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Abstract

Laurent solutions of systems of linear ordinary differential equations with the trun-
cated power series coefficients are considered. The Laurent series in the solutions are
also truncated. We use induced recurrent systems for constructing the solutions and
have previously proposed an algorithm for the case when the induced system has a
non-singular leading matrix. The algorithm finds the maximum possible number of
terms of the series in the solutions that are invariant with respect to any prolongation
of the original system. Below we present advances in extending our algorithm to the
case when the leading matrix is singular using algorithm EG as an auxiliary tool.
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1. Starting Point

We consider systems of the form

Ar(x)θry(x) + Ar−1(x)θr−1y(x) + · · ·+ A0(x)y(x) = 0, (1)

where y(x) = (y1(x), y2(x), . . . , ym(x))T is the vector of unknowns, Ar(x), . . . , A0(x) are
m×m-matrices of coefficients with entries in the form of power series in x over the field of
algebraic numbers, θ = x d

dx
.

A solution y(x) = (y1(x), . . . , ym(x))T of the differential system (1) the components of
which are formal Laurent series is referred to as a Laurent solution:

y(x) =
∞∑
n=v

u(n)xn, (2)

where v ∈ Z is a valuation of the series, u(n) = (u1(n), . . . , um(n))T are vectors of coefficients
of Laurent series for n ∈ Z.

For a full-rank system the coefficients of which are series specified algorithmically (i.e.
an algorithm is given which computes the coefficient of any term xs of any series), the
algorithm from [2] finds all its truncated Laurent solutions with any given truncation degree.
The algorithm is based on the construction of an induced recurrent system R(u) = 0 which
is satisfied by the sequence of vectors u(n) from (2). The induced recurrent system is
constructed with the transformation

x→ E−1, θ → n, (3)

applied to the original differential system (1). E−1 denotes the shift operator: E−1u(n) =
u(n−1). Thus R = B0(n)+B−1(n)E−1+B−2(n)E−2+ . . . and the induced system is written
as

B0(n)u(n) +B−1(n)u(n− 1) + . . . = 0, (4)
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where u(n) = (u1(n), . . . , um(n))T is the column vector of unknown sequences such that
ui(n) = 0 for all negative n with large enough value of |n|, i = 1, . . . ,m; B0(n), B−1(n), . . .
are matrices of polynomials in n; B0(n) is the leading matrix of system (4). If B0(n) is
non-singular, then we can consider the equation detB0(n) = 0 as an indicial equation of the
original differential system: the set of integer roots of this algebraic equation includes the set
of all possible valuations of the Laurent solutions of system (1). This makes it possible, in
particular, to find the lower bound for the valuations of all Laurent solutions of the system.
If detB0(n) = 0 has no integer roots, then the system has no Laurent solutions. If B0(n) is
singular, then algorithm EG∞σ (it is a version of original EG algorithm from [1] introduced in
[2] for infinite recurrent systems) initially applied to transform the induced recurrent system
to the embracing recurrent system of the same form with a non-singular leading matrix,
and it constructs any given number of its initial terms. The embracing recurrent system
supplemented with a set of linear constraints, which are also constructed by EG∞σ algorithm,
has the same set of solutions as the system (4).

In our current research we are focused on the case when the series in the system coef-
ficients are represented in a truncated form, with the truncation degree being different for
different coefficients. We refer to such systems as truncated systems. Each truncated series
is represented as

a(x) +O(xt+1), (5)

where a(x) is a polynomial, the integer t ≥ deg a(x) is a truncation degree.
The prolongation of a truncated series is a series (possibly, also truncated) the initial

terms of which coincide with known initial terms of the original truncated series. In turn, the
prolongation of a truncated equation is an equation the coefficients of which are prolongations
of coefficients of the original equation, and the prolongation of a system of equations is a
system the equations of which are prolongations of the equations of the original system.

