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Calculations in quantum field theory

Calculations within the framework of quantum field theory (QFT) are of great
importance in modern high-energy physics. Well-known experiments at the Large
Hadron Collider (LHC) and other large accelerator projects are described exclusively
using its methods. The most common approach to such calculations is the Feynman
diagram technique. In essence, this is a graphical interpretation of expressions
obtained using perturbation theory. Each diagram encodes a certain expression that
contributes to some physical quantity.

The standard scheme of calculations is that first draw all the diagrams corresponding
to the desired process in a given theory. Then the expressions that they encode are
evaluated. In the end, integrals (usually divergent) over the momentum space are
obtained, which are taken using various regularization methods. Depending on the
theory, some of these steps may be easier or more difficult. Often, such calculations
are extremely difficult to carry out manually, so special programs are used.
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Software for QFT calculations
Attempts to create software for calculations within the framework of
quantum perturbation theory have been made for more than fifty years

J. A. Campbell and A. C. Hearn, J. Comput. Phys. 5 (1970), 280-327
Гердт В. П., Тарасов О. В. и Ширков Д. В., УФН. 130 (1980), 113–147.

Software:
Programs for graph generation (QGRAPH, FeynArts):

P. Nogueira, J. Comput. Phys. 105 (1993), 279-289
T. Hahn, Comput. Phys. Commun. 140 (2001), 418-
431

Programs designed to calculate various processes, usually within the
framework of the Standard Model(madevent, Herwig++, SHERPA,
aMC@NLO):

F. Maltoni and T. Stelzer, JHEP 02 (2003), 027
M. Bahr, et al. Eur. Phys. J. C 58 (2008), 639-707
T. Gleisberg, et al., JHEP 02 (2009), 007
J. Alwall, et al., JHEP 07 (2014), 079

Computer algebra systems (Maple, Mathematica, Schoonschip,
FORM):

M. J. G. Veltman and D. N. Williams, arXiv:hep-ph/9306228 [hep-ph]].
B. Ruijl, T. Ueda and J. Vermaseren, [arXiv:1707.06453 [hep-ph]].
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Software for QFT calculations

There are some programs that calculate Feynman momentum integrals in
the D-dimension, which are formed after construction of the amplitudes.
Mostly, the following approach to their calculation is implemented.
Firstly, tensor integrals are reduced to scalar integrals by standard
methods, and then using such techniques as integration by parts in
D-dimension and the application of Lorentz invariance scalar integrals are
reduced to a small number of typical master integrals.

K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B 192 (1981), 159-204

Software for master integrals reduction (FIRE, LiteRed):
R. N. Lee, J. Phys. Conf. Ser. 523 (2014), 012059
A. V. Smirnov and F. S. Chuharev, Comput. Phys.
Commun. 247 (2020), 106877

Programs for calculating master integrals (FIESTA, SecDec):
A. V. Smirnov, Comput. Phys. Commun. 204 (2016), 189-199
S. Borowka, et al., Comput. Phys. Commun. 196 (2015), 470-491
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Software for QFT calculations
We should also mention the package for Schoonschip Mincer

S. G. Gorishnii, S. A. Larin, L. R. Surguladze and F. V. Tkachov,
Comput. Phys. Commun. 55 (1989), 381-408

which was firstly used to calculate the four-loop β-function using
dimensional regularization

S. G. Gorishnii, A. L. Kataev, S. A. Larin and L. R. Surguladze, Phys.
Lett. B 256 (1991), 81-86

Software packages that combine the generation of diagrams and
amplitudes, operations with them and taking integrals (HepLib,
tapir):

F. Feng, Y. F. Xie, Q. C. Zhou and S. R. Tang, Comput. Phys. Commun.
265 (2021), 107982
M. Gerlach, F. Herren and M. Lang, Comput. Phys. Commun. 282
(2023), 108544

Programs for working with superfields in the superspace (SUSYCAL,
SusyMath):

T. Kreuzberger, W. Kummer and M. Schweda, Comput. Phys.
Commun. 58 (1990), 89-104
A. F. Ferrari, Comput. Phys. Commun. 176 (2007), 334-346
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N = 1 superspace

One of the most interesting theories in high energy physics are
supersymmetric theories. They introduce special transformations that
transform particles with integer spin (bosons) into particles with
half-integer spin (fermions). Such theories have various interesting
properties and give many physical predictions.
It is convenient to introduce superspace. N = 1 superspace is a space
with the coordinates (ct, x, y, z, θ), where θ is a Majorana spinor. Spinors
in four dimensions are transformed according to a special spinor law with
respect to the Lorentz group. Due to using of the superspace
supersymmetry is explicit, even at the quantum level. The spinor indices
are raised and lowered using charge conjugation matrices:

