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Motivation of work
When studying geometric algebra (Clifford algebra), the authors constantly encountered mentions of screws and dual
quaternions, but without any specific mathematics. This prompted us to find materials and consistently understand
these concepts.

Goal
Implement the dual quaternion algebra programmatically and apply it to solving some problems on the movement of
3D objects in space

Tasks

• To consistently outline the theory of dual quaternions and match them with projective geometry, Euclidean
geometry, geometric algebra.

• Implement the quaternion algebra programmatically.
• To apply them to free-body movement (screw motion).
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Dual numbers



Types of complex numbers

Consider a complex number of the following form 𝑧 = 𝑎 + 𝑖𝑏, where 𝑎, 𝑏 ∈ ℝ, 𝑖 is a special number that is
determined by the following property:

• if 𝑖2 = −1, then we get the usual complex numbers (elliptical),
• if 𝑖2 = 1 and at the same time 𝑖 ≠ 1 then we get hyperbolic (double, paracomplex, split) numbers,
• if 𝑖2 = 0 and at the same time 𝑖 ≠ 0, then we get parabolic (dual) numbers.

Dual quaternion theory requires knowledge of the properties of dual numbers and quaternions.
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Definition of a dual number

A dual number is a number of the following type

𝑧 = 𝑎 + 𝑏𝜀,

where 𝑎 and 𝑏 are real numbers, and 𝜀 is a parabolic imaginary unit defined by the identity 𝜀2 = 0, with 𝜀 ≠ 0.
• Number 𝑎 is main or valid part.
• Number 𝑏 is the dual or momentary part.
• The special number 𝜀 is also called the Clifford complexity symbol.

Sources: [1; 3—6]
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Addition, subtraction and multiplication

Let be given two dual numbers 𝑧1 = 𝑎1 + 𝑏1𝜀 and 𝑧2 = 𝑎2 + 𝑏2𝜀.
• addition: 𝑧1 + 𝑧2 = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝜀.
• subtraction: 𝑧1 − 𝑧2 = (𝑎1 − 𝑎2) + (𝑏1 − 𝑏2)𝜀.
• multiplication: 𝑧1𝑧2 = 𝑎1𝑎2 + (𝑎1𝑏2 + 𝑏1𝑎2)𝜀.

The latter is true by virtue of

𝑧1𝑧2 = (𝑎1 + 𝑏1𝜀)(𝑎2 + 𝑏2𝜀) = 𝑎1𝑎2 + 𝑎1𝑏2𝜀 + 𝑏1𝑎2𝜀 + 𝑏1𝑏2𝜀2 = 𝑎1𝑎2 + (𝑎1𝑏2 + 𝑏1𝑎2)𝜀,

since 𝜀2 = 0.
Using the multiplication formula, one can calculate the square of a dual number:

𝑧2 = 𝑧𝑧 = 𝑎2 + 2𝑎𝑏𝜀.
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Conjugation, modulus, and inverse multiplication

• Dual conjugation or just conjugation is the following unary operation

𝑧 = 𝑎 + 𝑏𝜀 = 𝑎 − 𝑏𝜀.
• Modulo a dual number is called the real number |𝑧| = √𝑧𝑧 = |𝑎|.
• is also often more convenient to use an expression for the square of a module:

|𝑧|2 = 𝑧𝑧 = (𝑎 + 𝑏𝜀)(𝑎 − 𝑏𝜀) = 𝑎2 − 𝑎𝑏𝜀 + 𝑎𝑏𝜀 − 𝑏2𝜀2 = 𝑎2.

• Inverse is calculated by multiplying the dual number 𝑧−1

𝑧−1 = 1
𝑎 − 𝑏

𝑎2 𝜀.

The number 𝑧−1 is from the following relation:

1 = 𝑧𝑧
𝑧𝑧 = 𝑧 𝑧

𝑧𝑧 = 𝑧 𝑧
|𝑧|2

⇒ 𝑧−1 = 𝑧
|𝑧|2

= 𝑎 − 𝑏𝜀
𝑎2 = 1

𝑎 − 𝑏
𝑎2 𝜀.

Note also that you can calculate the real part by finding the difference 𝑧 + 𝑧:
1
2(𝑧 + 𝑧) = 1

2(𝑎 + 𝐵𝜀 + 𝑎 − 𝑏𝜀) = 𝑎.
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The condition for the existence of an inverse number. Division

Since the inverse of the multiplication of a dual number is calculated as

𝑧−1 = 𝑧
|𝑧|2

then the prerequisite for its existence is the condition |𝑧| ≠ 0.
The division operation is defined by the following relation:

𝑧1
𝑧2

=
𝑎1 + 𝑏1𝜀
𝑎2 + 𝑏2𝜀 =

𝑎1
𝑎2

+
𝑏1𝑎2 − 𝑏2𝑎1

𝑎2
2

𝜀,

which is true due to the following chain of equalities:

𝑎1 + 𝑏1𝜀
𝑎2 + 𝑏2𝜀 =

(𝑎1 + 𝑏1𝜀)(𝑎2 − 𝑏2𝜀)
(𝑎2 + 𝑏2𝜀)(𝑎2 − 𝑏2𝜀) =

𝑎1𝑎2 − 𝑎1𝑏2𝜀 + 𝑏1𝑎2𝜀
𝑎2

2
=

𝑎1
𝑎2

+
𝑏1𝑎2 − 𝑏2𝑎1

𝑎2
2

𝜀.
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An analogue of the trigonometric or exponential form of a number

For a dual number 𝑧 with a nonzero module |𝑧| ≠ 0, we can write:

𝑧 = 𝑎 + 𝑏𝜀 = 𝑎 (1 + 𝑏
𝑎 𝜀) = 𝑟(1 + 𝜑𝜀), 𝑟 = |𝑧| = |𝑎| , 𝜑 = 𝑏

𝑎 .

The number 𝜑 = Arg 𝑧 = 𝑏
𝑎 — argument of a dual number (or parameter of a number).