We are interested in finding the maximum possible number of terms of truncated Laurent
solutions of a given truncated system that are invariant with respect to any prolongations
of the truncated coefficients of the given system. Solutions with arbitrary truncation degree
cannot be calculated for a truncated system. This statement was proved in [3] for a particular
case, namely, for a scalar equation (m = 1). In [3] we also proposed an algorithm which
finds such truncated Laurent solutions for scalar equations. We utilized induced recurrent
systems and literals as a foundation for finding the solutions. Literals are symbols used
to represent unspecified coefficients of the truncated series involved in the system. For a
series of form (5), we say that the coefficients of terms xs,s > tkij are unspecified. When
constructing solutions of the truncated system, these coefficients are represented by symbols,
i.e., by literals. Our algorithm for truncated systems is a modification of the algorithms for
the systems with the algorithmically specified coefficients. The key idea is to represent the
truncated series (5) algorithmically: the algorithm returns the known coefficient of the series
if s ≤ t, and it returns literals if s > t.

In [6] we applied the approach from [3] to the systems with m > 1 and proposed an
algorithm for constructing Laurent solutions of the system for the case when the determinant
of the leading matrix of the induced system is not zero (i.e. the leading matrix is non-
singular) and does not contain literals.

2. Advances and Further Plans

Our advances in the research of finding Laurent solutions of the systems in hand are
related to the use of the algorithm EG∞σ to extend the applicability of the algorithm from [6]
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to the systems whose induced recurrent systems have singular leading matrix. We continue
the adaptation of the algorithm for the systems with the algorithmically specified coefficients
by representing the truncated series algorithmically with the help of literals.

The EG∞σ algorithm consists in the successive repetition of reduction and shift steps,
which continues until the rows of the leading matrix remain linear dependent. On the
reduction step, coefficients of the dependence are found; then, the equation corresponding
to one of the dependent rows is replaced with the linear combination of the other equations,
hence the row of the leading matrix is set zero. On the shift step, the shift operator E is
applied to the new equation. The termination of the algorithm is guaranteed with using a
simple rule when selecting equations to be replaced. The reduction steps also lead to a finite
set of linear constraints, each of which involves a finite number of elements of a sequential
solution and is a linear combination of these elements with constant coefficients. The linear
constraints correspond to the integer roots of a polynomial which is the coefficient of the
row of the replaced equation in the linear combination (we further refer to the polynomials
as the constraint polynomials).

The main obstacle is that literals may appear in intermediate calculations. If there
are no literals both in the determinant of the leading matrix and in the constraint poly-
nomials after EG∞σ execution then the further calculations with the resulting induced re-
currence and the linear constraints in the way as in algorithm from [6] gain desired trun-
cated Laurent solutions which form the extended version of our algorithm in the case. It
is preliminary implemented in Maple ([7]) as an updated version of procedure LaurentSolu-
tion of package TruncatedSeries [4, 5] (for more information about the package, please visit
http://www.ccas.ru/ca/TruncatedSeries).

Let’s consider the following system(
3x+O(x2) 7x2 +O(x4)
O(x2) 17x2 +O(x4)

)
θ2y(x) +

(
−1 + 2x+O(x2) x+ 5x2 +O(x4)

O(x2) 11x2 +O(x4)

)
θy(x)+

+

(
O(1) x− 3x2 +O(x4)

1 +O(x2) −6x2 +O(x4)

)
y(x) = 0. (6)

The leading matrix of its induced recurrent system is singular:(
U[1,1],[0,0] − n 0

1 0

)
.

U[i,j][k,s] is the representation of the literal denoting an unspecified coefficient of xs in (i, j)-th
element of matrix coefficient Ak(x) of the system (1). After execution of EG∞σ the trans-
formed leading matrix becomes non-singular:(

3n2 + 2n+ U[1,1],[0,1] n+ 1
1 0

)
,

and its determinant (−n − 1) contains no literals. No linear constraints constructed by
EG∞σ , so there is no constraint polynomials with literals as well. It is the case when our new
algorithm is applicable and it computes the truncated Laurent solution (c1 is an arbitrary
constant): (

6x2c1 +O(x3)
c1
x

+ c1 +O(x)

)
.

Let’s consider another system:(
O(x5) −1 +O(x5)

1 +O(x5) O(x5)

)
θy(x) +

(
O(x5) O(1)

2 +O(x5) O(x5)

)
y(x). (7)
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The leading matrix of its induced recurrent system is already non-singular:(
0 U[1,2],[0,0] − n

2 + n 0

)
.

