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Hilbert

Quantum evolution

Schrödinger equation

iℏ ∂
∂t |ψt⟩ = H |ψt⟩⇝ |ψt⟩ = Ut |ψ0⟩

continuous one-parameter unitary group

Ut = e−i H
ℏ t =

(
e−i H

ℏ
)t

= Et

Without empirical losses, the evolution operator E can be a generator
of a representation of the finite cyclic group ZN

Banks N ∼

Exp(Exp(20)) for 1 cm3 of matter,

Exp(Exp(123)) for the entire Universe.
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Finite vs Lie group: ZN vs U(1)

U(1) :≈ ZN for large N

Chinese remainder theorem implies
ZN ∼= Zn1 × Zn2 , if N = n1n2 and gcd(n1, n2) = 1w�
ZN ∼= Zpℓ1

1
× · · · × Zpℓm

m

▶ N = pℓ1
1 · · · pℓm

m is prime factorization of N

▶ Zpℓ
∗−→ Fpℓ is a Galois field — crucial role in quantum mechanics

▶ Topologically, ZN is a discrete multidimensional torus,
resembles the circle U(1) topology only if N is a prime number
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Regular representation of ZN
Cyclic permutations of the group elements

Generator

X =


0 0 · · · 1
1 0 · · · 0... . . . . . . ...
0 · · · 1 0

 X |N=2 = σx =
(

0 1
1 0

)
, a Pauli matrix

Position or ontic ( ’t Hooft ) or computational (quantum informatics)
basis

BX = {|0⟩ , . . . , |N − 1⟩}
Position operator in ontic basis

x̂ =
N−1∑
x=0

x |x⟩⟨x | = diag (0, 1, . . . ,N − 1)

Generator of evolution with velocity v : Xv = X v

x̂t = X t
v x̂0X−t

v

in components xt = x0 + vt mod N
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Irreducible decomposition over a splitting field
– here, over Q(ω), a dense subfield of C
ω is a Nth primitive root of unity, e.g., ω = e2πi/N

Generator

Z = FXF ∗ =


1 0 · · · 0
0 ω · · · 0...

... . . . ...
0 0 · · · ωN−1

 Z |N=2 = σz =
(

1 0
0 −1

)

F = 1√
N

(
ωij
)

is the Fourier transform
Momentum basis

BZ =
{∣∣∣0̃〉 , ∣∣∣1̃〉 , . . . , ∣∣∣Ñ − 1

〉}
Momentum operator in momentum basis

p̂ =
N−1∑
p=0

p |p̃⟩⟨p̃| = diag (0, 1, . . . ,N − 1)

Hamiltonian Ĥ = p̂/N (cf. E = pc, energy-momentum relation for photon)
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Interplay between X and Z leads to quantum effects

Bases BX and BZ are mutually unbiased (Bohr’s complementarity)∣∣∣〈ℓ̃ |k
〉∣∣∣2 = 1

N

X ,Z generate a projective representation of ZN × ZN on Hilbert
space HN

Direct calculation ⇝ ZX = ωXZ , the Weyl commutation relation
— a refinement of the non-physical Heisenberg canonical
commutation relation [x̂ , p̂] = iℏ

Weyl
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Finite groups acting on HN : Weyl–Schwinger legacy and beyond
Generators: τ = − eπi/N , X , Z , F ,

S = diag
(
τ i(i+N)

)
is unitary image of

(
1 0
1 1

)
∈ Sp(2,Z)

▶ Roots of unity: KN = ⟨τ⟩, where N =
{

N, N = 2k + 1,
2N, N = 2k .

Weyl–Heisenberg group: WH(N) = ⟨τ,X ,Z ⟩, size = N3 or 2N3

▶ Displacement operators D(p1,p2) = τp1p2X p1Z p2 form projective
Weyl–Heisenberg group PWH(N) = WH(N) /KN

∼= ZN × ZN
describing quantum evolutions

▶ Parameters (p1, p2) ∈ Z2 form finite phase space T2 = ZN × ZN with
symplectic symmetry group Sp(2,ZN) ∼= SL(2,ZN) , the group of outer
automorphisms of WH(N)

Clifford group: CL(N) = ⟨X ,F , S⟩.
▶ CL(N) is the group of symmetries of WH(N) combining both inner

and outer automorphisms: CL(N) = Aut(WH(N)) ∼= WH(N) ⋊ Sp(2,ZN)
▶ Projective Clifford group: PCL(N) = CL(N) /Z(CL(N))

OrdinaryQM
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Decomposition of quantum systems: continuous vs finite group

HN = Hn1 ⊗ Hn2 ⊗ · · · ⊗ Hnm , N = n1 · n2 · · · nm, gcd(ni , nj) = 1

Continuous unitary groups

U(N) HN = U(n1) Hn1 ⊗ · · · ⊗ U(nm) Hnmw� a bit of tensor algebra
U(N) HN = Hn1 ⊗ · · · ⊗ Hnm