• Conjugation: 𝑧 = 𝑟(1 + 𝜑𝜀) = 𝑟(1 − 𝜑𝜀).
• Multiplication: 𝑟1(1 + 𝜑1𝜀)𝑟2(1 + 𝜑2𝜀) = 𝑟1𝑟2(1 + (𝜑1 + 𝜑2)𝜀)

• Division:
𝑧1
𝑧2

=
𝑟1(1 + 𝜑1𝜀)
𝑟2(1 + 𝜑2𝜀) =

𝑟1
𝑟2

(1 + (𝜑1 − 𝜑2)𝜀).

The division expression is valid by virtue of the following chain of equalities:

𝑧1
𝑧2

=
𝑟1(1 + 𝜑1𝜀)
𝑟2(1 + 𝜑2𝜀) =

𝑟1(1 + 𝜑1𝜀)𝑟2(1 − 𝜑2𝜀)
𝑟2𝑟2(1 + 𝜑2𝜀)(1 − 𝜑2𝜀) =

𝑟1(1 + (𝜑1 − 𝜑2)𝜀)
𝑟2(1 − 𝜑2𝜀 + 𝜑2𝜀) =

𝑟1
𝑟2

(1 + (𝜑1 − 𝜑2)𝜀)
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Exponentiation

Since in exponential form, multiplication of a dual number is reduced to adding arguments and multiplying modules,
then for exponentiation we can write:

(𝑟(1 + 𝜑𝜀))
𝑛 = 𝑟 ⋅ 𝑟 ⋅ … ⋅ 𝑟⏟⏟⏟

𝑛
(1 + (𝜑 + 𝜑 + ⋯ + 𝜑)𝜀) = 𝑟𝑛(1 + 𝑛𝜑𝜀).

Hence:
𝑧𝑛 = (𝑟(1 + 𝜑𝜀))

𝑛 = 𝑟𝑛(1 + 𝑛𝜑𝜀)

𝑧𝑛 = (𝑎 + 𝑏𝜀)𝑛 = 𝑎𝑛 + 𝑛𝑎𝑛−1𝑏𝜀.
In particular:

(𝑎 + 𝑏𝜀)2 = 𝑎2 + 2𝑎𝑏𝜀.
For negative degrees:

(𝑎 + 𝑏𝜀)−𝑛 = (
1
𝑎 − 𝑏

𝑎2 𝜀)
𝑛

= 1
𝑎𝑛 − 𝑛 1

𝑎𝑛−1
𝑏
𝑎2 𝜀 = 1

𝑎𝑛 − 𝑛 𝑏
𝑎𝑛+1 𝜀,

in particular:

(𝑎 + 𝑏𝜀)−1 = 1
𝑎 − 𝑏

𝑎2 𝜀.
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Root extraction

𝑛√𝑟(1 + 𝜑𝜀) = 𝑛√𝑟(1 +
𝜑
𝑛 𝜀),

𝑛√𝑎 + 𝜀𝑏 = 𝑛√𝑎(1 + 𝑏𝜀
𝑛𝑎) = 𝑛√𝑎 + 𝑏

𝑛𝑎
1−𝑛
𝑛 𝜀,

√𝑎 + 𝜀𝑏 = √𝑎(1 + 𝑏𝜀
2𝑎) = √𝑎 + 𝑏

2√𝑎𝜀,

(𝑎 + 𝑏𝜀)
𝑛
𝑚 = 𝑎

𝑛
𝑚 (1 + 𝑛

𝑚
𝑏
𝑎 𝜀) = 𝑎

𝑛
𝑚 + 𝑛

𝑚𝑏𝑎
𝑛
𝑚

−1𝜀.
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Elementary functions of a dual number

The formula 𝑓(𝑎 + 𝜀𝑏) = 𝑓(𝑎) + 𝑓′(𝑎)𝑏𝜀 allows you to extend elementary functions to a set of dual numbers,
since on the right side of the formula there are only values of the function 𝑓 from the real number 𝑎. To illustrate,
here is a small summary of the basic elementary functions.

Trigonometric functions Inverse trigonometric functions

sin(𝑎 + 𝑏𝜀) = sin 𝑎 + 𝑏 cos 𝑎𝜀 arcsin(𝑎 + 𝑏𝜀) = arcsin 𝑎 + 𝑏𝜀/√1 − 𝑎2

cos(𝑎 + 𝑏𝜀) = cos 𝑎 − 𝑏𝜀 sin 𝑎 arccos(𝑎 + 𝑏𝜀) = arccos 𝑎 − 𝑏𝜀/√1 − 𝑎2

tg(𝑎 + 𝑏𝜀) = tg 𝑎 + 𝑏𝜀/ cos2 𝑎 arctg(𝑎 + 𝑏𝜀) = arctg 𝑎 + 𝑏𝜀/(1 + 𝑎2)
ctg(𝑎 + 𝑏𝜀) = ctg 𝑎 − 𝑏𝜀/ sin2 𝑎 arcctg(𝑎 + 𝑏𝜀) = arctg 𝑎 − 𝑏𝜀/(1 + 𝑎2)

Power functions Logarithmic functions and exponent

(𝑎 + 𝑏𝜀)𝑛 = 𝑎𝑛 + 𝑛𝑎𝑛−1𝑏𝜀 exp(𝑎 + 𝑏𝜀) = exp{𝑎} + 𝑏 exp{𝑎}𝜀
𝑛√𝑎 + 𝑏𝜀 = 𝑛√𝑎(1 + 𝑏𝜀

𝑛𝑎) log𝑐(𝑎 + 𝜀𝑏) = log𝑐 𝑎 + 𝑏𝜀/𝑎 ln 𝑎
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Quaternions



Quaternions

A quaternion (elliptical quaternions) is a hypercomplex number of the following form

𝑞 = 𝑞01 + 𝑞1 i + 𝑞2j + 𝑞3k = 𝑞0 + 𝐪,

where 𝑞0, 𝑞1, 𝑞2, 𝑞3 are some real numbers.

