is the inertia matrix of the rotor with respect to its center of mass;
®, is the angular velocity vector of the rotor with respect to the carrier.

Both inertia matrices have constant components in the coordinate frame which is rigidly connected with

the carrier. Vector J' @, is the angular momentum of motion of the rotor with respect to the carrier. We
shall denote it as S.
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Definition of a Gyrostat - 11

Theorem of Angular Momentum Change states that
Jo+s+|ox(Jo+s)]|=M,

M, is the torque of external forces with respect to the fixed point

] dm
(carrier)

In the simplest case the angular velocity of rotor is constant.
Suppose that a gyrostat 1s under the effect of gravity and
gyroscopic forces. Therefore, the equation takes the form

Jci)+[co><(J(o+s)]=Mg[y><rG]+[Sy><(o]

S is a symmetric matrix: S =S".

Together with the Poisson’s equation Y + [(1) Xy ] =0 we obtain a closed system of equations of
motion of the gyrostat.
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Euler-Poisson Equations - I

Ay +( 4y — A, ) 0,0, + 530, — 5,0, = Mg (x,7, —x, 75 ) + @5 (S¥), — 0, (Sy),,

A,0, + (4 — Ay) 0,0 + 5,0, — 530, = Mg (x,75 — x,7, ) + @, (S ), — @, (SY), ,

Ay, + (A4, — A o0, + 5,0, — 5,0, = Mg (X,7, —x,7, )+ 0, (SY), — @, (SY), ;

V=@, = 0,75, Vy = O — 0, V3 =), — 0.
For any values of parameters of the system and for any initial conditions we have three first integrals
of the Euler — Poisson equations.

The energy integral

1
H = E(Ala)f -|-A2(022 + /1361)32)—I—Z\lg(xl]/1 +X,7, +x37/3): E = const

The area integral
1
K =(4w+s)y +(4o,+5,) 7, +(Ao,+s,)y, + E(Sy xy) =k = const
The geometrical integral

L4y, +y; =1

Thus, for the integrability of the Euler — Poisson equations, we need to find only one additional
autonomous first integral. In general case the additional integral does not exist. However, for the
special initial conditions we can find the additional special integral.
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Euler-Poisson Equations - 11

Theorem. (Kosov A.A.) Suppose that following conditions are true:
1) x3:0’ AZ(A3_A1)X22:A1(A2_A3)X129 S3209 A22A32A13
2) Matrix § has form

Sll S12 0
S=|s, s, 0]
O 0 O

where X, =5,X, =0, 5,X, =5,,x = 0.
Therefore, Euler-Poisson equations admit the additional special integral of the form

A x, (Sle _Slxz) —0.
(As _Al)xz

If we take conditions of the theorem into consideration, then the system of equations
of motion will take the following form:

Awx, + Aw,x, +
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Euler-Poisson Equations - I1I

Ao, +( 4, — 4) 0,0, — 5,0, = —Mgx,y, + Ax,0, (1,%, + 7,%, ),
A,0, + (A4, — 4 w0, + 5,0, = Mgx,y, — Ax,0,(7,X, + 7,%, ),
Ay, + (Az — 4, )a)la)Z +85,0, — 5,0, = Mg(x271 — X7, ) + /I(a)le — WX, )(71x1 +7,X, );
Vi =), — @), Yy =), — @), V=00, —@),.
Here, A is an auxiliary multiplier.

