Analytical geometry of the projective space $\mathbb{R P}^{3}$ in terms of Plucker coordinates and geometric algebra

Gevorkyan M. N., Korolkova A. V., Kulyabov, D. S.
26.06.2023
Peoples' Friendship University of Russia (RUDN University)
Department of applied probability and informatics
5th international conference Computer algebra
June 26-30, 2023

Outline of the report

- Motivation of work and methodological information.
- Classical analytic projective geometry (model $\mathbb{R}^{3} P$).
- Projective geometry in terms of geometric algebra.
- The software implementation for visualization in the Asymptote language.
- Results of work and prospects for further research.
- We study the apparatus of geometric algebra in our scientific work.
- Variants of geometric algebra for Euclidean and pseudo-Euclidean spaces are well developed: there are educational materials, software libraries, including for CAS.
- On the contrary, the geometric algebra variant for projective geometry is poorly developed.
- Projective geometry - mathematical model of modern computer graphics.
- The authors are developing a course «Computer Geometry» which logically includes a section on projective geometry.

Perspective and projective geometry

Perspective (latin perspicere - look through) technique of depicting spatial objects in accordance with the distortion of the proportions and shape of the depicted bodies in their visual perception.

- It has been methodically applied in art and architecture since the Renaissance.
- Mathematical model of perspective - projective geometry.
- Computer graphics adopted the methods of fine art and projective geometry.
J. Desargues, J.-V. Poncelet, M. Chasles, K. G. H. von Staudt, A. F. Möbius, Y. Plücker, F. H. Klein contributed to the creation of the foundations of projective geometry.

Key advantages in terms of computing:

- eliminates exceptional cases (for example, all lines on the plane intersect);
- as a consequence, algorithms are simplified, often reduced to a single formula;
- affine transformations turn into linear ones;
- there is no division operation in formulas;
- as a consequence, it is possible to implement calculations for integer arithmetic.

Synthetic and analytical approaches to geometry

Synthetic approach

- Introduces a variety of geometric elements of various kinds: points, straight lines and planes.
- Sets the relationship between them in the form of axioms.
- Relying on axioms prove statements based on logic, geometric constructions and reasoning.

Analytical approach

- Is more correct - linear-algebraic (algebraic).
- Geometry problems are solved by algebraic methods («requires more ink, but less thinking» ${ }^{a}$).
- It is the most natural for algorithmization and implementation in software.
- The modern approach provides for a component-free record of formulas - simplification of programming, the possibility of vectorization (GPU, SIMD).
 Т. А. Бурмистрова. Москва : Просвещение, 1979.158 с. (Мир знаний), с. 89.

Analytical projective geometry

Two approaches can be distinguished:

- Classical: based on homogeneous coordinates (Plucker coordinates, 6-vectors).
- Geometric algebra: based on the multivector algebra - special cases of Clifford algebra.

The second approach is poorly developed. It is handled by computer graphics specialists. Terminology and designations are not well established. Two techniques can be distinguished.

- Leo Dorst, Steven De Keninck и др., site https: //bivector.net/.
- Eric Lengyel. Available developments in poster form link and posts in blog Projective Geometric Algebra Done Right. A consistent presentation of analytic projective geometry and exterior algebra in the manual ${ }^{1}$.

[^0]- Both approaches are computationally equivalent.
- The approach based on Plucker coordinates is more difficult to interpret. When proving formulas, there is a constant switching between the Euclidean space \mathbb{R}^{3} and the projective space $\mathbb{R P}^{3}$.
- The approach based on projective geometry is more logical and allows for a clear algebraic and geometric interpretation.

- The model of a projective plane.
- Figure illustrates a model of projective points.
- Finite points $P_{1}, P_{2}, P_{3}, P_{4}$.
- Infinity points (directions).
- All lines intersect at infinity.
- All infinity points lie on the infinity line (absolute).

The projective plane is modeled by a three-dimensional Cartesian space.

- Points vectors $\overrightarrow{\mathbf{p}}=(x, y, w)$.
- Directions vectors $\overrightarrow{\mathbf{v}}=(x, y, 0)$.
- Homogeneous coordinates

$$
\overrightarrow{\mathbf{p}}=(x / w, y / w, 1)=(x: y: 1)
$$

- It is easy to move from Cartesian space to projective space using normalization by division by weight w.