The quaternion 𝑞 can also be associated with a point in projective space written in homogeneous coordinates
(𝑞1, 𝑞2, 𝑞3 ∣ 𝑞0). In this case, the base element 1 is associated with its own (final) origin point, and the base
elements i, j, k with points at infinity:

1 ↔ 𝑂 =

⎡
⎢
⎢
⎣

0
0
0
1

⎤
⎥
⎥
⎦

i ↔ ⃗𝐢 =

⎡
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎦

j ↔ ⃗𝐣 =

⎡
⎢
⎢
⎣

0
1
0
0

⎤
⎥
⎥
⎦

k ↔ �⃗� =

⎡
⎢
⎢
⎣

0
0
1
0

⎤
⎥
⎥
⎦
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Quaternion multiplication

The rules of multiplication of basic elements ⟨1, i, j, k⟩ are derived from Hamilton’s axiomatic relation:

i2 = j2 = k2 = ijk = −1.

The multiplication table of quaternionic basic elements will take the form:

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

The formula for quaternion multiplication:

𝑝𝑞 = (𝑝0𝑞0 − (𝐩, 𝐪)) + 𝑝0𝐪 + 𝑞0𝐩 + 𝐩 × 𝐪.

In particular, for pure quaternions 𝑝 = 0 + 𝐩 and 𝑞 = 0 + 𝐪, the formula is simplified:

𝐩𝐪 = −(𝐩, 𝐪) + 𝐩 × 𝐪.
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Conjugation, square and module

Let’s introduce the operation of quaternionconjugation. If the quaternion 𝑝 = 𝑝0 + 𝐩 is given, then its conjugation
is determined by the following formula:

𝑝∗ = 𝑝0 − 𝐩 = 𝑝0 − 𝑝1 i − 𝑝2j − 𝑝3k.

The module of a quaternion is the expression

|𝑝| = √𝑝𝑝∗ = √𝑝2
0 + 𝑝2

1 + 𝑝2
2 + 𝑝2

3 ,

and the norm of a pure quaternion is the expression

‖𝐩‖ = √(𝐩, 𝐩) = √𝑝2
1 + 𝑝2

2 + 𝑝2
3.

We define the scalar product of quaternions by the following formula

(𝑝, 𝑞) = 1
2(𝑝𝑞∗ + 𝑞𝑝∗) = 𝑝0𝑞0 + (𝐩, 𝐪) = 𝑝0𝑞0 + 𝑝1𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3.
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Rotation using quaternions

A unit quaternion of the following form

𝑞 = cos 𝜃
2 + sin 𝜃

2𝐚, 𝐚 = 𝑎𝑥 i + 𝑎𝑦j + 𝑎𝑧k,

sets the rotation of the point 𝑃 using the sandwich operator

𝑝′ = 𝑞𝑝𝑞∗,

where the quaternion 𝑝 = 1 + 𝐩 = 1 + 𝑥i + 𝑦j + 𝑧k is associated with an affine point 𝑃, 𝜃 is the angle of rotation
around an axis passing through the origin and having a guiding vector 𝐚 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧), where ‖𝐚‖ = 1.
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Dual quaternions



Parabolic (dual) biquaternions

Consider a dual number with coefficients in the form of quaternions:

𝑄 = 𝑞 + 𝑞𝑜𝜀, 𝑞, 𝑞𝑜 ∈ ℍ, 𝜀2 = 0, 𝜀 ≠ 0,

where 𝑞 = 𝑞0 + 𝐪 = 𝑞0 + 𝑞1 i + 𝑞2j + 𝑞3k — main part и 𝑞𝑜 = 𝑞𝑜
0 + 𝐪𝑜 = 𝑞𝑜

0 + 𝑞𝑜
1 i + 𝑞𝑜

2j + 𝑞𝑜
3k — the

moment part. 𝑄 It can be written as a number with 8 components:

𝑄 = 𝑞0 + 𝑞1 i + 𝑞2j + 𝑞3k + 𝑞𝑜
0𝜀 + 𝑞𝑜

1 i𝜀 + 𝑞𝑜
2j𝜀 + 𝑞𝑜

3k𝜀.

The hypercomplex number 𝑄 is called parabolic biquaternion, as well as dual quaternion and dual biquaternion.
One can also consider the basic elements ⟨1, i, j, k, 𝜀, i𝜀, j𝜀, k𝜀⟩ and make a complete multiplication table of 8 × 8
elements.

1 i j k 𝜀 i𝜀 j𝜀 k𝜀
1 1 i j k 𝜀 i𝜀 j𝜀 k𝜀
i i −1 k −j i𝜀 −𝜀 k𝜀 −j𝜀
j j −k −1 i j𝜀 −k𝜀 −𝜀 i𝜀
k k j −i −1 k𝜀 j𝜀 −i𝜀 −𝜀
𝜀 𝜀 i𝜀 j𝜀 k𝜀 0 0 0 0
i𝜀 i𝜀 −𝜀 k𝜀 −j𝜀 0 0 0 0
j𝜀 j𝜀 −k𝜀 −𝜀 i𝜀 0 0 0 0
k𝜀 k𝜀 j𝜀 −i𝜀 −𝜀 0 0 0 0

The table is compiled using two assumptions:
• associativity of multiplication,
• the commutativity of multiplying a dual imaginary unit

𝜀 by elliptical imaginary units i, j, k that is:

i𝜀 = 𝜀i, j𝜀 = 𝜀j, k𝜀 = 𝜀k.
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Conjugations and the scalar product of a biquaternion

In the case of biquaternions, three different conjugation operations are considered:
• 𝑄∗ = (𝑞 + 𝑞𝑜𝜀) = 𝑞∗ + 𝑞𝑜∗𝜀 — quaternionic (complex) conjugation;

• 𝑄 = 𝑞 + 𝑞𝑜𝜀 = 𝑞 − 𝑞𝑜𝜀 — dual conjugation;

• 𝑄† = (𝑞 + 𝑞𝑜𝜀)∗ = 𝑞∗ − 𝑞𝑜∗𝜀 — quaternionic dual conjugation.
The following properties are valid for these operations:

(𝑃𝑄)∗ = 𝑄∗𝑃 ∗, 𝑄𝑃 = 𝑃𝑄, (𝑃𝑄)† = 𝑄†𝑃 †.

