Optimisation of Computer Algebra Techniques Application for Rician Data Analysis

Tatiana Yakovleva

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Moscow, Russia

5th International Conference "Computer Algebra", Moscow, June 26-28, 2023
Abstract

• The paper presents a mathematical research directed on the optimization of the computer-algebra methods’ application for solving the task of stochastic data analysis. Within the conducted theoretical investigation a few mathematical techniques of the statistical data analysis have been elaborated which allow essential simplifying of the task solution by computer algebra methods. The developed two-parameter approach to data analysis is efficiently applicable to a wide spectrum of scientific and applied tasks, in which a signal to be analyzed is described by the Rice statistical model.
Optimization of computer algebra techniques’ application for two-parameter analysis of stochastic data:

- Two-parameter Rician signals analysis provides joint computing of both the informative and the noise signal’s components (in contrast to non-realistic one-parameter approximation) and is in demand in applications implying operation in a real time mode.

- The subject of the research: simplification (optimization) of the algorithms of the Rician parameters joint computing.

- The compute-intensive task of solving the system of two nonlinear equations with two variables was reduced to solving just one equation for one variable.

- The possibility was proved of joint computing of both the signal and noise parameters without additional computations if compared with one-parameter approximation.

- The elaborated techniques may be applied in data processing systems with the priority of operation in a real time mode.
The Rice statistical distribution characterizes a value of an amplitude, or envelope of the complex signal composed as a sum of the sought-for initial signal and a Gaussian noise.

The fields of application:

- magnetic-resonance visualization,
- radio signals reception and processing,
- radar signals analysis,
- analysis of the sonar signals,
- optical medium’s properties measurements, etc.
The Rice distribution properties

\[X(x, \varphi) = \bar{A} + \bar{r} \quad \bar{r} = \bar{r}(r_{\text{Re}}, r_{\text{Im}}) \] - Gaussian noise

\[x = \sqrt{x_{\text{Re}}^2 + x_{\text{Im}}^2} \]

\[r_{\text{Re}}^2 = r_{\text{Im}}^2 = \sigma^2 \quad r_{\text{Re}} = r_{\text{Im}} = 0 \]

\[A = \nu \]

\(\nu, \sigma^2 \) – Rician parameters

\[P(x|\nu, \sigma^2) = \frac{x}{\sigma^2} \cdot \exp\left(-\frac{x^2 + \nu^2}{2\sigma^2}\right) \cdot I_0\left(\frac{\nu x}{\sigma^2}\right) \]

\[\bar{x} = \sigma \cdot \sqrt{\pi / 2} \cdot L_{1/2}\left(-\nu^2 / 2\sigma^2\right) \]

\[\sigma_x^2 = \bar{x}^2 - \bar{x}^2 = 2\sigma^2 + \nu^2 - \frac{\pi \sigma^2}{2} \cdot L_{1/2}\left(-\nu^2 / 2\sigma^2\right) \]

\[L_{1/2}(z) = e^{z/2} \left[(1-z) I_0\left(\frac{-z}{2}\right) - z I_1\left(\frac{-z}{2}\right) \right] \]

5th International Conference "Computer Algebra", Moscow, June 26-28, 2023
Formulation of the problem of random Rician value
two-parameter analysis

Initially determined complex value with amplitude \(V \) is
distorted by a Gaussian noise of dispersion \(\sigma^2 \),

Amplitude \(x = \sqrt{x_{\text{Re}}^2 + x_{\text{Im}}^2} \) of the resulting signal
obeyls the Rice statistical distribution with parameters \(V \) and \(\sigma^2 \).

\[P(x | V, \sigma^2) = \frac{x}{\sigma^2} \cdot \exp\left(-\frac{x^2 + v^2}{2\sigma^2}\right) \cdot I_0\left(\frac{xv}{\sigma^2}\right) \]

The task consists in reconstruction of useful (informative) signal \(V \) against
the noise background by joint computing the both Rician parameters

on the basis of measurements of the summary signal \(x_i \ (i = 1, \ldots, n) \), without
any a priory assumptions concerning value of \(\sigma^2 \).
Nonlinear properties of the Rice distribution

\[\bar{x} = \sigma \cdot \sqrt{\pi / 2} \cdot L^{1/2} \left(-\nu^2 / 2\sigma^2 \right) \]

\[\sigma_x^2 = \bar{x}^2 - \bar{x}^2 = 2 \cdot \sigma^2 + \nu^2 - \sigma^2 \cdot \frac{\pi}{2} \cdot L^2 \left(-\nu^2 / 2\sigma^2 \right) \]