- Lines on $\mathbb{R P}^{2}$ are planes $A x+B y+C w=0$ with $w=1$ in the enclosing Cartesian space.
- Hence, the homogeneous equation of the line: $A x+B y+C=0$.
- The guiding vector of the normal $\mathbf{N}=(A, B)$.
- Distance from O to the line: $d=C /\|N\|$.
- The normal equation of a straight line $n_{x} x+n_{y} y+d=0$, where $\mathbf{n}=\frac{\mathbf{N}}{\|\mathbf{N}\|}$.
- It is necessary to use the model of the projective space $\mathbb{R P}^{3}$ and set the projective form of lines and planes.
- The line acquires a projective form in Plucker coordinates (another name is Grassmann coordinates).
- Points: $\overrightarrow{\mathbf{p}}=(\mathbf{p} \mid w)=(x: y: z: w)$, origin point $\overrightarrow{\mathbf{O}}=(0: 0: 0: 1)$.
- Line: $\overrightarrow{\mathrm{l}}=\{\mathbf{v} \mid \mathbf{m}\}$.
- It takes 6 parameters for line: $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)^{T}$ and $\mathbf{m}=\left(m_{x}, m_{y}, m_{z}\right)^{T}$.
- Plücker equation (v, m) $=0$.
- Vector v is direction vector, m is moment of line.
- Tuple (\mathbf{v}, \mathbf{m}) is dual vector or motor from screw theory.
- The plane $\overrightarrow{\boldsymbol{\pi}}=[\mathbf{n} \mid d]$ is the normal equation of the plane, where \mathbf{n} is the normal, and d is the distance from the plane to the origin.

The representation of a straight line as $\{\mathbf{v} \mid \mathbf{m}\}$ is not intuitive and does not have clear geometric interpretation.