Scalar product of two quaternions 𝑃 = 𝑝 + 𝑝𝑜𝜀 and 𝑄 = 𝑞 + 𝑞𝑜𝜀 is defined as follows [1, p. 15]:

(𝑃, 𝑄) = 1
2(𝑃𝑄∗ + 𝑄𝑃 ∗) = (𝑝, 𝑞) + [(𝑝𝑜, 𝑞) + (𝑝, 𝑞𝑜)]𝜀,

where (𝑝, 𝑞) = 𝑝0𝑞0 + 𝑝1𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3 , (𝑝𝑜, 𝑞) = 𝑝𝑜
0𝑞0 + 𝑝𝑜

1 𝑞1 + 𝑝𝑜
2𝑞2 + 𝑝𝑜

3𝑞3 и
(𝑝, 𝑞𝑜) = 𝑝0𝑞𝑜

0 + 𝑝1𝑞𝑜
1 + 𝑝2𝑞𝑜

2 + 𝑝3𝑞𝑜
3 — scalar products of quaternions [1, p. 15].
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Biquaternion product of biquaternions

For two biquaternions 𝑃 = 𝑝 + 𝑝𝑜𝜀 и 𝑄 = 𝑞 + 𝑞𝑜𝜀 one can define biquaternion product

𝑃𝑄 = (𝑝 + 𝑝𝑜𝜀)(𝑞 + 𝑞𝑜𝜀) = 𝑝𝑞 + (𝑝𝑞𝑜 + 𝑝𝑜𝑞)𝜀,

where 𝑝𝑞, 𝑝𝑞𝑜 and 𝑝𝑜𝑞 — quaternion products.
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Module of biquaternion

The square of the biquaternion module is defined by the following expression:

|𝑄|2 = 𝑄𝑄∗ = 𝑞𝑞∗ + (𝑞𝑞𝑜∗ + 𝑞𝑜𝑞∗)𝜀 = |𝑞|2 + 2(𝑞, 𝑞𝑜)𝜀,

where |𝑄|2 — dual number. Directly biquaternion module will be calculated as follows:

|𝑄| = √𝑄𝑄∗ = √|𝑞|2 + 2(𝑞, 𝑞𝑜)𝜀 = |𝑞| +
(𝑞, 𝑞𝑜)

|𝑞| 𝜀 = |𝑞| (1 +
(𝑞, 𝑞𝑜)

|𝑞|2
𝜀) ,

which is true by virtue of the formula for dual numbers √𝑎 + 𝑏𝜀 = √𝑎 (1 + 𝑏
2𝑎𝜀), где 𝑎, 𝑏 ∈ ℝ.

The real number
(𝑞,𝑞𝑜)

|𝑞|2
is called the biquaternion parameter, and the dot product of the quaternions is (𝑞, 𝑞𝑜) is

called the biquaternion invariant [5, с. 71].
If the biquaternion is pure, that is, 𝑞0 = 0 and 𝑞𝑜

0 = 0, then it is a screw 𝐐 = 𝐪 + 𝐪𝑜𝜀 and its parameter is the

same as the screw parameter
(𝐪, 𝐪𝑜)
‖𝐪‖2 .

A biquaternion is called unit if its modulus is 1, that is (𝑞, 𝑞𝑜) = 0 и |𝑞| = 1.
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Biquaternions in the dual representation

In another way, dual biquaternions are obtained from quaternions 𝑞 = 𝑞0 + 𝑞1 i + 𝑞2j + 𝑞3k using the doubling
procedure when replacing the real coefficients 𝑞0, 𝑞1, 𝑞2, 𝑞3 with dual numbers 𝑄0 , 𝑄1 , 𝑄2 , 𝑄3 .

𝑄 = 𝑄0 + 𝑄1 i + 𝑄2j + 𝑄3𝑘 = 𝑄0 + 𝐐, 𝑄𝑖 = 𝑞𝑖 + 𝑞𝑜
𝑖 𝜀, 𝑞𝑖, 𝑞𝑜

𝑖 ∈ ℝ, 𝑖 = 0, 1, 2, 3,

where 𝑄0 is the scalar part (dual number), and 𝐐 is the screw part (dual vector).
For two biquaternions

𝑄 = 𝑄0 + 𝑄1 i + 𝑄2j + 𝑄3𝑘 = 𝑄0 + 𝐐, и 𝑃 = 𝑃0 + 𝑃1 i + 𝑃2j + 𝑃3𝑘 = 𝑃0 + 𝐏,

similarly to quaternions, we can prove the formula for biquaternion product

𝑃𝑄 = 𝑃0𝑄0 − (𝐏, 𝐐) + 𝑃0𝐐 + 𝑄0𝐏 + 𝐏 × 𝐐,

where (𝐏, 𝐐) is scalar, and 𝐏 × 𝐐 is the vector product of the screws 𝐏 and 𝐐. For pure biquaternions:

𝐏𝐐 = −(𝐏, 𝐐) + 𝐏 × 𝐐, 𝐏𝐏 = − ‖𝐏‖2 .

The scalar product is calculated as follows:

(𝑃, 𝑄) = 𝑃0𝑄0 + 𝑃1𝑄1 + 𝑃2𝑄2 + 𝑃3𝑄3.
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The product of dual numbers and biquaternions

Consider a biquaternion in the quaternion representation 𝑄 = 𝑞 + 𝑞𝑜𝜀 and multiply it by the dual number
Α = 𝛼 + 𝛼𝑜𝜀:

(𝛼 + 𝛼𝑜𝜀)(𝑞 + 𝑞𝑜𝜀) = 𝛼𝑞 + (𝛼𝑞𝑜 + 𝛼𝑜𝑞)𝜀.
Similarly in the dual representation 𝑄 = 𝑄0 + 𝑄1 i + 𝑄2j + 𝑄3k, 𝑄𝑖 = 𝑞𝑖 + 𝑞𝑜

𝑖 𝜀, 𝑖 = 0, 1, 2, 3 one can write:

Α𝑄𝑖 = (𝛼 + 𝛼𝑜𝜀)(𝑞𝑖 + 𝑞𝑜
𝑖 𝜀) = 𝛼𝑞𝑖 + (𝛼𝑞𝑜

𝑖 + 𝛼𝑜𝑞𝑖)𝜀.
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Quaternionic and dual representation of biquaternions

𝑄 = 𝑞 + 𝑞𝑜𝜀, 𝑞, 𝑞𝑜 ∈ ℍ, 𝜀2 = 0, 𝜀 ≠ 0,

where 𝑞 is main part, 𝑞𝑜 is moment part.