θa ≡ θbC
ba; θa = θbCab. (1)

The supersymmetric covariant derivative is usually introduced as follows:

D̄ȧ =
∂

∂θ̄ȧ
− i(γµ)ȧ

bθb ∂µ. (2)
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N = 1 superfields
The usual fields in this approach are components of superfields. So, the
gauge field is a component of the real superfield V (xµ, θ), spinor, and
scalar superfields are components of chiral or antichiral fields (ϕ(xµ, θ)
and ϕ∗(xµ, θ), respectively), which, by definition, satisfy the conditions:

D̄ȧΦ = 0, DaΦ
∗ = 0 (3)

For example superfield Φ(xµ, θ) can be introduces as follows:

Φ(xµ, θ) = ϕ(yµ) + θ̄(1 + γ5)ψ(y
µ) +

1

2
θ̄(1 + γ5)θf(y

µ) (4)

where yµ = xµ + i
2 θ̄γ

µγ5θ In addition, when we construct
supersymmetric actions, integration is introduced with respect to θ
variables. In our notation , it can be defined as follows:∫

d2θ̄ =
1

2
D̄2 =

1

2
D̄ȧD̄ȧ,

∫
d2θ = −1

2
D2 = −1

2
DaDa∫

d4θ =

∫
d2θ̄d2θ (5)
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Perturbation theory in N = 1 superspace formalism

There are 2 invariants under supersymmetry transformations, which can be written as
follows:

S1 =

∫
d4θd4xV, S2 =

∫
d2θd4xΦ+ к.с. (6)

where V is real superfield, and Φ is a chiral superfield. They are used to construct
action of the theory.
It is most convenient to carry out quantization by the functional integral method. The
main element of this approach, from which various quantities can be obtained, is the
generating functional Z, which is constructed as follows:

Z = e
iSint(

1
i

δ
δj

, 1
i

δ
δJ

)
∫

D(superfields) ei(S
(2)+Ssources) = e

iSint(
1
i

δ
δj

, 1
i

δ
δJ

)
Z0 (7)

where S(2) is a contribution to the action quadratic in fields, and Sint is a sum of
contributions of degree higher than 2, Ssources = jϕ+ JV and D(superfields) is a
measure of the functional integration. In the end all sources must be set to zero. The
Gaussian integral Z0 is taken using standard methods. The interaction term series
expansion is interpreted graphically using Feynman diagrams. However we will consider
the effective action. It is obtained by Legendre transformation:

Γ = −i lnZ[Sources]− Ssources|sources−→superfields,

In fact, Γ removes all disconnected diagrams and one-particle reducible diagrams from
Z. These are diagrams that can be divided by cutting a single internal line.
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Computer program for supergarph calculations

Explicit calculations in the framework of N = 1 superspace are rather
complicated, so special C++ program was created to deal with them.

I. E. Shirokov, Program. Comput. Software 49 (2023), 122-130

At the present moment the programm can deal with N = 1 SQED with
Nf flavours and can calculate two-point Green function of matter fields.
The program makes such steps of calculation:

1 Generation of all supergraphs in desired order of perturbation theory
using given vertexes and propagators.

2 Evaluation of so-called D-algebra, using standart procedure of
removing supersymmetric covariant derivatives and taking integral
over superspace.

3 Removing objects with spinor indices by taking γ-matrix traces etc.
4 Reducing of remaining impulse intregrals, by collecting terms using

some integral transformations.
At present moment impulse integrals must be taken by hand.

I.E. Shirokov Automation of quantum corrections calculation



10

Main objects

1 Superspacial delta function:

Expression Code
δ813(k) d_{2}{13}

δ893(p+ k + l) d_{30}{93}
δ823(−k) d_{-2}{23}

2 Superfields:

Expression Code
ϕ̃∗
1(k) F1#_1^1{2}

ϕ9(p) F_9^1{5}
V3(−(k + p)) V_3^1{-10}

3 Operators:
Expression Code
D̄ȧ

1D
2
1δ

8
13(k) D#_1{^1}(D_1(d_{2}{13}))

D2
1D̄

2
2δ

8
12(k + l + p) D_1(D#_2(d_{30}{12}))

4 Momenta, constants:

Expression Code
k2 I{2^2}
lµ I{3_1}

1/Rk K5{2}

I.E. Shirokov Automation of quantum corrections calculation
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Example

Z0(J, j) = exp{ i
2

∫
d8xJ

[
− 2

R∂4

]
J + i

∫
d8x

(
j
1

∂2
j∗ + j̃

1

∂2
j̃∗
)
}.