		Формула	Описание				
A	(2.1)	$\{\mathbf{v} \mid \mathbf{p} \times \mathbf{v}\}$	Прямая, проходящая через точку P по направлению \mathbf{v}.				
B	(2.2)	$\left\{\mathbf{p}_{2}-\mathbf{p}_{1} \mid \mathbf{p}_{1} \times \mathbf{p}_{2}\right\}$	Прямая, проходящая через две точки P_{1} и P_{2}.				
C	(2.6)	$\{\mathbf{p} \mid \mathbf{0}\}$	Прямая, проходящая через начало координат и точку P.				
D	(2.3)	$\left\{w_{1} \mathbf{P}_{2}-w_{2} \mathbf{P}_{1} \mid \mathbf{P}_{1} \times \mathbf{P}_{2}\right\}$	Прямая, проходящая через две точки $\overrightarrow{\mathbf{p}}_{1}=\left(\mathbf{p}_{1} \mid w_{1}\right)$ и $\overrightarrow{\mathbf{p}}_{2}=$ $\left(\mathbf{p}_{2} \mid w_{2}\right)$.				
E	(2.15)	$\left\{\mathbf{n}_{1} \times \mathbf{n}_{2} \mid d_{1} \mathbf{n}_{2}-d_{2} \mathbf{n}_{1}\right\}$	Прямая линия пересечения двух плоскостей $\left[\mathbf{n}_{1} \mid d_{1}\right]$ и $\left[\mathbf{n}_{2} \mid d_{2}\right]$.				
F	(2.16)	$(\mathbf{m} \times \mathbf{n}+d \mathbf{v} \mid-(\mathbf{n}, \mathbf{v}))$	Точка пересечения плоскости $[\mathbf{n} \mid d]$ и прямой $\{\mathbf{v} \mid \mathbf{m}\}$.				
F.a	(2.24)	$\left[\mathbf{m}_{1} \times \mathbf{m}_{2} \mid\left(\mathbf{v}_{2}, \mathbf{m}_{1}\right)\right]$	Точка пересечения двух прямых $\left\{\mathbf{v}_{1} \mid \mathbf{m}_{1}\right\}$ и $\left\{\mathbf{v}_{2} \mid \mathbf{m}_{2}\right\}$				
F.b	(2.13)	$\begin{gathered} \left(d_{1} \mathbf{n}_{3} \times \mathbf{n}_{2}+d_{2} \mathbf{n}_{1} \times \mathbf{n}_{3}+\right. \\ \left.d_{3} \mathbf{n}_{2} \times \mathbf{n}_{1} \mid\left(\mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{n}_{3}\right)\right) \end{gathered}$	Точка пересечения трех плоскостей $\left[\mathbf{n}_{1} \mid d_{1}\right],\left[\mathbf{n}_{2} \mid d_{2}\right]$ и $\left[\mathbf{n}_{3} \mid d_{3}\right]$				
G	(2.4)	$(\mathbf{v} \times \mathbf{m} \mid(\mathbf{v}, \mathbf{v}))$	Точка, ближайшая к началу координат на прямой $\{\mathbf{v} \mid \mathbf{m}\}$.				
H	(2.17)	$(-d \mathbf{n} \mid(\mathbf{n}, \mathbf{n}))$	Точка, ближайшая к началу координат на плоскости $[\mathbf{n} \mid d]$.				
I	(2.19)	$[\mathbf{v} \times \mathbf{u} \mid-(\mathbf{u}, \mathbf{m})]$	Плоскость, содержащая прямую $\{\mathbf{v} \mid \mathbf{m}\}$ и направление \mathbf{u}.				
J	(2.20)	$[\mathbf{v} \times \mathbf{p}+\mathbf{m} \mid-(\mathbf{p}, \mathbf{m})]$	Плоскость, содержащая прямую $\{\mathbf{v} \mid \mathbf{m}\}$ и точку (p\|1).				
K	(2.21)	$[\mathrm{m} \mid 0]$	Плоскость, содержащая прямую $\{\mathbf{v} \mid \mathbf{m}\}$ и начало координат.				
L	(2.18)	$[\mathbf{v} \times \mathbf{p}+w \mathbf{m} \mid-(\mathbf{p}, \mathbf{m})]$	Плоскость, содержащая прямую $\{\mathbf{v} \mid \mathbf{m}\}$ и точку (р \mathbf{p}) .				
L.a	(2.22)	$[\mathbf{v} \times \mathbf{u} \mid(\mathbf{u}, \mathbf{v}, \mathbf{p})]$	Плоскость, содержащая точку (p\|1) и направления \mathbf{v} и \mathbf{u}.				
M		$[\mathbf{m} \times \mathbf{v} \mid(\mathbf{m}, \mathbf{m})]$	Плоскость с прямой $\{\mathbf{v} \mid \mathbf{m}\}$, наиболее отдаленная от O.				
N		$\left[-w_{\mathbf{p}} \mid(\mathbf{p}, \mathbf{p})\right]$	Плоскость с точкой ($\mathbf{p} \mid w$), наиболее отдаленная от O.				
O	(2.23)	$\frac{\left\|\left(\mathbf{v}_{1}, \mathbf{m}_{2}\right)+\left(\mathbf{v}_{2}, \mathbf{m}_{1}\right)\right\|}{\left\\|\mathbf{v}_{1} \times \mathbf{v}_{2}\right\\|}$	Расстояние между прямыми $\left\{\mathbf{v}_{1} \mid \mathbf{m}_{1}\right\}$ и $\left\{\mathbf{v}_{2} \mid \mathbf{m}_{2}\right\}$.				
P	(2.7)	$\frac{\|\mathbf{v} \times \mathbf{p}+\mathbf{m}\|}{\\|\mathbf{v}\\|}$	Расстояние между прямой $\{\mathbf{v} \mid \mathbf{m}\}$ и точкой (p\|1).				
Q	(2.5)	$\\|\mathbf{m}\\| /\\|\mathbf{v}\\|$	Расстояние от прямой $\{\mathbf{v} \mid \mathbf{m}\}$ до начала координат.				
R	(2.9)	$\frac{\|(\mathbf{n}, \mathbf{p})+d\|}{\\|\mathbf{n}\\|}$	Расстояние от плоскости $[\mathbf{n} \mid d]$ до точки (p\|1).				
S	(2.8)	$\|d\| /\\|\mathbf{n}\\|$	Расстояние от плоскости $[\mathbf{n} \mid d]$ до начала координат.				

Arrangement of planes in projective space

In a projective space, all lines intersect at a proper or non-proper point.