𝑞 = 𝑞0+𝑞1 i+𝑞2j+𝑞3k, 𝑞𝑜 = 𝑞𝑜
0+𝑞𝑜

1 i+𝑞𝑜
2j+𝑞𝑜

3k.

Biquaternion multiplication:

𝑃𝑄 = 𝑝𝑞 + (𝑝𝑞𝑜 + 𝑝𝑜𝑞)𝜀,

where 𝑝𝑞, 𝑝𝑞𝑜 , 𝑝𝑜𝑞 is quaternion multiplication.
The scalar product of biquaternions:

(𝑃, 𝑄) = (𝑝, 𝑞) + [(𝑝𝑜, 𝑞) + (𝑝, 𝑞𝑜)]𝜀,

(𝑝, 𝑞), (𝑝𝑜, 𝑞), (𝑝, 𝑞𝑜) — scalar products of quaternions.
The square of the biquaternion module:

|𝑄|2 = |𝑞|2 + 2(𝑞, 𝑞𝑜)𝜀.

𝑄 = 𝑄0 + 𝑄1 i + 𝑄2j + 𝑄3k = 𝑄0 + 𝐐
𝑄0, 𝑄1, 𝑄2, 𝑄3 are dual numbers, 𝑄0 is scalar part, 𝐐 is
screw part.
Biquaternions multiplication:

𝑃𝑄 = 𝑃0𝑄0 − (𝐏, 𝐐) + 𝑃0𝐐 + 𝑄0𝐏 + 𝐏 × 𝐐,

where (𝐏, 𝐐), 𝐏 × 𝐐 are scalar and screw multiplication
of screws, 𝑃0𝐐, 𝑄0𝐏 is multiplication of screw by a dual
number.
The scalar product of biquaternions:

(𝑃, 𝑄) = 𝑃0𝑄0 + 𝑃1𝑄1 + 𝑃2𝑄2 + 𝑃3𝑄3

The square of the biquaternion module:

|𝑄|2 = 𝑄2
0 + (𝐐, 𝐐) = 𝑄2

0 + 𝑄2
1 + 𝑄2

2 + 𝑄2
3
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Biquaternion representation of a point, a straight line, and a plane

Biquaternions allow you to map different algebraic objects to a point, vector, straight line, and plane in the way shown
in the table.

Geometric
object

Biquaternion
representation

Homogenies
coordinates

Three-dimensional
cartesian space

Affine point 𝑃 = 1 + 𝐩𝜀, 𝐩 = 𝑥i + 𝑦j + 𝑧k ⃗𝐩 = (𝐩 ∣ 1) = (𝑥, 𝑦, 𝑧 ∣ 1) 𝐩 = (𝑥, 𝑦, 𝑧)𝑇

Mass-point 𝑃 = 𝑤 + 𝐩𝜀 ⃗𝐩 = (𝐩 ∣ 𝑤) = (𝑥, 𝑦, 𝑧 ∣ 𝑤) 𝐩 = (𝑥/𝑤, 𝑦/𝑤, 𝑧/𝑤)
Vector 𝐕 = 𝐯𝜀, 𝐯 = 𝑣𝑥 i + 𝑣𝑦j + 𝑣𝑧k ⃗𝐯 = (𝐯 ∣ 0) = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧 ∣ 0) 𝐯 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)𝑇

Line 𝐋 = 𝐯 + 𝐦𝜀
𝑃(𝑡) = 𝑃0 + 𝐯𝑡𝜀,
𝑃0 = 1 + 𝐯 × 𝐦

‖𝐯‖2 𝜀

�⃗� = {𝐯 ∣ 𝐦}
⃗𝐩 = (𝐯 × 𝐦 ∣ ‖𝐯‖2)

𝐩(𝑡) = 𝐩0 + 𝐯𝑡

Plane Π = 𝐧 + 𝑑𝜀,
𝐧 = 𝑛𝑥 i + 𝑛𝑦j + 𝑛𝑧k

�⃗� = [𝐧 ∣ 𝑑] 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0
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Line as a pure biquaternion

For any pair of vectors {𝐯 ∣ 𝐦} for which the Plucker
condition(𝐯, 𝐦) = 0 is satisfied, a pure biquaternion can
be mapped

𝐋 = 𝐯 + 𝜀𝐦
and unambiguously interpret it as an axis passing through
a point with a radius vector 𝐩 = 𝐯 × 𝐦 in the direction of
𝐯.
Six components

{𝑣𝑥, 𝑣𝑦, 𝑣𝑧 mod 𝑚𝑥, 𝑚𝑦, 𝑚𝑧}

they are called Plucker coordinates.
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The dual angle

The dual angle Θ = 𝜃 + 𝜃𝑜𝜀 between two axes 𝐀1 and 𝐀2 is a shape
formed by these axes and a straight line segment 𝑃2𝑃1 intersecting the
axes at right angles.

• Pure biquaternion 𝐀21 with an axis in the form of a straight line
(𝑃2𝑃1) — dual angle axis.

• The dual part of the angle 𝜃𝑜 = ‖𝐏𝟐𝐏𝟏‖.
• The real part of the angle is 𝜃 = ∡(𝐀2, 𝐀1).

The dual angle Θ is defined by a pure biquaternion

𝚯 = Θ𝐀21 = (𝜃 + 𝜃𝑜𝜀)𝐀21.