Sint =
1

4

∫
d4x d4θ ϕ∗e2V e0ϕ =

e0
2

∫
d8xϕ∗V ϕ+

e20
2

∫
d8xϕ∗V 2ϕ+ ...

Γ ∼ −ie0
2

∫
d8x1 ϕ

∗
1

1

i

δ

δJ1

1

i

δ

δj1

e20
2

∫
d8x2

1

i

δ

δj∗2

1

i

δ

δJ2

1

i

δ

δJ2

1

i

δ

δj2

× e0
2

∫
d8x3

1

i

δ

δj∗3

1

i

δ

δJ3
ϕ3Z0

∣∣∣∣
J,j=0

Γ ∼ −ie40
8

∫
d8x1 d

8x2 d
8x3 ϕ

∗
1ϕ3

δ

δJ1

δ

δj1

δ

δj∗2

δ

δJ2

δ

δJ2

δ

δj2

δ

δj∗3

δ

δJ3
Z0

∣∣∣∣∣∣∣
J,j=0

1 2 3
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Diagram Generation

Stage 1: Exponent expansion

-1/8*i*e^4*F#_1^1{-1}*J_1^1{-7}*j_1_1{-11}*j#_2^1{7}*J_2^1{-7}
*F_2_1{1}*j#_3^1{1001}*J_3^1{-7}*J_3^1{-11}*j_3_1{-13}

Γ ∼ −i
e0
2

∫
d8x1 ϕ

∗
1
1

i

δ

δJ1

1

i

δ

δj1

e20
2

∫
d8x2

1

i

δ

δj∗2

1

i

δ

δJ2

1

i

δ

δJ2

1

i

δ

δj2

× e0
2

∫
d8x3

1

i

δ

δj∗3

1

i

δ

δJ3
ϕ3Z0

∣∣∣∣
J,j=0

Stage 2: Pairing of derivatives

-1/4*i*e^4*F#_1^1{-1}*F_2_1{1}*J_1^1{-7}*J_3^1{-7}*j_1_1{-11}
*j#_3^1{1001}*j#_2^1{7}*j_3_1{-13}*J_2^1{-7}*J_3^1{-11}

Γ ∼ −ie40
8

∫
d8x1 d

8x2 d
8x3 ϕ

∗
1ϕ3

δ

δJ1

δ

δj1

δ

δj∗2

δ

δJ2

δ

δJ2

δ

δj2

δ

δj∗3

δ

δJ3
Z0

∣∣∣∣∣∣∣
J,j=0

Coefficient changes because of combinatorial factor.
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Diagram Generation

Stage 3: One-particle irreducibility check
At this point it is necessary to check if the diagram is one-particle reducible or
not and delete reducible ones.
Stage 4: Propagator insertion Each pair produces so-called propagators that
also consists of superspacial delta function, that acts just like simple
delta-function but in superspace:

Z0(J, j) = exp{ i
2

∫
d8xJ

[
− 2

R∂4

]
J + i

∫
d8x

(
j
1

∂2
j∗ + j̃

1

∂2
j̃∗
)
}.

δ

δJ1

δ

δJ2
Z0(J, j) = − 2

R∂2
δ812 → -2*e^0*I{1^-2}*K4{1}*d_{1}{12}

δ

δj1

δ

δj∗2
Z0(J, j) =

D̄2
1D

2
2

4∂2
δ812 → 1/4*e^0*I{1^-2}*D#_1(D_2(d_{1}{12}))

1/16*e^4*F#_1^1{-1}*F_2_2{1}*d_{-3}{13}*d_{2}{23}*D_3(D#_1(d_{3}{13}))
*D_2(D#_3(d_{-2}{23}))*K4{3}*I{3^-2}*K4{2}*I{2^-2}*I{3^-2}*I{2^-2}

I.E. Shirokov Automation of quantum corrections calculation
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Momentum representation

Here we need to move to momentum representation ∂2 → K2.