First integrals of the system can be rewritten as follows
1
H = E(Ala)f + A, + A,0; ) + Mg(xly1 +X,7, ) = F = const,
A 2
K =(4w+s)y +(4,0,+s,)y, + Aoy, + E(ny1 +x,7,) =k =const,
yi+vs+7s =1

To prove the existence of the additional integral

Ax, (Sle — 51X )
(As — 4 )xz

Aox +A0,x,+ =0,

we shall rewrite our system using special Kharlamov axes and introduce new variables.
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Euler-Poisson equations in Kharlamov axes - |

The transition from principal axes of inertia of the body in a fixed point to special Kharlamov axes is
defined by following formulas

X Xy Xy
¢ = € + €, €;=— Cy =
[ 2 2 [ 2 2 [ 2 2 /
Xl +X2 xl +X2 Xl +x2 xl +X2

We denote components of the angular momentum relative to the fixed point projected onto special axes
as L, L,, L,. We also introduce components v,, v,, v, of vector y projected onto special axes. Therefore

I Aox + A,0,x, I A,0,x, — A wx,
1 — 9 D

>
[.2 2
X t X, X tX,

X T YX V. = V2X — X, 85X T S)X,

Vi = 2 , > 2 2 =73 k= 2 2
X, + X, \X; X, \X; + X,

L3 = A3a)39
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Euler-Poisson equations in Kharlamov axes - I1

Using new variables, the system can be rewritten as follows:

L =-bL, (LI - %j

L,=(a—c)LL,+bL,L,—ck,L,—cALy,+Tv,,
L=—(a-c)L L, +bL; —bL, +(kb—kya)L, +(kc—k,b) L, + bALv, + cAL,v, —T'v,,

v, =cL,v, —(cL2 +bL, )v3,
v, = (aL1 +bL, )v3 —cLy,,
v, =(bL, +cL,)v, —(aL, + bL, ) v,.

The additional special integral of the system can be found directly from the first equation. It has the form
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Euler-Poisson equations in Kharlamov axes - I11

Under these condition equations are simplified and take the form
L, =bL,L,+(F —Ge)L,—cALy, +Tv,, L, =-bl2 —(F—-Ge)L,+cALy, ~Tv,,
v, =cLy, —cLy,, v, =—cLy, +bL,v,+Fv,, v,=cLv, —bLyv,—Fv,.

Here we introduce the following notations:

(ac —bz) ck,

k2 =F, 7+kl =G, L2 +k2 =L~2.
This system possesses following first integrals

- ~ A
%(L3+L§)+FV1:E; GV1+L2V2+L3V3+EV12:k; vy, vy =1
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Euler-Poisson equations in Kharlamov axes - IV

Let us introduce now the dimensionless components of the angular momentum, the dimensionless time,
the dimensionless constants of the first integrals:

~ I I T E C
L = ‘/—, L, = ‘/—, t= , h=—, =k,[—,
=) p 3 =2 P /—FC T )4 r

and the dimensionless parameters:

b F c c
d=—, A= , B=G,[—, =A,|—.
Loe JTe \T O \T

Now we can rewrite equations in dimensionless form

d d
d—y:a’lszr(A—B)z—sz1 +Vv;, d—Z:—ally2 —(4-B)y+0yv, —v,,
T T

dv,

d d
Eadl & —2 =—d,yv, + yv, — Av,.
T

=zV, — )V, —dz' =d,yv, —zv, + Av,,

This system possesses following first integrals

(' +2)
2

0 ,_

+v, =h yv2+zv3+BV1+Ev] P ViHvi+vi=l.
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Euler-Poisson equations in Kharlamov axes - V
We introduce now the polar coordinates by putting
y=XCOoSQ, z=XxsingQ.

From the first integral we have the following equation:
2

vV, :vl(x):h—%.

From the trivial identity

(V22—|—V32)(y2—|—22)=(y1/2 +zv3)2+(zv2 —yv3)2

x* ’ x° 0 x’ 2
xz[l—Lh—zj ]ZEPI—B{}I—EJ—E( —7] } +(ZV2—yV3)2.
We will take that
2\? 2 0 52 2’
el -2 Hoeolo-2) 22

These equation (combined with the second integral) allows us to find expressions for v, =v, ( y,z,vl)
and v, =v,(y,z,v,).

we obtain:
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Obtaining the second order linear equation - I

For the variables x and ¢ we have the following system of differential equations

RG]