The following formulas are used to calculate the trigonometric
functions of the dual angle:

sin Θ = sin(𝜃 + 𝜃𝑜𝜀) = sin 𝜃 + 𝜃𝑜 cos 𝜃𝜀,
cos Θ = cos(𝜃 + 𝜃𝑜𝜀) = cos 𝜃 − 𝜃𝑜 sin 𝜃𝜀,

tg Θ = tg(𝜃 + 𝜃𝑜𝜀) = tg 𝜃 + 𝜃𝑜

cos2 𝜃
𝜀.
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Transference principle



Some definitions from the theory of rigid body

Immutable system is a system of material points in which the distance between any two points is constant. With a
continuous distribution of masses, such a system is an ideal image of a solid body and is called an emphabsolutely
solid body [2, с. 48].
Rigid bodies are distinguished:

• with one fixed point,
• is free.

Euler’s theorem
any movement of an absolutely rigid body near a fixed point can be obtained only by rotating the body around a
certain axis passing through this point and called the axis of final rotation. [2, с. 132].

Chasles theorem
any movement of a free absolutely rigid body can be carried out by a single screw movement around a certain screw
axis, called the axis of the final screw movement. [2, с. 153].
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Kotelnikov–Study Transference principle

Transference principle

All formulas of the theory of finite rotations and kinematics of motion of a rigid body with one fixed point, when
replacing real quantities with dual analogues of them, pass into formulas of the theory of finite displacements and
kinematics of motion of a free rigid body. [5, с. 67].

In other words, if one replace real numbers, vectors, angles, and quaternions with dual numbers, pure biquaternions
(screws), dual angles, and biquaternions in formulas for rotating a point in space, one will get correct formulas for
screw motion.
The principle was formulated by Kotelnikov Alexander Petrovich and by Eduard Study [3, с. 12—13]. We have not found
an explicit formulation of this principle in the English-language literature.
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Dual quaternions screw motion



Calculation of screw motion using biquaternions

Let’s apply the Kotelnikov-Study transfer principle to derive a formula for biquaternionic screw motion. It is known
that the unit quaternion is of the following form

𝑞 = cos 𝜃
2 + sin 𝜃

2𝐚, 𝐚 = 𝑎𝑥 i + 𝑎𝑦j + 𝑎𝑧k,

where 𝜃 is the angle of rotation around an axis passing through the origin and having a direction vector
𝐚 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧)𝑇 , where ‖𝐚‖ = 1, sets the rotation of the point 𝑃 using the sandwich operator

𝑝′ = 𝑞𝑝𝑞∗,

where the quaternion 𝑝 = 1 + 𝐩 = 1 + 𝑥i + 𝑦j + 𝑧k defines the point 𝑃.
According to the principle of transfer, the biquaternion defining the screw motion (translation + rotation) will be
obtained from the rotational quaternion by the following substitution:

• 𝜃 ⟶ Θ = 𝜃 + 𝜃𝑜𝜀 — the angle is replaced by a dual angle;
• 𝐚 ⟶ 𝐀 = 𝐚 + 𝐚𝑜𝜀 — the vector is replaced by a pure biquaternion (screw).
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Biquaternion of screw motion (rotation + translation)

The biquaternion of screw motion is written as follows:

Λ = cos Θ
2 + sin Θ

2 𝐀, Θ = 𝜃 + 𝜃𝑜𝜀, 𝐀 = 𝐚 + 𝐚𝑜𝜀.

Since 𝐀 defines a line, the Plucker condition (𝐚, 𝐚𝑜) = 0 must be fulfilled, and we will also assume that ‖𝐚‖ = 1,
that is, 𝐀 is a unit screw (a unit pure biquaternion).

• The dual number Θ = 𝜃 + 𝜃𝑜𝜀 is the dual angle with the axis 𝐀.
• The angle 𝜃 sets the angle of rotation around the axis 𝐀.
• The number 𝜃𝑜 sets the translation distance along the 𝐀 axis.

Substitute expressions for sin Θ
2
and cos Θ

2 and write the biquaternion Λ in the following form:

Λ = cos 𝜃
2 + sin 𝜃

2(𝐚 + 𝐚𝑜𝜀) + ( cos 𝜃
2𝐚 − sin 𝜃

2)
𝜃𝑜

2 𝜀

• At 𝜃𝑜 = 0 we get a pure rotation around an arbitrary axis 𝐀 set by the quaternion

𝑅 = cos 𝜃
2

+ sin 𝜃
2(𝐚 + 𝐚𝑜𝜀).

• At 𝜃 = 0 we get a pure translation along the 𝐀 axis set by the biquaternion 𝑇 = 1 + 𝜃𝑜

2 𝐚𝜀.
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Pure rotation of a point around an arbitrary axis

The affine point 𝑃 is represented by the following biquaternion:

𝑃 = 𝑝 + 𝑝𝑜𝜀 = 1 + 𝐩𝜀, 𝑝 = 1 + 𝟎, 𝑝𝑜 = 0 + 𝐩.

Rotation of a point around the axis 𝐀 = 𝐚 + 𝐚𝑜𝜀 for the ordinary angle 𝜃 is carried out using the following sandwich
formula:

𝑃 ′ = 𝑅𝑃𝑅†, 𝑅 = cos 𝜃
2 + sin 𝜃

2(𝐚 + 𝐚𝑜𝜀), 𝑅† = cos 𝜃
2 − sin 𝜃

2(𝐚 − 𝐚𝑜𝜀).

For a point:

𝑃 ′ = 𝑅𝑃𝑅† = 1 + ( cos 𝜃𝐩 + sin 𝜃𝐚 × 𝐩 + (1 − cos 𝜃)(𝐚, 𝐩)𝐚 + sin 𝜃𝐚𝑜 + (1 − cos 𝜃)𝐚 × 𝐚𝑜)𝜀.

For the vector:
𝐕′ = 𝑅𝐕𝑅† = 𝑅𝐯𝜀𝑅† = ( cos 𝜃𝐯 + sin 𝜃𝐚 × 𝐯 + (1 − cos 𝜃)(𝐚, 𝐯)𝐚)𝜀,
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Pure point and vector translation along the axis

Now consider the biquaternion

𝑇 = 1 +
𝜃0
2 𝐚𝜀,

which sets the translation to a distance of 𝜃0 in the direction of 𝐚. Here 𝜃𝑜 is the dual part of the dual angle Θ.
Point translation:

𝑃 ′ = 𝑇𝑃𝑇† = (1 +
𝜃0
2 𝐚𝜀) (1 + 𝐩𝜀) (1 +

𝜃0
2 𝐚𝜀) = 1 + (𝐩 + 𝜃𝑜𝐚)𝜀.

