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Computations are often sped up with the Chinese Remainder Theorem.

Criteria for “good” moduli:
• Easy to find
• Fast to reduce and reconstruct
• Roughly the same size (balanced)

Reduction

Reconstruction

Problem

mod m1 mod m2 mod m3

Answer

Chen and Zima (2023) proposed “trinomial” moduli:

2n − 2k + 1 (n is fixed, 0 < k < n)

These are perfectly balanced and have fast reduction / reconstruction.
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Fast reconstruction

Imagine Chinese Remaindering with these moduli:

m1 = 25 − 21 + 1
m2 = 25 − 23 + 1.

Reconstruction of x looks like this:

A = x mod m1

B = x mod m2

x =x0 + x1m1

=⇒ x0 = A
x1 = (B − x0)m−1

1 (mod m2)

By chance,
m−1

1 mod m2 = −22
,

so the multiplication by m−1
2 mod m2 is very fast.
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There is more to these moduli.

m1 = 25 − 21 + 1
m2 = 25 − 23 + 1

m−1
1 = −22 mod m2

scale exponents by c
=⇒

m1 = 25c − 2c + 1
m2 = 25c − 23c + 1

m−1
1 = −22c mod m2

The modular inverse m−1
1 mod m2 is stable under scaling!

We can make c very large, but the reconstruction step

x1 = (B − x0)m−1
1 (mod m2)

= −22c(B − x0) (mod m2)

is always a bitshift.

Reconstruction is linear time (relative to the bitlength of moduli).
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Nice inverses do not always happen.

(26 − 22 + 1)−1 ≡ 24 − 22 + 1 (mod 26 − 25 + 1)

(212 − 24 + 1)−1 ≡ N/A (mod 212 − 210 + 1) (GCD is 7)
(218 − 28 + 1)−1 ≡ 218 − 216 + 214 + 211 − 27 + 23 + 1 (mod 218 − 215 + 1)
(26c − 22c + 1)−1 ≡ ??? (mod 26c − 25c + 1)

Basic questions

2n − 2k + 1

1. When do two trinomial moduli have “good” inverses?
2. Are there arbitrarily large sets of moduli that have pairwise “good”

inverses?
3. How can we efficiently find these sets?
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Good moduli

25 − 21 + 1
25 − 23 + 1

Inverses come from polynomial identity:

(x5 − x + 1)(−x2) + (x5 − x3 + 1)(x2 + 1) = 1.

Bad moduli

26 − 22 + 1
26 − 25 + 1

GCD equation:

(x6 − x2 + 1)(−x5 + 4x4 − 5x3 + x2 − 3x + 2)
+ (x6 − x5 + 1)(x5 − 3x4 + 2x3 + x2 + 3x + 5) = 7.

The 7 ruins us!
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Definition
xn − xk + 1 and xn − xj + 1 dyadically resolve if their resultant is a signed
power of 2.

The inverse sequence

(2cn − 2ck + 1)−1 mod (2cn − 2cj + 1)

will be “nice” if and only if xn − xk + 1 and xn − xj + 1 dyadically resolve.

Basic questions (new)

1. When do xn − xk + 1 and xn − xj + 1 dyadically resolve?
2. Are there arbitrarily large sets of dyadically resolving trinomials?
3. How can we efficiently find these sets?
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Definition
Let T(n) be the graph with vertices {1, 2, 3, . . . , n − 1} that contains the edge
{k, j} if and only if xn − xk + 1 and xn − xj + 1 dyadically resolve.

T(40) and T(100)

Question 1
When is res(xn − xk + 1, xn − xj + 1) a signed power of 2?

What are the edges of T(n)?
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Adjacency matrix of T(200).
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n
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Percent of dyadically resolving trinomial pairs

dyadically resolving
relatively prime

Very few powers of 2! But lots of relatively prime pairs?
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Theorem (RDB, Kobayashi, Ter-Saakov, Zima)
If g(x) := gcd(xn − xk + 1, xn − xj + 1) ̸= 1, then:

• n is even;
• k − j is divisible by 6; and
• g(x) is a product of cyclotomic polynomials whose orders are multiples of 6.

Approximately 97% of all pairs of trinomials for large n are relatively prime.

We have no corresponding statement for dyadically resolving pairs.

The proportion probably goes to 0.
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T(40) and T(100)

Questions 2 and 3
What is the largest set of pairwise dyadically resolving trinomials of degree n?

What is the largest clique in T(n)?

Computing maximum cliques is fast!
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Size of maximum clique in T(n)

Clique growth looks slow, but…

Theorem
The size of the largest clique in T(n) goes to ∞ as n → ∞.
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We do not know the true growth rate of the largest cliques.

We have not found a reasonable clique of size 11.

clique size k smallest n
2 3
3 5
4 5
5 10
6 11
7 22
8 41
9 82
10 1668
11 > 3000

smallest possible n
3
5
5
9
9
17
17
33
33
65

The best estimate we have is the following.

Theorem
The largest clique in T(n) has size no larger than

2⌊log2 n⌋ − v2(n).

v2(n) = v is the largest v such that 2v divides n.
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Open questions
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True growth of largest clique sizes?

Edge density of T(n)?

Other moduli shapes: 2n ± 2k ± 1, …
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