(a) - theory

(b) – numerical experiment

5th International Conference "Computer Algebra", Moscow, June 26-28, 2023
THE LIKELIHOOD FUNCTION OF THE RICE STATISTICAL DISTRIBUTION

\(\mathcal{N} \) - a sought-for amplitude of un-noised signal \(x \);
\(\sigma^2 \) - a dispersion of the Gaussian noise distorting components \(x_{\text{Re}} \) and \(x_{\text{Im}} \) of signal \(x = \sqrt{x_{\text{Re}}^2 + x_{\text{Im}}^2} \)

\[
P(x|\nu, \sigma^2) = \frac{x}{\sigma^2} \cdot \exp\left(-\frac{x^2 + \nu^2}{2\sigma^2}\right) \cdot I_0\left(\frac{\nu}{\sigma^2}\right)
\]

The likelihood function (i.e. a joint probability density function of the events resulting in \(x = x_i \) (\(i = 1, \ldots, n \))):

\[
L\left(\mathbf{x}|\nu, \sigma^2\right) = \prod_{i=1}^{n} P(x_i|\nu, \sigma) = \prod_{i=1}^{n} \frac{x_i}{\sigma^2} \cdot \exp\left(-\frac{x_i^2 + \nu^2}{2\sigma^2}\right) \cdot I_0\left(\frac{x_i\nu}{\sigma^2}\right)
\]

\[
\ln L\left(\mathbf{x}|\nu, \sigma^2\right) = \sum_{i=1}^{n} \ln P(x_i|\nu, \sigma) = \sum_{i=1}^{n} \left\{ -2 \cdot \ln \sigma - \frac{x_i^2 + \nu^2}{2 \cdot \sigma^2} + \ln I_0\left(\frac{x_i\nu}{\sigma^2}\right) \right\}
\]
RICIAN LIKELIHOOD FUNCTION AS DEPENDENT UPON THE SIGNAL–TO-NOISE RATIO

\[\frac{n}{\sigma} = 3 \quad \frac{\nu}{\sigma} = 10; 4; 2 \quad n = 3 \]

\[\sigma = const \]

\[\nu = const \]

5th International Conference "Computer Algebra", Moscow, June 26-28, 2023
TWO-PARAMETER COMBINED ML-MM METHOD

\[\nu, \sigma^2 \text{ - Rician parameters} \]

\[\sum_{i=1}^{n} \frac{\partial}{\partial \nu} \ln I_0 \left(\frac{x_i \nu}{\sigma^2} \right) - \frac{n \cdot \nu}{\sigma^2} = 0 \]

\[\frac{1}{\sigma^2} \sum_{i=1}^{n} x_i \cdot \frac{I_1 \left(\frac{x_i \nu}{\sigma^2} \right)}{I_0 \left(\frac{x_i \nu}{\sigma^2} \right)} - \frac{n \cdot \nu}{\sigma^2} = 0 \]

\[\bar{x} = \sigma \cdot \sqrt{\frac{\pi}{2}} \cdot L_{1/2} \left(-\frac{\nu^2}{2\sigma^2} \right) \]

\[r = \frac{\nu^2}{2\sigma^2} \]

\[\begin{cases} \nu = \frac{1}{n} \sum_{i=1}^{n} x_i \cdot \tilde{I} \left(\frac{x_i \cdot \nu}{\sigma^2} \right) \\ \frac{1}{n} \sum_{i=1}^{n} x_i = \sigma \sqrt{\frac{\pi}{2}} \cdot L_{1/2} \left(-\frac{\nu^2}{2\sigma^2} \right) \end{cases} \quad \Rightarrow 2\sqrt{r / \pi} \cdot \frac{\langle x \rangle}{L_{1/2} (-r)} = \frac{1}{n} \sum_{i=1}^{n} x_i \tilde{I} \left(\frac{x_i \sqrt{\pi \cdot r}}{\langle x \rangle} \right) L_{1/2} (-r) \]

\[L_q (z) \text{ - the Laguerre polynomial} \]

\[\sigma = \frac{\langle x \rangle}{\sqrt{\pi / 2} \cdot L_{1/2} (-r)} \quad \nu = \sqrt{2\sigma^2 r} \]
Computer simulation results for ML-MM method

\[\phi = 0.5 \text{ (solid line); 1 (dashed line); 1.5 (dotted-dashed line)} \]

\[\psi = 3.0 \text{ (solid line); 2.0 (dashed line); 1.0 (dotted-dashed line)} \]