Vector translation:

𝐕′ = 𝑇𝐕𝑇† = (1 +
𝜃0
2 𝐚𝜀) 𝐯𝜀 (1 +

𝜃0
2 𝐚𝜀) = (1 +

𝜃0
2 𝐚𝜀) (𝐯𝜀 + 𝜃𝑜

2 𝐩𝐚𝜀2) = (1 +
𝜃0
2 𝐚𝜀) 𝐯𝜀 = 𝐯𝜀 = 𝐕.

As expected, the translation does not affect the free vector.
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Screw movement of a poin

It can be shown that

Λ = 𝑅𝑇 = cos 𝜃
2 + sin 𝜃

2(𝐚 + 𝐚𝑜𝜀) + ( cos 𝜃
2𝐚 − sin 𝜃

2)
𝜃𝑜

2 𝜀,

and the screw motion of a point can be written as:

𝑃 ′ = Λ𝑃Λ† = 𝑅𝑇𝑃(𝑅𝑇)†.

It is important that the translation of𝐓 is carried out along the same axis around which the rotation takes place. Then
the movement will be screw and the operations 𝑅 and 𝑇 commute:

𝑅𝑇 = 𝑇𝑅.

The use of separate biquaternions 𝑅 and 𝑇 allows for translations and rotations with different axes.
Additionally, we will write:

Λ† = cos 𝜃
2 − sin 𝜃

2(𝐚 − 𝐚𝑜𝜀) + ( sin 𝜃
2 + cos 𝜃

2𝐚)
𝜃𝑜

2 𝜀.
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Screw motion of line

For a line defined by a screw 𝐋 = 𝐯 + 𝐦𝜀, the screw motion is set by the same biquaternion Λ, however, the
sandwich formula looks somewhat different:

𝐋′ = Λ𝐋Λ∗,

Λ = cos 𝜃
2 + sin 𝜃

2(𝐚 + 𝐚𝑜𝜀) + ( cos 𝜃
2𝐚 − sin 𝜃

2)
𝜃𝑜

2 𝜀,

Λ∗ = cos 𝜃
2 − sin 𝜃

2(𝐚 − 𝐚𝑜𝜀) + ( cos 𝜃
2𝐚 + sin 𝜃

2)
𝜃𝑜

2 𝜀.

This formula can be obtained directly from the transfer principle by replacing quaternions with biquaternions in the
sandwich formula for quaternions, since the quaternion conjugation ∗ is used here, and not its combination with the
dual †.
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Pure rotation and pure translation

Consider the pure rotation of a line using a biquaternion 𝑅

𝐋′ = 𝑅𝐋𝑅 ∗ 𝑅 = cos 𝜃
2 + sin 𝜃

2(𝐚 + 𝐚𝑜𝜀), 𝑅 ∗ = cos 𝜃
2 − sin 𝜃

2(𝐚 + 𝐚𝑜𝜀).

It is possible to calculate:

𝐋′ = 𝑅𝐋𝑅 ∗ = 𝑅(𝐯 + 𝐦𝜀)𝑅 ∗ = cos 𝜃𝐯 + sin 𝜃𝐚 × 𝐯 + (1 − cos 𝜃)(𝐚, 𝐯)𝐚 +

+ ( sin 𝜃𝐚𝑜 × 𝐯 + (1 − cos 𝜃)𝐯 × 𝐚 × 𝐚𝑜 + cos 𝜃𝐦 + sin 𝜃𝐚 × 𝐦 + (1 − cos 𝜃)(𝐚, 𝐦)𝐚)𝜀

Consider the pure translation of a line using a biquaternion 𝑇

𝐋′ = 𝑇𝐋𝑇∗ 𝑇 = 1 + 𝜃𝑜

2 𝐚𝜀, 𝑇∗ = 1 − 𝜃𝑜

2 𝐚𝜀.

It is possible to calculate:
𝐋′ = 𝑇𝐋𝑇∗ = 𝐯 + (𝐦 + 𝜃𝑜𝐚 × 𝐯)𝜀
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Screw motion of the plane

For the plane defined by the biquaternion Π = 𝐧 + 𝑑𝜀, the screw motion is also defined by the biquaternion Λ, and
the sandwich formula looks the same as for the point:

Π′ = ΛΠΛ†,

Λ = cos 𝜃
2 + sin 𝜃

2(𝐚 + 𝐚𝑜𝜀) + ( cos 𝜃
2𝐚 − sin 𝜃

2)
𝜃𝑜

2 𝜀,

Λ† = cos 𝜃
2 − sin 𝜃

2(𝐚 − 𝐚𝑜𝜀) + ( sin 𝜃
2 + cos 𝜃

2𝐚)
𝜃𝑜

2 𝜀.

Let’s consider separately the rotation of the plane and the translation.
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Plane rotation and translation

Consider the pure rotation of the plane Π = 𝐧 + 𝑑𝜀 using the biquaternion 𝑅

Π† = 𝑅Π𝑅†, 𝑅 = cos 𝜃
2 + sin 𝜃

2(𝐚 + 𝐚𝑜𝜀), 𝑅† = cos 𝜃
2 − sin 𝜃

2(𝐚 − 𝐚𝑜𝜀)

It is possible to calculate:

Π′ = 𝑅Π𝑅† = cos 𝜃𝐧 + sin 𝜃𝐚 × 𝐧 + (1 − cos 𝜃)(𝐧, 𝐚)𝐚 + (𝑑 − sin 𝜃(𝐚𝑜, 𝐧) − (1 − cos 𝜃)(𝐚, 𝐧, 𝐚𝑜))𝜀.

