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Suppose that K is an algebraically closed field of characteristic 0.
For a linear ordinary differential equation

ar (x)y (r)(x) + ar−1(x)y (r−1)(x) + · · ·+ a0(x)y(x) = 0 (1)

with ai (x) =
∑∞

j=0 aijx
j ∈ K [[x ]], i = 0, 1, . . . , r , its formal

exponential-logarithmic solutions are solutions in the form

eQ(x−1/q) xλw(x1/q), (2)

where Q is a polynomial with coefficients in K , q ∈ Z>0, λ ∈ K ,

w(x) =
m∑
s=0

ws(x) lns x ,

m ∈ Z≥0, ws(x) ∈ K ((x)), s = 0, . . . ,m, and wm(x) 6= 0.

In (2), the factor xλw(x1/q) is the regular part, Q(x−1/q) is the exponent
of the irregular part, and λ is the exponent of the regular part.
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In our previous publications we have considered linear ordinary differential
equations with coefficients given as truncated power series:

ai (x) =

ti∑
j=0

aijx
j + O(x ti+1), ti ∈ Z>0, i = 0, 1, . . . , r .

Each computed solution (2) involves a finite set of truncated series

ws(x) =
ks∑
j=js

wsjx
j + O(xks+1)

js , ks ∈ Z, ws,js 6= 0, ks > js , s = 0, 1, . . . ,m, for which the maximum
possible number ks of terms is calculated.
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Factually, we get all the available information about these solutions,
having in mind the information that is invariant with respect to possible
prolongations of the truncated series which are the coefficients of the given
equation.

Definition

A prolongation of a truncated series is a series, possibly also truncated,
whose initial terms coincide with the known initial terms of the original
truncated series; correspondingly, a prolongation of an equation with
truncated-series coefficients is an equation, whose coefficients are
prolongations of the coefficients of the original equation.
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The following is an example of a truncated equation:

(
x3 +

x5

3
+ O(x6)

)
y ′(x) +

(
1 + 3x + O(x3)

)
y(x) = 0. (3)

Two different prolongations of equation (3) are, for example:

(
x3 +

x5

3
+ 4x6 + O(x7)

)
y ′(x) +

(
1 + 3x + x3 + O(x4)

)
y(x) = 0, (4)

(
x3 +

x5

3
− 4x6 + O(x7)

)
y ′(x) +

(
1 + 3x + O(x4)

)
y(x) = 0. (5)
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On slide 5, equation (3) has the truncated solution

e

1
2x2

+ 3
x
x
1
3 (C + O(x)

)
, (6)

where C is an arbitrary constant.
Equation (4), which is prolongation of (3), has the truncated solution

e

1
2x2

+ 3
x
x
1
3 (C + 4Cx + O(x2)

)
. (7)

Equation (5), which is prolongation of (3) too, has the truncated solution

e

1
2x2

+ 3
x
x
1
3 (C − 3Cx + O(x2)

)
. (8)

Solutions (7) and (8) are prolongations of (6) and they are different in the
second terms of series.

So, solution (6) of equation (3) is maximum invariant.
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Algorithms for constructing maximum invariant truncated solutions and
the implementation of the algorithms in Maple were presented in our
previous works.

In other words, the presented algorithms provide the exhaustive use of
information on a given equation.

Now we are focusing on the question of automatic confirmation of such
exhaustive use of information on a given equation, i.e. the confirmation
that it is not possible to add any additional terms to the constructed
truncated solution that are invariant with respect to prolongations of the
given equation.

In order to confirm this, we demonstrate a counterexample with
different prolongations of the given equation which lead to the
appearance of different additional terms in the solutions.
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Theorem 1

Let E be an equation with truncated series coefficients. Then there exist
and can be constructed algorithmically two different prolongations Ē, ¯̄E of
E having the following property:

If s is such a truncated solution of E that any series involved in s has
the maximum possible truncation degree then all the truncated series
involved in the corresponding solutions s̄, ¯̄s of resp. Ē, ¯̄E have pair-wise
different additional terms.

The automatic confirmation of exhaustive use of the information on a
given equation in the truncated solution is implemented as an extension of
FormalSolution procedure from our TruncatedSeries package in
Maple.
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Example

Consider the following equation with the truncated-series coefficients and
construct its solution using the TruncatedSeries package. The
differential equation is written using the operator θ = x d

dx :

> eq := (x4 + O(x7))θ(y(x), x , 3) + (3x + O(x5))θ(y(x), x , 2) +

(1 + x + 2x2 + 3x3 + O(x4))θ(y(x), x , 1) + O(x5)y(x) = 0 :

>TruncatedSeries :−FormalSolution(eq, y(x));[
c1 + O

(
x5
)

+ e
1
3x x

2
3
(

c2 +
35 c2x

27
+

8947 c2x
2

1458
+ O

(
x3
))

+

e

1
x3
− 1

3x
yreg (x)

] (9)

where yreg (x) denotes the regular part, which can have different exponent
λ for different prolongations of the original equation.
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As a result of running the FormalSolution command with the new optional
argument 'counterexample'= 'Eqs', the variable Eqs will be assigned a
pair of the equations which forms one of the possible counterexamples:

> FormalSolution(eq, y(x), 'counterexample'= 'Eqs') :
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The first counterexample equation:

>Eqs[1];

(
x5 + O

(
x6
))

y(x) +
(
1 + x + 2x2 + 3x3 + 4x4 + O

(
x5
))
θ(y(x) , x , 1)

+
(
3x + O

(
x6
))
θ(y(x) , x , 2) +

(
x4− 4x7 + O

(
x8
))
θ(y(x) , x , 3) = 0

(10)

The second counterexample equation:

>Eqs[2];

(
5x5 + O

(
x6
))

y(x) +
(
1 + x + 2x2 + 3x3− 2x4 + O

(
x5
))
θ(y(x) , x , 1)

+
(
3x + O

(
x6
))
θ(y(x) , x , 2) +

(
x4−x7 + O

(
x8
))
θ(y(x) , x , 3) = 0

(11)
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Using FormalSolution we obtain the truncated solution:

> FormalSolution(Eqs[1], y(x));

 c1−
c1x

5

5
+ O

(
x6
)

+ e
1
3x x

2
3
(

c2 +
35 c2x

27
+

8947 c2x
2

1458
+

5779943 c2x
3

118098
+ O

(
x4
))

+
e

1
x3
− 1

3x ( c3 + O(x))

x
17
3


(12)
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> FormalSolution(Eqs[2], y(x));

[
c1− c1x

5 + O
(
x6
)

+ e
1
3x x

2
3
(

c2 +
35 c2x

27
+

8947 c2x
2

1458
+

5858675 c2x
3

118098
+ O

(
x4
))

+ e

1
x3
− 1

3x
x
10
3 ( c3 + O(x))

]
(13)

It is easy to see the difference between the truncated series in
solutions (12), (13).
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Outcome

So, in the previous publications, we presented an algorithm for finding
exponential-logarithmic solutions of linear ordinary differential equations
with coefficients in the form of series, for which only a finite number of
initial terms is known. Each solution involves a finite set of power series,
for which the maximum possible number of terms is calculated.

In the current talk, the algorithm is supplemented with the option to
provide a visual confirmation the impossibility of obtaining a larger number
of terms in the series without using additional information about the given
equation. Such a confirmation has the form of a counterexample to the
assumption that it is possible to obtain additional terms of the series
involved in the solution that are invariant to all prolongations of the given
equation.
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