5th International Conference "Computer Algebra", Moscow, June 26-28, 2023
MAXIMUM LIKELIHOOD (ML) TECHNIQUE FOR SOLVING THE TASK OF TWO-PARAMETER RICIAN DATA ANALYSIS

The key ML equations’ system for parameters \(V \) and \(\sigma^2 \):

\[
\begin{align*}
\frac{\partial}{\partial V} \ln L\left(x | V, \sigma^2 \right) &= 0 \\
\frac{\partial}{\partial \sigma} \ln L\left(x | V, \sigma^2 \right) &= 0
\end{align*}
\]

\[
\begin{align*}
V &= \frac{1}{n} \sum_{i=1}^{n} x_i \cdot \tilde{I}\left(\frac{x_i V}{\sigma^2} \right) \\
\sigma^2 &= \frac{1}{2 \cdot n} \sum_{i=1}^{n} \left(x_i^2 + V^2 \right) - \frac{V}{n} \sum_{i=1}^{n} x_i \cdot \tilde{I}\left(\frac{x_i V}{\sigma^2} \right)
\end{align*}
\]

\[
\begin{align*}
V &= \frac{1}{n} \sum_{i=1}^{n} x_i \cdot \tilde{I}\left(\frac{2 x_i \cdot V}{\langle x^2 \rangle - V^2} \right) \\
\sigma^2 &= \frac{1}{2} \cdot \left(\langle x^2 \rangle - V^2 \right)
\end{align*}
\]

THEOREM: Solution of the ML equation’ system exists and is a unique one

\[
\begin{align*}
g(V) &= \frac{2 \cdot \langle x \rangle \cdot V}{\langle x^2 \rangle - V^2} \\
g(V) \cdot \sqrt{\frac{\langle x^2 \rangle}{\langle x \rangle}} &= 12 \\
\tilde{I}(z) &= \frac{I_1(z)}{I_0(z)}
\end{align*}
\]

\[
\begin{align*}
V &= \xi(g(V)) \\
\xi(g) &= \frac{1}{n} \sum_{i=1}^{n} x_i \tilde{I}\left(\frac{x_i}{\langle x \rangle} \cdot g \right)
\end{align*}
\]
Variants of the Method of Moments at solving the Task of Two-parameter Analysis of Rician Data

1. The method of lower even-numbered moments (MM24);

2. The method of lower moments (MM12).

Two-parameter method MM24

\[
\begin{align*}
\bar{x}^2 &= 2 \cdot \sigma^2 + \nu^2 \\
\bar{x}^4 &= 8 \cdot \sigma^4 + 8 \cdot \sigma^2 \cdot \nu^2 + \nu^4
\end{align*}
\]

\[
t = \frac{\langle x^4 \rangle}{\left(\langle x^2 \rangle\right)^2} - 1 \quad 0 < t \leq 1
\]

\[
\nu^2 = \langle x^2 \rangle \sqrt{1-t}
\]

\[
\sigma^2 = \frac{\langle x^2 \rangle}{2} \left(1 - \sqrt{1-t}\right)
\]

At \(\nu = 0 \) \(t = 1 \) \(\sigma^2 = \frac{\langle x^2 \rangle}{2} \)
Two-parameter method MM12

1-st moment of rician value:

\[\bar{x} = \sigma \cdot \sqrt{\pi / 2} \cdot L_{1/2} \left(-\nu^2 / 2\sigma^2 \right) \]