δ412 =

∫
d4k

(2π)4
exp(ik(x1 − x2))

∂2δ412 =

∫
d4k

(2π)4
∂2 exp(ik(x1 − x2)) = −

∫
d4k

(2π)4
k2 exp(ik(x1 − x2))

K is euclidean. So we made Wick transformation K4 = iK0:

K2 = K2
1 +K2

2 +K2
3 +K2

4 = K2
1 +K2

2 +K2
3 −K2

0

Each momentum is given by a prime number, and the sum of the momenta
corresponds to their product, so each number uniquely sets the sum. For
example: we have momenta K, L and Q. Let us assign K-number 2, L-number
3, Q-number 5. Then, for example, K +L will be 6, and K +L+Q will be 30.
This makes comparison and other operations easier.

I.E. Shirokov Automation of quantum corrections calculation
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“D-algebra”
The results takes form:

1/16*e^4*F#_1^1{-1}*F_2_2{1}*d_{-3}{13}*d_{2}{23}*D_3
(D#_1(d_{3}{13}))*D_2(D#_3(d_{-2}{23}))*K4{3}*I{3^-2}*K4{2}
*I{2^-2}*I{3^-2}*I{2^-2}

Then according to “D-Algebra” rules we commute supersymmetric
covriate derivatives:

δ812D
2D̄2δ812 = 4δ812δ

4(x1 − x2)

{Da, D̄ḃ} = 2i(γµ)aḃ∂µ, {Da, Db} = {D̄ȧ, D̄ḃ} = 0

[Da, D̄
2] = 4i(γµ) ḃ

a D̄ḃ∂µ, [Da, D
2] = 0,

[D̄2, D2] = 4i(γµ)ḃa[Da, D̄ḃ]∂µ,

D̄2D2D̄2 = −16∂2D̄2, D2D̄2D2 = −16∂2D2.

Then we obtain

1/4*e^4*F#_1^1{-1}*F_1_2{1}*K4{3}*I{3^-2}*K4{2}*I{2^-2}*I{2^-2}
*I{2^-2}*I{6^-2}*[gamma_5_4{1}]*I{2_1}*[gamma^5^4{3}]*I{2_3}

-1/4*e^4*F#_1^1{-1}*F_1_2{1}*K4{3}*I{3^-2}*K4{2}*I{2^-2}*I{2^-2}
*I{2^-2}*I{6^-2}*[gamma_5^4{2}]*I{2_2}*[gamma^5_4{5}]*I{2_5}

I.E. Shirokov Automation of quantum corrections calculation
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Expression simplification
-1*e^4*F#_1^1{-1}*F_1_2{1}*K4{3}*I{3^-2}*K4{2}*I{2^-2}
*I{2^-2}*I{2^-2}*I{6^-2}*I{2_1}*I{2_1}

In this case, everything is elementary, because: I{2_1}*I{2_1} is essentially:

KµKµ = K2

So the expression becomes:

-1*e^4*F#_1^1{-1}*F_1_2{1}*K4{3}*I{3^-2}*K4{2}*I{2^-4}*I{6^-2}

In the analytic form:

−e40

∫
d4K

(2π)4
d4L

(2π)4
d4θ ϕ∗

α(0, θ)ϕα(0, θ)
1

RKK4RLL2(K + L)2
.

In the general case, the following contribution may arise, in which it is necessary to
pick out perfect squares:

(Q+K + L)µ(Q+K)µ = (Q+K)2 + Lµ(Q+K)µ

= (Q+K)2 +
1

2
(Q+K + L)2 −

1

2
L2 −

1

2
(Q+K)2 (8)

The program neglects some parts as integration. Such expression is final form that
program produces. At the end it try to collect terms using some types of integral
transformations. In the lowest orders it is usually enough but in higher ones sometimes
collecting of terms is not full, and a lot of work to be done by hand. Making collecting
of terms more efficient is an open problem.
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N = 1 SQED with Nf flavors, regularized by higher
derivatives

In order to regularize the theory by higher derivatives, it is necessary to
add the higher derivative term to the action:

Sreg =
1

4e20
Re

∫
d4x d2θW aR(∂2/Λ2)Wa

+

Nf∑
f=1

1

4

∫
d4x d4θ

(
ϕ∗fe

2V ϕf + ϕ̃∗fe
−2V ϕ̃f

)
,

where R(∂2/Λ2) is a regulator, e.g. R = 1 + ∂2n/Λ2n.
Another similar regulator function appears in the gauge fixing term

Sgf = − 1

32ξ0e20

∫
d4x d4θD2V K(∂2/Λ2)D̄2V,

where ξ0 is the bare gauge parameter. The minimal (Feynman) gauge
corresponds to ξ0 = 1 and R(x) = K(x). However, we will make
calculations for an arbitrary ξ0 and K(x) ̸= R(x).