However there is a literal in its determinant (n − U[1,2],[0,0])(2 + n). It is seen that the
determinant has the roots −2 and U[1,2],[0,0]. It means that the set of integer roots of the
determinant may be different for different integer values of the literal U[1,2],[0,0]. It is easy to
check that there is no desired Laurent solutions of the system. It may be done by constructing
various prolongations of the original system with substituting various integer values of the
literal U[1,2],[0,0] and finding Laurent solutions of the prolongations with our algorithm from [6]
(the algorithm is applicable to the prolongations since for each of them the leading matrix
of the induced recurrence is still non-singular and there are no literals in its determinant
already). For example, for U[1,2],[0,0] = 5 the solution of the prolongation is(

O(x10)
c1x

5 +O(x6)

)
and for U[1,2],[0,0] = 6 the solution of the prolongation is(

O(x11)
c1x

6 +O(x7)

)
.

Since the solutions of the prolongations has no coinciding initial terms of the series, there is
no desired Laurent solution of the original system.

Let p(n) be the determinant of the leading matrix (either of the induced recurrent system
if its leading matrix is non-singular, or of the embraced recurrent system after the application
of EG∞σ otherwise). If p(n) contains literals then it may be represented in the general
case as p(n) = a(u1, . . . , us)(n − r1) . . . (n − rk)(bq(u1, . . . , us)n

q + · · · + b1(u1, . . . , us)n +
b0(u1, . . . , us)), where u1, . . . , us are literals involved in p(n), a(u1, . . . , us), b0(u1, . . . , us),
b1(u1, . . . , us), · · · , bq(u1, . . . , us) are polynomials in the literals, r1 . . . rk are integer roots
of p(n) independent from the literals. If a(u1, . . . , us) does contain literals (i.e. it is not a
number) then there are such values of the literals u1, . . . , us that a(u1, . . . , us) = 0 and, hence
p(n) = 0, i.e. the leading matrix is singular for the values of the literals. If a(u1, . . . , us) is a
number, then the solution of the algebraic equation (bq(u1, . . . , us)r

q
0+ · · ·+b1(u1, . . . , us)r0+

b0(u1, . . . , us)) = 0 in respect to u1, . . . , us allows getting such values of the literals that p(n)
has any desired root r0 in addition to the roots r1 . . . rk. It means that in all cases the set of
integer roots of p(n) is not invariant in respect to the prolongations of the differential system
in hand. The same reasoning is true for the constraint polynomials as well.

EG∞σ may have variability in its execution. In spite of the fact that the special rule
should be used for choosing the equation to be replaced to guarantee the termination of
the computation, it is still possible to have more than one option to choose. It leads to
the fact that for the same recurrent system EG∞σ may result in different embraced systems.
For example, for the system (6) EG∞σ may be executed in another way that leads to the
embraced recurrent system with another leading matrix:(

U[1,1],[0,0] − n 0
3n2 + 2n+ U[1,1],[0,1] n+ 1

)
with the determinant

(
U[1,1],[0,0] − n

)
(n+ 1) which contains the literal U[1,1],[0,0]. It can be

seen that the determinant is very similar to the determinant of the leading matrix of the
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induced recurrence for the system (7) that has no desired truncated Laurent solution. In addi-
tion, the second variant of EG∞σ execution gives the constraint polynomial −U [[1, 1], [0, 0]]+n
which also contains the literal. Still, we know from the first variant of EG∞σ execution, that
the system has desired truncated Laurent solution. It gives us the counterexample to the
conjecture that there is no desired Laurent solution as soon as the determinant of the leading
matrix and/or the constraint polynomials contain literals.

We experiment with the modification of our algorithm for the case of determinants and
constraint polynomials containing literals, which takes into account only invariant integer
roots of the determinant and constraint polynomial (i.e. those roots which are independent of
literals). The experiments show that the modification of the algorithm gives correct answers
for the system (6) for both variants of EG∞σ execution and for the system (7), as well as for
more other systems. Our further plans is either to prove that the approach is always correct
or to identify the limitations of its applicability.
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