2 2 2\?
xzd—¢=—dlx3cosg0—(A—B)x2+Qx2(h—x7J—p]+B(h—x7]+%[ _x_] :

dr 2

From this system we obtain the equation for the function @=¢(x):

dop
dx

e a9

Using the change of variable

we reduce this equation to Riccati equation.
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Obtaining the second order linear equation - II

Riccati equation for function w=w(x) has form

It 1s well-known from the general theory of ODE that if Riccati equation has the form
dw
Z = 1, ()c)w2 + £, (x)w+f0 (x),

then the substitution of the form

u(x)= exp( j fr(x dx)
reduces it to the second order linear differential equation

d’u 1 df,

e fl} R
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Obtaining the second order linear equation - III

To sum up, the second order linear differential equation has the form

d’u du
?-FCZ(X)—X‘FI?(X)M—O,
d 3
(o) it )=—P“(x)(fc§;)(+xl)6 ~)

B Oh

B, (x)=30x" -160%d,x"" + 24(/1 - —TJQ%” +64d,(Q°h+BQ” -2)x" +

+(—28th3 +((—128A—56B)Q2 + 64Q)h +880°p, +(~1284B +16B*)Q* +256 4 —1283)x8

+(2240°1’ +((1924+678B) O* —3840) h* +(~576Q" p, + 384B(A+ B)Q* 5124256 ) h +
+(~1284p, —576Bp, +384) 0 +1284B> — 64B° + 512 p,)x" —

=512

—-384

=512

Q2h3 . 3BQ2 ~
2 2

ljh2 +(B2 —szl)h—Bp1 +1}a’1x5

2

2712
%Qh2+Bh—pl)(9Q4h +(9§Q—4jh+82—%)x4+1024d1(%Qh2+Bh—plj X -

273
30 + 2+(£—£]Q h + —5Qp1+B(A—Ej h—ApI+SBp1—2 .
4 2 4 2 2 2

2
o(%th +Bh—pljx2 —512(%Qh2 +Bh—le ,
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Obtaining the second order linear equation - IV

P (x)=0’x" —8(BQ+Q’h—2)x* +8(30°h” +(6BQ-8)h+ 2B’ - Op, )+

2713 2
+32[—Q2h +h2[ —?j—(BZ—QpI)MBpI—1Jx2+64(3h—p1%thj .

P,(x)=30x" —8d,x’ + (84— 4B —40h)x" +(8p, —8Bh — 40N’ ).

Theorem 1. The solution of the problem of motion of a heavy gyrostat with a fixed point
under the action of gyroscopic forces in the Hess case of integrability can be reduced to
solving the second order linear differential equation with rational coefficients.

Therefore, we can use the Kovacic algorithm to find liouvillian solutions of the differential equation.
We implemented this algorithm using Maple.
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General solution

If we manage to find explicitly the general solution of the linear second order differential equation
u=_Cuy, (x) + C,u, (x) :

then we can find the expression for @ = @(x), from which we can find explicit expression for variables
y=y(x), z=1z(x).

Now, using the following system of equations

Yo, = 2(x)v, = - x{l—(%—h] ]—Epl—B(h—%]—%[h—%j J ,

y(xX)v, +z(x)v; = p, —B(h—;j—%{h—x—;] )

we can find the expressions for v, =v,(x), v; =v;(x). The form of the expression v, =v,(x) can be

found from the first integral )
X
Vl (x) =h- 7 ’

the expression for variable x = x(7) can be found directly from the equation

{46
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Results

The application of the Kovacic algorithm to the problem of motion of a heavy gyrostat with a fixed point
under the action of gyroscopic forces gives the following result.

Theorem 2. Let O = 0 (gyroscopic forces are present) and ¢, # 0 (the mass distribution of
the gyrostat does not correspond to the Lagrange integrable case). Then the second order
linear differential equation admits a general solution expressed in terms of Liouvillian
functions under the condition

dl +1
o

A=
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Thank you for your attention!
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