Consider a pure translation of the plane using a biquaternion𝑇

Π′ = 𝑇Π𝑇†, 𝑇 = 1 + 𝜃𝑜

2 𝐚𝜀, 𝑇† = 1 + 𝜃𝑜

2 𝐚𝜀 = 𝑇

It is possible to calculate:
Π′ = 𝑇Π𝑇† = 𝐧 + (𝑑 + 𝜃𝑜(𝐚, 𝐧))𝜀
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Screw motion using biquaternions

Λ = cos 𝜃
2 + sin 𝜃

2(𝐚 + 𝐚𝑜𝜀) + ( cos 𝜃
2𝐚 − sin 𝜃

2)
𝜃𝑜

2 𝜀,

Λ∗ = cos 𝜃
2 − sin 𝜃

2(𝐚 − 𝐚𝑜𝜀) + ( cos 𝜃
2𝐚 + sin 𝜃

2)
𝜃𝑜

2 𝜀,

Λ† = cos 𝜃
2 − sin 𝜃

2(𝐚 − 𝐚𝑜𝜀) + ( sin 𝜃
2 + cos 𝜃

2𝐚)
𝜃𝑜

2 𝜀.

• For point 𝑃 ′ = Λ𝑃Λ† .

• For line 𝐋′ = Λ𝐋Λ∗ .
• For plane Π′ = ΛΠΛ† .
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Asymptote implementation



Asymptote language

• Asymptote is a specialized language for vector graphics, both 2D and 3D.
• Has C-like syntax.
• The closest analogue is 𝑃𝐺𝐹/𝑇𝑖𝑘𝑍, however, Asymptote is imperative, not declarative.
• Was chosen primarily because of the possibility of direct visualization of calculated objects.
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Program structure

The main purpose of this work was the implementation of biquaternions in the form of an Asymptote language
structure, which, however, is impossible without the implementation of dual numbers and quaternions.
The structure of our small library looks like this:

/

struct

dual.asy

quaternion.asy

dualquaternion.asy

test

dual.asy

quaternion.asy

dualquaternion.asy

img

helicoid.asy

plucker_conoid.asy

config.asy
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A simple example of the screw movement of a line

Consider the screw motion of a line 𝑙 with a guide vector
𝐯 = 1

√2
(1, 1, 0)𝑇 and passing through the origin.

𝐋 = 𝐯 + 𝟎𝜀, т.к. 𝐦 = 𝟎 × 𝐯.

The screw axis is 𝑂𝑧 and the associated biquaternion is

𝐀 = 𝐚 + 𝐚𝑜𝜀 = 𝐚.

Let’s set the dual angle Θ = 𝜋
4

+ 1 and the biquaternion of screw
motion will be written as:

Λ = cos Θ
2 + sin Θ

2 𝐚

The screw motion is given by the formula 𝐋′ = Λ𝐋Λ∗, which, after
calculations, gives a line

𝐋′ = [
0
1
0
] + [

−1
0
0

] 𝜀, 𝐩0 = 𝐯′ × 𝐦′
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A more complex example of the screw movement of a straight line

triple P = (0, -1/2, 0);

triple v = dir(colatitude=90, longitude=15);

triple m = cross(P, v);

DualQuaternion L = screw(v, m);

DualQuaternion A = screw(Z, cross(O, Z));

Dual Theta = Dual(radians(175), 1);

ScrewMotion Rotation =

LineSandwichFormula(Theta=Dual(real(Theta), 0), A=A);↪
ScrewMotion Translation = LineSandwichFormula(Theta=Dual(0,

dual(Theta)), A=A);↪
ScrewMotion Motor = LineSandwichFormula(Theta=Theta, A=A);

DualQuaternion L1 = Rotation(L);

DualQuaternion L2 = Translation(L1);

DualQuaternion L2_alt = Motor(L);

triple P0 = cross(vec(L.q), vec(L.qo));

triple P10 = cross(vec(L1.q), vec(L1.qo));

triple P20 = cross(vec(L2.q), vec(L2.qo));
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A helicoid produced by screw motion

The helicoid in the figure on the left is obtained by a uniform screw motion of a
straight line 𝑂𝑥 along the 𝑂𝑧 axis. Calculations were performed using
biquaternions.

• Screw (pure biquaternion) 𝐋 = 𝐯 + 𝐦𝜀, where 𝐯 = (1, 0, 0)𝑇 и
𝐦 = (0, 0, 0)𝑇 represents 𝑂𝑥 axis.

• Screw (pure biquaternion) 𝐀 = 𝐚 + 𝐚𝑜 , where 𝐚 = (0, 0, 1)𝑇 and
𝐚𝑜 = (0, 0, 0)𝑇 represents the 𝑂𝑧 axis, along which the screw movement is
carried out.

• Dual angle Θ = 𝜋
40 + 𝜋

80𝜀.

• The biquaternions 𝑃1 = 1 + 𝐯𝜀 and 𝑃2 = 1 − 𝐯𝜀 set the points of the
segment, they are also the points of the helix (drawn in blue).

• The unit biquaternion Λ𝑤𝑎𝑠𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = cos Θ
2 + sin Θ

2 𝐀, which was
used in sandwich formulas for the screw motion of a straight line 𝐋′ = Λ𝐋Λ∗

and points 𝑃 ′ = Λ𝑃Λ† .
• Repeated application of the sandwich formula made it possible to obtain all
the forming surfaces of the helicoid shown in the figure.
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Plucker conoid

• The Plucker conoid is obtained by rotating a segment
around the 𝑂𝑧 axis and simultaneously oscillating
along the same axis in the aisles of the segment
[−1, 1].

• In this case, it is impossible use a fixed dual angle, so
the angle is parametric:

Θ = 𝑡 + sin(2𝑡)𝜀.

• Parameter 𝑡 takes values from [0, 2𝜋] and one screw
movement was performed for each of parameter value.

• All the positions of the segment that are obtained
visually form a surface.
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Conclusion



Results

• Biquaternions lose in computing speed to matrix calculations.
• Just like quaternions, biquaternions are free from the effect of gimbal lock.
item Biquaternions are easily renormalized, unlike matrices.

• Allows to rotate planes and straight lines as a whole.
• Requires less memory to store the parameters.

The created program makes it easy to manipulate biquaternions and immediately visualize them as points, straight
lines and planes.
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