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Computations are often sped up with the Chinese Remainder Theorem.
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= Easy to find
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Computations are often sped up with the Chinese Remainder Theorem.

| Problem |

Criteria for “good” moduli: Reduction
= Easy to find
= Fast to reduce and reconstruct | mod m; | | mod my | | mod ms |
= Roughly the same size (balanced)
Reconstruction

Answer

Chen and Zima (2023) proposed “trinomial” moduli:
2" 241 (nis fixed, 0 < k < n)

These are perfectly balanced and have fast reduction / reconstruction.



Fast reconstruction

Imagine Chinese Remaindering with these moduli:
m=2"-2"+1
my =2°—2°+1.

Reconstruction of x looks like this:

A = xmod m

B = xmod my



Fast reconstruction
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Fast reconstruction

Imagine Chinese Remaindering with these moduli:

m=2-2"+1
my=2°—-2%+1.

Reconstruction of x looks like this:

A = xmod m X =X + x1m Xg=A
B = xmod m» Eo x1:(foo)m171 (mod mo)
By chance,
mfl mod my = 722,

so the multiplication by m;* mod m; is very fast.
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There is more to these moduli.

m=2"-2"+1

scale exponents by ¢ m=2°—2°41
m=2-241

. R — m2:25C723C+1
m; " = —2" mod mo

m;t = —2* mod mo
The modular inverse m;* mod m; is stable under scaling!
We can make c very large, but the reconstruction step
x1=(B=x)m;* (mod ms)
=_2°(B—x) (mod mo)
is always a bitshift.

Reconstruction is linear time (relative to the bitlength of moduli).
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Nice inverses do not always happen.
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Nice inverses do not always happen.

°—224+1)'=2"—-224+1 (mod2°—2°+1)

22+ 1)'=N/A (mod 2 —2" +1) (GCD is 7)

(B —28 1)t =2 2 oM 2 2" 122 41 (mod 2% —2"° +1)
(2°€ =22+ 1) ' =92 (mod 2°°—2°°+1)

2" 2k

1. When do two trinomial moduli have “good” inverses?

2. Are there arbitrarily large sets of moduli that have pairwise “good”
inverses?

3. How can we efficiently find these sets?



Good moduli
22 —2'+1
2°—2°+1
Inverses come from polynomial identity:

(X —=x+1) (=) + (X=X +1) (¥ +1) =1.



Good moduli

2 =" 4l
2 — %% 4l

Inverses come from polynomial identity:

(X —=x+1) (=) + (X=X +1) (¥ +1) =1.

Bad moduli

2°—2°+1
2°—2°+1
GCD equation:

(¢ — X2+ 1) (= +4x" — 5 + x> —3x+2)

+ =X+ 1) =3x8+ 2+ X +3x+5) =

The 7 ruins us!



Definition

x"— x4+ 1 and X" — ¥ + 1 dyadically resolve if their resultant is a signed
power of 2.

The inverse sequence
(2" —2% 4+ 1) ' mod (27" — 29 4+ 1)

will be “nice” if and only if X* — x* + 1 and x" — X + 1 dyadically resolve.

Basic questions (new)



Definition

x"— x4+ 1 and X" — ¥ + 1 dyadically resolve if their resultant is a signed
power of 2.

The inverse sequence
(2" —2% 4+ 1) ' mod (27" — 29 4+ 1)

will be “nice” if and only if X* — x* + 1 and x" — X + 1 dyadically resolve.

Basic questions (new)
1. When do X" — x¥ +1 and x” — X + 1 dyadically resolve?

2. Are there arbitrarily large sets of dyadically resolving trinomials?

3. How can we efficiently find these sets?



Let T(n) be the graph with vertices {1,2,3,..., n— 1} that contains the edge
{k, j} if and only if X" — x*+ 1 and x” — X + 1 dyadically resolve.



., n— 1} that contains the edge

{k, j} if and only if X" — x* + 1 and x” — X + 1 dyadically resolve.

Let T(n) be the graph with vertices {1,2,3,..
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Adjacency matrix of T(200).



Percent of dyadically resolving trinomial pairs
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Very few powers of 2! But lots of relatively prime pairs?
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Theorem (RDB, Kobayashi, Ter-Saakov, Zima)

If g(x) == ged(x” — X+ 1,x" — x/ + 1) # 1, then:
= nis even;
= k— j is divisible by 6, and

= g(x) is a product of cyclotomic polynomials whose orders are multiples of 6.

Approximately 97% of all pairs of trinomials for large n are relatively prime.
We have no corresponding statement for dyadically resolving pairs.

The proportion probably goes to 0.
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Quest
What is the largest set of pairwise dyadically resolving trinomials of degree n?
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What is the largest clique in T

Computing maximum cliques is fast!
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Size of maximum clique in T(n)
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Clique growth looks slow, but...

13



Size of maximum clique in T(n)
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Clique growth looks slow, but...

The size of the largest clique in T(n) goes to co as n — oo.
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We do not know the true growth rate of the largest cliques.

We have not found a reasonable clique of size 11.

clique size k

smallest n
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The best estimate we have is the following.
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We do not know the true growth rate of the largest cliques.

We have not found a reasonable clique of size 11.

clique size k

smallest n
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The best estimate we have is the following.

The largest clique in T(n) has size no larger than

2|log, n| — va(n).

va(n) = v is the largest v such that 2" divides n.
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We do not know the true growth rate of the largest cliques.

We have not found a reasonable clique of size 11.

clique size k | smallest n smallest possible n

2 3

3 5 5
4 5 5
5 10 9
6 11 9
7 22 17
8 41 17
9 82 33
10 1668 33
11 > 3000 65

The best estimate we have is the following.

The largest clique in T(n) has size no larger than

2|log, n| — va(n).

va(n) = v is the largest v such that 2" divides n.
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Open questions

Size of maximum clique in T(n)

10-, P .o

Porcent of dyadically resolving triomial pairs o

True growth of largest clique sizes?
Edge density of T(n)?
Other moduli shapes: 2" + 2K+ 1, ..
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