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Abstract. Algorithms were previously proposed that allow one to find truncated
Laurent solutions to linear differential equations with coefficients in the form of
truncated formal power series. Below are suggested some automatic means of
confirming the impossibility of obtaining a larger number of terms of such solu-
tions without some additional information on a given equation. The confirmation
has the form of a counterexample to the assumption about the possibility of ob-
taining some additional terms of the solution.
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1. Problem Statement

In [1–3], we considered linear ordinary differential equations with coefficients given as trun-
cated power series. We discussed the question of what can be learned from equations given
in this way about their Laurent solutions, i.e. solutions belonging to the field of formal Lau-
rent series. We were interested in the maximum possible information about these solutions,
that is invariant with respect to possible prolongations of the truncated series which are the
coefficients of the given equation (a prolongation of a truncated series is a series, possibly also
truncated, whose initial terms coincide with the known initial terms of the original truncated
series; correspondingly, the prolongation of an equation with truncated-series coefficients is
an equation, whose coefficients are prolongations of the coefficients of the original equation).
Algorithms for constructing such invariant truncated Laurent solutions were presented in
the mentioned papers. In other words, the presented algorithms provide exhaustive use of
information on a given equation. Maple [4] was chosen as a tool of the implementation.

Now we are focusing on the question of automatic confirmation of such exhaustive use
of information on a given equation, i.e. the confirmation that it is not possible to add any
additional terms to the constructed truncated solutions that are invariant with respect to
prolongations of the given equation. In order to confirm this, it is sufficient to demonstrate
a counterexample with two different prolongations of the given equation which lead to the
appearance of different additional terms in the solutions.

Below, preliminary versions of procedures for searching for counterexample prolongations
are presented. The procedures are based on finding Laurent solutions with literals, i.e.,
symbols used to represent the unspecified coefficients of the series involved in the equations
(see [3]). Those symbols are coefficients of the terms, the degrees of which are greater than
the degree of the series truncation. Finding Laurent solutions using literals means expressing
the subsequent (not invariant to all possible prolongations) terms of the series in the solution
as formulas in literals, i.e. via unspecified coefficients. This allows one to clarify the influence
of unspecified coefficients on the subsequent terms of the series in the solutions.

Differential equations in the sequel are written using the operator θ = x d
dx

.
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2. Examples

The confirmation of exhaustive use of the information on a given equation in the truncated
Laurent solution is implemented as the Maple procedure ExhaustiveUseConfirmation.

Example 1. Consider the following equation with the truncated-series coefficients and
construct its Laurent solution using the TruncatedSeries package [1–3] :

> eq := (-1+x+x^2+O(x^3))*theta(y(x),x,2)+(-2+O(x^3))*theta(y(x),x,1)+

(x+6*x^2+O(x^4))*y(x);

eq :=
(
−1 + x+ x2 +O(x3)

)
θ(y(x), x, 2) +

(
−2 +O(x3)

)
θ(y(x), x, 1)

+
(
x+ 6x2 +O(x4)

)
y(x)

> sol := TruncatedSeries:-LaurentSolution(eq,y(x));

sol :=

[
c1
x2

− 5 c1
x

+ c2 +O(x), c2 +
x c2

3
+

5x2 c2
6

+
13x3 c2

30
+O(x4)

]
The invocation of the procedure ExhaustiveUseConfirmation confirms exhaustive use of
the information on the given equation with presenting two different prolongations of the
equation that lead to two different prolongations of the solution. The procedure prints out
details on two different equation prolongations and their solutions. It is shown that the
provided solutions are different prolongations of the solution of the given equation with
presenting different additional terms in the solutions.