U(N) > U(n1) ⊗ · · · ⊗ U(nm)
Clifford groups( CL(N)︷ ︸︸ ︷

CL(n1) ⊗ · · · ⊗ CL(nm)
)
HN = Hn1 ⊗ · · · ⊗ Hnm

CL(N) ≡ CL(n1) ⊗ · · · ⊗ CL(nm)
no quantum interferences, no entanglement, no energy exchange
between ni = pℓi

i and nj = pℓj
j , pi ̸= pj
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Chinese remainder theorem
0 ≤ k < N = n1 · n2 · · · nm, gcd(ni , nj) = 1w�

k ↔ (r1, r2, . . . , rm) , ri = k mod ni

ring isomorphism ZN ∼= Zn1 × Zn2 × · · · × Znm

isomorphic map (r1, r2, . . . , rm) 7→ k ∈ ZN

k =
∑

i
riN−1

i︸ ︷︷ ︸
ki ∈ Zni

Ni mod N

Ni = N/ni ∈ ZN
N−1

i ∈ Zni is the multiplicative inverse of Ni within Zni

dual map k ↔ (k1, k2, . . . , km) , ki ∈ Zni

k =
∑

i
kiNi mod Nw�

k
N =

∑
i

ki
ni

mod 1 ⇝ additivity of energy
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Additivity of energy in a composite quantum system

E (A ∪ B) = E (A) + E (B) + ∆E (A,B)

Planck relation E = hν, energy = frequency
Hamiltonian H = iℏ ln U

U is a generator of a Zn-evolution =⇒ H ∼ diag
(
Ek/n

)
, Ek/n = k

n
Composite system

UN = Un1 ⊗ Un2 ⊗ · · · ⊗ Unmy ln
HN = Hn1⊗1n2⊗ · · ·⊗1nm +1n1⊗Hn2⊗· · ·⊗1nm + · · ·+1n1⊗1n2⊗ · · ·⊗Hnm

Additivity of energy as dual map in Chinese remainder theorem

Ek/N =
∑

i
Eki /ni ⇐⇒ k

N =
∑

i

ki
ni

mod 1
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Constructive quantum states CQS(N)

standard QM: complex projective space, homogeneous space of U(N)

P(HN) = CP
N−1 ∼= OrbU(N)(|0⟩) = U(N) |0⟩

a trial set of CQS(N)
1 must be CL(N)-invariant:

CQS(N) =
⋃
a

Oa, Oa = OrbCL(N)(|a⟩)

2 must contain ontic vectors: O0 ∋ |0⟩ , |1⟩ , . . . , |N − 1⟩
3 only rational Born transition probabilities are allowed:

|a⟩ , |b⟩ ∈ CQS(N) =⇒ |⟨a |b⟩|2 ∈ Q

4 phase factors must be elements of the center Z(CL(N))
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Computations in dimensions 2 and 3
Generators, centers, and sizes of CL(N), ω = exp(2πi/3)

N X F S Z ord

2
(

0 1
1 0

)
1√
2

(
1 1
1 −1

) (
1 0
0 i

)
K8 192

3

0 0 1
1 0 0
0 1 0

 1√
3

1 1 1
1 ω ω2

1 ω2 ω

 1 0 0
0 ω2 0
0 0 ω2

 K12 2592

Distance between states Dist(a, b) = 1 − P(a, b) = sin2 DFS(a, b)
P(a, b) = |⟨a |b⟩|2 is Born’s transition probability,
DFS(a, b) is the Fubini–Study distance in CPN−1

Estimate of density in CPN−1 of the computationally reached
set of states R ⊂ CQS(N)

∆(R) = max
a∈R

min
b∈R\{a}

Dist(a, b) , R = O0 ∪
Norb−1⋃

i=1
Oi

N Norb |R| ∆(O0) ∆(R)
2 986 23646 1/2 1/1515 ≈ 10−3

3 169 27237 2/3 1/99 ≈ 10−2
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Initial steps in generating CQS(2)

(a) (b) (c)

(a) vectors of O0 form the octahedron vertices, spatial diagonals
form complete set of mutually unbiased bases:

O0 =
{

|0⟩ , |1⟩ ; |0⟩+|1⟩√
2 , |0⟩−|1⟩√

2 ; |0⟩+i|1⟩√
2 , |0⟩−i|1⟩√

2

}
(b) pairwise interferences of the vectors in (a) with rational

transition probabilities add one orbit of size 24
(c) pairwise interferences of the vectors in (b) add 16 orbits of

size 24
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David Hilbert

David Hilbert. On the infinite

“Our principal result is that the infinite is nowhere
to be found in reality. It neither exists in nature nor
provides a legitimate basis for rational thought — a
remarkable harmony between being and thought.”
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Gerard ‘t Hooft

We postulate the existence of an ontological basis.
It is an orthonormal basis of Hilbert space that is truly superior
to the basis choices that we are familiar with. In terms of an
ontological basis, the evolution operator for a sufficiently fine
mesh of time variables, does nothing more than permute the
states.
p. 66, The Cellular Automaton Interpretation of Quantum Me-
chanics. Springer, 2016

To 3



Hermann Weyl

Our general principle allows for the possibility that the Abelian
rotation group is entirely discontinuous, or that it may even
be a finite group. . . .
Because of these results I feel certain that the general scheme
of quantum kinematics formulated above is correct. But the
field of discrete groups offers many possibilities which we have
not as yet been able to realize in Nature; perhaps these holes
will be filled by applications to nuclear physics.
p. 276, The Theory of Groups and Quantum Mechanics.
1928, transl. Dover 1950
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Tom Banks
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Ordinary view of finite QM

Quantum state spaces are continuous, but they have some in-
triguing realisations of discrete structures hidden inside. . . . The
structures we are aiming at are known under strange acronyms
such as ‘MUB’ and ‘SIC’.
p. 313, Bengtsson I., Zyczkowski K. Geometry of Quantum States.
Cambridge University Press, 2006
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