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– S. Abramov, M. Petkovšek, A. Ryabenko, Hypergeometric solutions of first-order linear

difference systems with rational-function coefficients, 18-th worshop on computer algebra,

Dubna 2015, and CASC’2015, LNCS 9301, 2015, pp. 1–14.

– S. Abramov, M. Petkovšek, A. Ryabenko, Resolving sequences of operators for

linear ordinary differential and difference systems, Computational Mathematics and

Mathematical Physics (ЖВМиМФ) 56, 2016, pp. 894–910.

For differential systems with rational-function coefficients to find all
formal exponential-logarithmic solutions and for difference systems
with rational-function coefficients to find all hypergeometric solutions,
the notion resolving sequence of operators (equations) was introduced.
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For a difference or a differential system

An(x)y(x + n) + · · ·+ A1(x)y(x + 1) + A0(x)y(x) = 0,

An(x)y
(n)(x) + · · ·+ A1(x)y

′(x) + A0(x)y(x) = 0,

where Ak ∈ Matm(K (x)), k = 0, 1, . . . , n, m ∈ N>0, An 6= 0, K is
a field of characteristic 0, y(x) = (y1(x), . . . , ym(x))

T is a vector-
column of unknown functions, a resolving sequence of equations is

L1y`1(x) = 0, . . . , Ljy`j (x) = 0, . . . , Lpy`p(x) = 0,

where
L1, . . . , Lp ∈ K (x)[ξ] is the resolving sequence of operators,
ξy(x) = y(x + 1) or ξ = d

dx ;
`1, . . . , `p ∈ {1, 2, . . . ,m}, `i 6= `j for i 6= j , is the indicator.
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O. Ore, Theory of non-commutative polynomials, Annals of
Mathematics 34, 1933, pp. 480–508.

Let K be a field of characteristic 0,
σ : K 7→ K be an automorphism:

σ(a+ b) = σ(a) + σ(b)
σ(ab) = σ(a)σ(b)

∀a, b ∈ K,

δ : K 7→ K be a derivation with respect to σ:

δ(a+ b) = δ(a) + δ(b)
δ(ab) = σ(a)δ(b) + δ(a)b

∀a, b ∈ K.
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Let Z be an indeterminate.

An Ore polynomial ring (denote K[Z ;σ, δ]) is a ring of

anZ
n + ...+ a1Z + a0,

where an, . . . , a1, a0 ∈ K, with the usual polynomial addition, and
the multiplication given by

Za = σ(a)Z + δ(a), ∀a ∈ K.
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– M. Bronstein, M. Petkovšek. On Ore rings, linear operators and factorisation,

Programming and Computer Software (Программирование), No. 1, 1994, pp. 27–43.

– M. Bronstein, M. Petkošek. An introduction to pseudo-linear algebra, Theoretical

Computer Science 157, 1996, pp. 3–33.

Let LK be a linear space over K,
ξ : LK 7→ LK be a pseudo-linear map with respect σ and δ:

ξ(u + v) = ξ(u) + ξ(v)
ξ(au) = σ(a) ξ(u) + δ(a) u

∀a ∈ K, ∀u, v ∈ LK.
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K = K (x), a(x) ∈ K (x), y(x) ∈ LK(x)

Derivation

ξ(y(x)) = d
dx y(x), σ(a(x)) = a(x), δ(a(x)) = d

dx a(x)

Euler derivation

ξ(y(x)) = x d
dx y(x), σ(a(x)) = a(x), δ(a(x)) = x d

dx a(x)

Shift

ξ(y(x)) = y(x + 1), σ(a(x)) = a(x + 1), δ(a(x)) = 0

Difference

ξ(y(x)) = y(x +1)− y(x), σ(a(x)) = a(x +1), δ(a(x)) = a(x +1)− a(x)

q-Shift

ξ(y(x)) = y(q x), σ(a(x)) = a(q x), δ(a(x)) = 0
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We consider a system

An ξ
n(y) + · · ·+ A1 ξ(y) + A0 y = 0,

where
Ak ∈ Matm(K), k = 0, 1, . . . , n, m ∈ N>0, An 6= 0,
K is a field of characteristic 0 with σ and δ,
y = (y1, . . . , ym)

T is a vector-column of unknown functions,
ξ : LK 7→ LK is a pseudo-linear map over K.

The correspondent Ore polynomial

An Z
n + · · ·+ A1 Z + A0 ∈ Matm(K)[Z ;σ, δ].
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ξ(y) = Ay , A ∈ Matm(K)

1. Let c [0] = (0, . . . , 0︸ ︷︷ ︸
`1−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−`1

).

2. Compute

c [1] = σ(c [0])A+ δ(c [0])

c [2] = σ(c [1])A+ δ(c [1])
. . .

c [k] = σ(c [k−1])A+ δ(c [k−1])

B =


c [0]

c [1]

...
c [k−1]


k is the least integer (1 ≤ k ≤ m) such that c [0], c [1], . . . , c [k] are
linearly dependent over K:

ukc
[k] + · · ·+ u1c

[1] + u0c
[0] = 0.
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The equation

uk ξ
k(y`1) + · · ·+ u1 ξ(y`1) + u0 y`1 = 0

is called the y`1-resolving equation, the (k ×m)-matrix B is called
the y`1-resolving matrix.
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k = m

If y ∈ LK is a solution of y`1-resolving equation

um ξ
m(y`1) + · · ·+ u1 ξ(y`1) + u0 y`1 = 0

then a solution of ξ(y) = Ay can be found by the system

B y =


y
ξ(y)
...

ξm−1(y)

.
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k < m

By y`1-resolving equation, we can find all solutions of

ξ(y) = Ay such that y`1 6= 0.

For y`1 = 0, we have
B y = 0.

There exist m − k entries yi1 , . . . , yim−k
such that the other k entries

can be expressed as linear forms in them.

The vector ỹ = (yi1 , . . . , yim−k
)T satisfies

ξ ỹ = Ã ỹ ,

where Ã is an (m − k)× (m − k)-matrix.
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For
ξ(y) = Ay ,

where A ∈ Matm(K),
y = (y1, . . . , ym)

T ,

we compute a resolving sequence of equations

L1y`1 = 0, . . . , Ljy`j = 0, . . . , Lpy`p = 0,

where
`1, . . . , `p ∈ {1, 2, . . . ,m}, `i 6= `j for i 6= j , is the indicator;
L1, . . . , Lp ∈ K[ξ] is the resolving sequence of operators.
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For
An ξ

n(y) + · · ·+ A1 ξ(y) + A0 y = 0,

the EG-elimination is used to get an embracing system

An ξ
n(y) + · · ·+ A1 ξ(y) + A0 y = 0,

where detAn 6= 0, which is converted to an equivalent normal
system

ξ(Y ) = AY ,

where A is an (mn ×mn)-matrix,
Y = (y1, . . . , ym, ξy1, . . . , ξym, . . . , ξ

n−1y1, . . . , ξ
n−1ym)

T .

A. A. Ryabenko Resolving Sequences 15/22



A. A. Ryabenko Resolving Sequences 16/22



A. A. Ryabenko Resolving Sequences 17/22



The package RS is available on http://www.ccas.ru/ca/resolvingsequence

The main procedure is ResolvingSequence. It’s arguments:
I a system of linear homogeneous equations with rational-function

coefficients;
I a UnivariateOreRing-structure.

The system can be represented by OrePoly-structure or (in the
differential, difference or q-difference cases) in an explicit form.

Additional procedures are Indicator, ResolvingEquation,
ResolvingMatrix, EG, ResolvingDependence, CyclicVector.
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