The duality principle in projective geometry

Для проективной плоскости двойственны термины:

- «point» \longleftrightarrow «line»;
\bullet «point on the line» \longleftrightarrow «line pass through point» \longleftrightarrow «point and line is incident»;
For the projective plane, the terms are dual:
- "dot" \longleftrightarrow "line";
- "the point lies on the line" \longleftrightarrow "the line passes through the point" \longleftrightarrow "the line and the point are incident"; In the projective space, the duality principle can be formulated as follows:

Rank	Original	Dual
4	Point $(\mathbf{p} \mid w)$	Plane $[\mathbf{p} \mid w]$
6	Line $\{\mathbf{v} \mid \mathbf{m}\}$	Line $\{\mathbf{m} \mid \mathbf{v}\}$
4	Plane $[\mathbf{n} \mid d]$	Point $(\mathbf{n} \mid d)$

Dimension of space, rank of objects and duality

It is important to note $\operatorname{dim} \mathbb{R} P^{2}=3$ and $\operatorname{dim} \mathbb{R P}^{3}=4$.

Geometric algebra

Basic concepts.

- Exterior algebra (Grassmann algebra) is linear space with the operation of the exterior (wedge) product of \wedge and p-vectors (or p-forms).
- Geometric algebra is linear space with geometric product operation and multivectors (graded algebra).
- For an orthonormal basis, it is sufficient to define a geometric product for vectors. Further, it constructively applies to any multivectors.

Особенности.

- GA is a specialized version of tensor algebra, easier to master.
- Generalization of complex numbers (elliptic, parabolic, hyperbolic), quaternions, biquaternions, screws, etc.
- GA can be used to describe Minkowski space, relativistic form of Maxwell's equations, and other fields of physics.

Wedge product

Wedge product of vectors from linear space L is operator \wedge, defined for every vectors $\mathbf{v}, \mathbf{u} u \mathbf{w}$ from L whith fallowing properties:

1. $1 \wedge \mathbf{u}=\mathbf{u} \wedge 1=\mathbf{u}$, where $1 \in \mathbb{R}$;
2. $\alpha \wedge \beta=\alpha \cdot \beta$, where $\alpha, \beta \in \mathbb{R}$;
3. $\mathbf{u} \wedge(\mathbf{v} \wedge \mathbf{w})=(\mathbf{u} \wedge \mathbf{v}) \wedge \mathbf{w}-$ associativity;
4. $(\mathbf{u}+\mathbf{v}) \wedge \mathbf{w}=\mathbf{u} \wedge \mathbf{w}+\mathbf{v} \wedge \mathbf{w}-$ right distributivity;
5. $\mathbf{w} \wedge(\mathbf{v}+\mathbf{u})=\mathbf{w} \wedge \mathbf{v}+\mathbf{w} \wedge \mathbf{u}$ - left distributivity;
6. $\mathbf{u} \wedge(\alpha \mathbf{v})=(\alpha \mathbf{u}) \wedge \mathbf{v}=\alpha(\mathbf{u} \wedge \mathbf{v})$;
7. $\mathbf{u} \wedge \mathbf{v}=-\mathbf{v} \wedge \mathbf{u}$ - anticommutativity (antisymmetry, skew symmetry).

The antisymmetry property is equivalent to the following:

$$
\mathbf{u} \wedge \mathbf{u}=0
$$

L is linear space $\operatorname{dim} L=4$, basis vectors $\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\rangle$. Scalar product operation, without the condition of positive definiteness. For the basis vectors, we assume:

$$
\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=1, \quad\left(\mathbf{e}_{4}, \mathbf{e}_{4}\right)=0, \text { and } \mathbf{e}_{4} \neq \mathbf{0}
$$

The outer product of the basis vectors

Type	Basis	Rank
Скаляр	1	$0 / 4$
	\mathbf{e}_{1}	
Vectors	\mathbf{e}_{2}	$1 / 3$
	\mathbf{e}_{3}	
	\mathbf{e}_{4}	
	$\mathbf{e}_{23}=\mathbf{e}_{2} \wedge \mathbf{e}_{3}$	
Bivectors	$\mathbf{e}_{31}=\mathbf{e}_{3} \wedge \mathbf{e}_{1}$	
	$\mathbf{e}_{12}=\mathbf{e}_{1} \wedge \mathbf{e}_{2}$	$2 / 2$
	$\mathbf{e}_{43}=\mathbf{e}_{4} \wedge \mathbf{e}_{3}$	
	$\mathbf{e}_{42}=\mathbf{e}_{4} \wedge \mathbf{e}_{2}$	
	$\mathbf{e}_{41}=\mathbf{e}_{4} \wedge \mathbf{e}_{1}$	
	$\mathbf{e}_{321}=\mathbf{e}_{3} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{1}$	
Trivectors	$\mathbf{e}_{124}=\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{4}$	$3 / 1$
	$\mathbf{e}_{314}=\mathbf{e}_{3} \wedge \mathbf{e}_{1} \wedge \mathbf{e}_{4}$	
	$\mathbf{e}_{234}=\mathbf{e}_{2} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}$	
Pseudoscalars	$\mathbf{e}_{1234}=\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}$	$4 / 0$