> ExhaustiveUseConfirmation(sol, eq, y(x));

The equation prolongation #1(
−1 + x+ x2 − x3 +O(x4)

)
θ(y(x), x, 2) +

(
−2 − x3 +O(x4)

)
θ(y(x), x, 1)

+
(
x+ 6x2 − x4 +O(x5)

)
y(x)

Additional term(s) in the equation prolongation:

y(x)(−x4 +O(x5)) + θ(y(x), x, 1)(−x3 +O(x4)) + θ(y(x), x, 2)(−x3 +O(x4))

The equation solution:[
c1
x2

− 5 c1
x

+ c2 + x

(
c2
3

− 37 c1
3

)
+O(x2), c2 +

x c2
3

+
5x2 c2

6

+
13x3 c2

30
+

11x4 c2
24

+O(x5)

]
Additional term(s) in the equation solution:[
x

(
c2
3

− 37 c1
3

)
+O(x2),

11x4 c2
24

+O(x5)

]
The equation prolongation #2(

−1 + x+ x2 + x3 +O(x4)
)
θ(y(x), x, 2) +

(
−2 + x3 +O(x4)

)
θ(y(x), x, 1)

+
(
x+ 6x2 + x4 +O(x5)

)
y(x)
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Additional term(s) in the equation prolongation:

y(x)(x4 +O(x5)) + θ(y(x), x, 1)(x3 +O(x4)) + θ(y(x), x, 2)(x3 +O(x4))

The equation solution:[
c1
x2

− 5 c1
x

+ c2 + x
( c2

3
− 11 c1

)
+O(x2), c2 +

x c2
3

+
5x2 c2

6

+
13x3 c2

30
+

43x4 c2
72

+O(x5)

]

Additional term(s) in the equation solution:[
x
( c2

3
− 11 c1

)
+O(x2),

43x4 c2
72

+O(x5)

]
Example 2. Consider a prolongation of the given equation with other additional terms

(we use an auxiliary procedure ConstructProlongation) and construct its Laurent solution:

> eq1 := ConstructProlongation(theta(y(x), x, 1)*x^3, eq, y(x))(
−1 + x+ x2 +O(x3)

)
θ(y(x), x, 2)+

(
−2 + x3 +O(x4)

)
θ(y(x), x, 1)+

(
x+ 6x2 +O(x4)

)
y(x)

> TruncatedSeries:-LaurentSolution(eq1,y(x));[
c1
x2

− 5 c1
x

+ c2 +O(x), c2 +
x c2

3
+

5x2 c2
6

+
13x3 c2

30
+O(x4)

]
We see that the solution is the same as the solution of the given equation eq. It shows that
it is not sufficient just to construct the solutions of two random different prolongations for
confirming exhaustive use of the information on a given equation. Supplementary informa-
tion provided by the additional terms information provided by the additional terms in a
random prolongation does not necessarily lead to appearance of some additional terms in
the equation solutions, so such a prolongation may not be used as a counterexample.

Example 3. Consider one more equation and its Laurent solution:

> eq := (x + O(x^2))*theta(y(x), x, 1) + O(x^2)*y(x);

eq :=
(
x+O(x2)

)
θ(y(x), x, 1) +O(x2)y(x)

> sol := TruncatedSeries:-LaurentSolution(eq,y(x));

sol := [ c1 +O(x)]

Instead of using procedure ExhaustiveUseConfirmation, it is possible to check exhaustive
use of the information on the given equation using two additional implemented procedures
step by step. This way may be a better than using the text printed by the procedure
ExhaustiveUseConfirmation when, for example, the details of the counterexample are
needed in some further algorithmic processing.

First, the invocation of the procedure DifferentProlongationExtras gives two different
additional terms to construct two different prolongations of the given equation:

> dp := DifferentProlongationExtras(eq, y(x));

3



dp :=
[
y(x)

(
−x2 +O(x3)

)
, y(x)

(
x2 +O(x3)

)]
Next, the procedure ConstructProlongation is applied twice to construct the equation
prolongations.

> eq1 := ConstructProlongation(dp[1], eq, y(x));

eq1 :=
(
x+O(x2)

)
θ(y(x), x, 1) + y(x)

(
−x2 +O(x3)

)
> eq2 := ConstructProlongation(dp[2], eq, y(x));

eq2 :=
(
x+O(x2)

)
θ(y(x), x, 1) + y(x)

(
x2 +O(x3)

)
Finally, the Laurent solutions of each equation prolongation are constructed:

> sol1 := TruncatedSeries:-LaurentSolution(eq1, y(x))

sol1 :=
[
c1 + x c1 +O(x2)

]
> sol2 := TruncatedSeries:-LaurentSolution(eq2, y(x))

sol2 :=
[
c1 − x c1 +O(x2)

]
We can see that the different equation prolongations lead to two different solution prolonga-
tions.
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