\(L_{1/2} \) - Laguerre polynomial:

\[
\begin{align*}
\left\{ \begin{array}{c}
\sigma \cdot \sqrt{\pi / 2} \cdot e^{-\frac{\nu^2}{4\sigma^2}} \left[\left(1 + \frac{\nu^2}{2\sigma^2} \right) I_0 \left(\frac{\nu^2}{4\sigma^2} \right) + \frac{\nu^2}{2\sigma^2} I_1 \left(\frac{\nu^2}{4\sigma^2} \right) \right] = \bar{x} \\
2\sigma^2 + \nu^2 = x^2 \\
\end{array} \right.
\]

\[
\begin{align*}
\left\{ \begin{array}{c}
\sqrt{\frac{\pi}{2}} \cdot \sigma \cdot e^{-\frac{r}{2}} \left[\left(1 + r \right) I_0 \left(\frac{r}{2} \right) + r I_1 \left(\frac{r}{2} \right) \right] = \langle x \rangle \\
2\sigma^2 \left(1 + r \right) = \langle x^2 \rangle \\
\end{array} \right.
\]

MM12 – method: equation for \(r \)

\[
\sqrt{\frac{\pi}{4} \langle x^2 \rangle} \sqrt{1 + r} \cdot e^{-\frac{r}{2}} I_0 \left(\frac{r}{2} \right) \left[1 + \frac{r}{(1+r)} \cdot \tilde{I} \left(\frac{r}{2} \right) \right] = \langle x \rangle
\]

\[
\nu = \sqrt{\frac{r}{1+r} \sqrt{\langle x^2 \rangle}} \\
\sigma^2 = \frac{\langle x^2 \rangle}{2(1+r)}
\]
TWO-PARAMETER COMBINED ML-MM METHOD

\[\nu, \sigma^2 \] - Rician parameters

\[
\begin{align*}
\nu &= \frac{1}{n} \sum_{i=1}^{n} x_i \cdot \tilde{I} \left(\frac{x_i \cdot \nu}{\sigma^2} \right) \\
\frac{1}{n} \sum_{i=1}^{n} x_i &= \sigma \sqrt{\frac{\pi}{2}} \cdot L_{1/2} \left(\frac{-\nu^2}{2\sigma^2} \right)
\end{align*}
\]

\[\Rightarrow 2\sqrt{r / \pi} \cdot \frac{\langle x \rangle}{L_{1/2}(-r)} = \frac{1}{n} \sum_{i=1}^{n} x_i \tilde{I} \left(\frac{x_i \sqrt{\pi \cdot r}}{\langle x \rangle} \right) L_{1/2}(-r) \]

\[r = \frac{\nu^2}{2\sigma^2}, \quad \nu = \sqrt{2\sigma^2 r} \]

\[L_q(z) \] - the Laguerre polynomial

TWO-PARAMETER METHOD OF MOMENTS MM13

\[\bar{x} = \sigma \cdot \sqrt{\frac{\pi}{2}} \cdot L_{1/2} \left(-\frac{\nu^2}{2\sigma^2} \right), \]

\[\bar{x}^3 = 3 \cdot \sigma^3 \cdot \sqrt{\frac{\pi}{2}} \cdot L_{3/2} \left(-\frac{\nu^2}{2\sigma^2} \right). \]

\[\Rightarrow \langle x \rangle^3 \cdot \frac{1}{1} F_1 \left(\frac{-3}{2}; 1; -r \right) = \langle x^3 \rangle \cdot \frac{\pi}{6} \cdot \frac{1}{1} F_3 \left(\frac{-1}{2}; 1; -r \right), \]

\[\sigma = \langle x \rangle \sqrt{\frac{2}{\pi}} / \frac{1}{1} F_1 \left(\frac{-1}{2}; 1; -r \right) \]

\[\frac{1}{1} F_1 \] - confluent hypergeometric function of the 1-st order, or Kummer's function
Conclusion

✓ The mathematical methods have been developed to optimize the computer algebra techniques for solving the two-parameter task of the both signal and noise parameters joint computing at stochastic data analysis, namely:

✓ The compute-intensive task of solving the system of two essentially nonlinear equations with two sought-for variables has been mathematically reduced to solving just one equation for one unknown variable;

✓ The possibility of computing the both sought-for parameters by computer algebra techniques without any additional calculative capacities if compared with the traditional one-parameter approximation has been ensured;

➢ Decreasing the needed calculative resources for the task under consideration allows applying the elaborated techniques in information technologies and data processing systems with priority of operation in a real-time mode.

➢ The presented research has revealed that improvement of the computer algebra’s mathematical means for simplifying the symbolic computation is an important and a quite solvable task.

5th International Conference "Computer Algebra", Moscow, June 26-28, 2023
Thank you very much for your attention