Geometric product of basis vectors

Geometric product of orthonormal basis vectors

	\mathbf{e}_{1}	\mathbf{e}_{2}	\mathbf{e}_{3}	\mathbf{e}_{4}
\mathbf{e}_{1}	1	\mathbf{e}_{12}	$\mathbf{e}_{13}=-\mathbf{e}_{31}$	$\mathbf{e}_{14}=-\mathbf{e}_{41}$
\mathbf{e}_{2}	\mathbf{e}_{21}	1	\mathbf{e}_{23}	$\mathbf{e}_{24}=-\mathbf{e}_{42}$
\mathbf{e}_{3}	\mathbf{e}_{31}	$\mathbf{e}_{32}=-\mathbf{e}_{23}$	1	$\mathbf{e}_{34}=-\mathbf{e}_{43}$
\mathbf{e}_{4}	\mathbf{e}_{41}	\mathbf{e}_{42}	\mathbf{e}_{43}	0

Points, lines and planes

Point

Defined by a vector (4 components)

$$
\overrightarrow{\mathbf{p}}=x \mathbf{e}_{1}+y \mathbf{e}_{y}+z \mathbf{e}_{z}+w \mathbf{e}_{4}
$$

where $\mathbf{p}=(x, y, z)$ is radius-vector $\mathbb{R}^{3} \boldsymbol{u} w$ is width.

Line

Defined by a bivector (6 components)

$$
\overrightarrow{\mathbf{l}}=\mathbf{v}_{x} \mathbf{e}_{41}+\mathbf{v}_{y} \mathbf{e}_{42}+\mathbf{v}_{z} \mathbf{e}_{43}+\mathbf{m}_{x} \mathbf{e}_{23}+\mathbf{v}_{y} \mathbf{e}_{31}+\mathbf{m}_{z} \mathbf{e}_{12},
$$

where $\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$ is direction vector, $\mathbf{m}=\left(m_{x}, m_{y}, m_{z}\right)$ is line moment.

Plane

Defined by trivector (4 components)

$$
\overrightarrow{\boldsymbol{\pi}}=\mathbf{n}_{x} \mathbf{e}_{234}+\mathbf{n}_{y} \mathbf{e}_{314}+\mathbf{n}_{z} \mathbf{e}_{321}+d \mathbf{e}_{321},
$$

where \mathbf{n} is unit normal vector, d is distance from coordinates origin to plane.

There are a number of packages for open CAS systems that implement the apparatus of geometric algebra.

- For Python and SymPy - GAlgebra
- For Julia - Grassmann.jl
- For Maxima - Clifford

No system known to the authors supports the case of a projective space.

The authors have implemented a small library for the Asymptote language (a language for creating vector two-dimensional and three-dimensional illustrations).

- The structures of Line2D, Line3D and Plane 3D are defined.
- Uses an approach based on classical analytic projective geometry.
- Defined functions linked to structures that implement formulas from the table above.
- Overloaded some standard Asymptote functions, which allows you to visualize the results of calculations.

Some examples of illustrations

- Detailed derivation of analytical projective geometry formulas based on the material and notation from Foundations of Game Engine Development.
- As a result, the table from Lengyel:Game Engine:v1:2016 is supplemented and expanded.
- A library has been written for the Asymptote language. Library allows to set points, lines and planes in homogeneous coordinates, find intersections and visualize the results.

Further work.

- Output of similar formulas in terms of geometric algebra.
- Connection with biquaternions and screw theory.
- Implementation of a prototype module for the SymPy computer algebra system (possibly based on GAlgebra).

[^0]: ${ }^{1}$ Lengyel E. Foundations of Game Engine Development. In 4 vols. Vol. 1. Mathematics. Lincoln, California : Terathon Software LLC, 2016. 195 p. ISBN 9780985811747. URL: http: //foundationsofgameenginedev.com.