I.E. Shirokov Automation of quantum corrections calculation



18

Propagators

P
(
ϕx, ϕ

∗
y

)
=
D̄2

xD
2
y

4∂2
δ8xy → 1/4*e^0*I{1^-2}*D#_1(D_2(d_{1}{12}));

P
(
ϕ̃x, ϕ̃

∗
y

)
=
D̄2

xD
2
y

4∂2
δ8xy → 1/4*e^0*I{1^-2}*D#_1(D_2(d_{1}{12}));

P
(
Φx, Φ̃y

)
=

MD̄2

∂2 +M2
δ8xy → 1*e^0*K3{1}*D#_1(d_{1}{12});

P
(
Φ∗

x, Φ̃
∗
y

)
=

MD2

∂2 +M2
δ8xy → 1*e^0*K3{1}*D_1(d_{1}{12});

P
(
Φx,Φ

∗
y

)
=

D̄2
xD

2
y

4 (∂2 +M2)
δ8xy → 1/4*e^0*K2{1}*D#_1(D_2(d_{1}{12})));

P
(
Φ̃x, Φ̃

∗
y

)
=

D̄2
xD

2
y

4 (∂2 +M2)
δ8xy → 1/4*e^0*K2{1}*D#_1(D_2(d_{1}{12})))

;P1 (Vx, Vy) = − 2ξ0
K∂2

δ8xy → -2*e^0*I{1^-2}*K4{1}*d_{1}{12};

P2 (Vx, Vy) =

(
ξ0
K

− 1

R

)
DaD̄2Da

4∂4
δ8xy → 1/4*e^0*[K4{1}-K5{1}]*I{1^-4}

*D#_1{^1}(D_1(D#_1{_1}(d_{1}{12}))).
I.E. Shirokov Automation of quantum corrections calculation
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One loop example

Type:
F#_1^1{-1}*F_1^1{1}
Option:
SQED
Loops:
1
Order:
2
Propagators:
V_1^1{1}*V_2^1{1}
-1/4*i*e^0*[K4{1}-K5{1}]*I{1^-4}*D#_1{^1}(D_1(D#_1{_1}(d_{1}{12})))
2*i*e^0*I{1^-2}*K4{1}*d_{1}{12}
F#_1^1{1}*F_2^1{1}
-1/4*i*e^0*I{1^-2}*D_1(D#_2(d_{1}{12}))
Vertexes:
1/2*i*e*F#_1^1{6}*V_1^1{-3}*F_1_1{-2}
1/2*i*e^2*F#_1^1{30}*V_1^1{-3}*V_1^1{-5}*F_1_1{-2}

I.E. Shirokov Automation of quantum corrections calculation
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One loop contribution

I.E. Shirokov Automation of quantum corrections calculation
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One loop example, result
File read correctly
1-loop diagrams are being generated
Completed100%
Diagrams created
Aligning momenta ...
Diagram generation completed
Diagram generation took 0.027 sec
Diagrams are being calculated...
0
-1*e^2*F#_1^1{-1}*F_1_2{1}*d_{2}{11}*K4{2}*I{2^-2}
1
1/8*e^2*F#_1^1{-1}*F_1_2{1}*D#_1{^2}(D_1(D#_1{_2}
(d_{2}{11})))*I{2^-4}*[K4{2}-K5^-1{2}]
2
-1/8*e^2*F#_1^1{-1}*F_2_2{1}*d_{-2}{12}
*D_2(D#_1(d_{2}{12}))*K4{2}*I{2^-2}*I{2^-2}
3
1/64*e^2*F#_1^1{-1}*F_2_2{1}*D#_1{^2}
(D_1(D#_1{_2}(d_{-2}{12})))*D_2(D#_1(d_{2}{12}))
*I{2^-4}*[K4{2}-K5^-1{2}]*I{2^-2}
Diagram calculation completed
Diagram calculation took 0.038 sec
Collecting terms...
Collecting terms completed
Result:
-1/2*e^2*F#_1^1{-1}*F_1_2{1}*I{2^-4}*K5^-1{2}
Total running time 0.067 secI.E. Shirokov Automation of quantum corrections calculation
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One loop example, result

Result:
-1/2*e^2*F#_1^1{-1}*F_1_2{1}*I{2^-4}*K5^-1{2}

∆Γ = −1

2
e20

∫
d4K

(2π)4
d4θ ϕ∗α(0, θ)ϕα(0, θ)

1

RKK4
.

Γ
(2)
ϕ =

1

4

∫
d4θ ϕ∗α(0, θ)ϕα(0, θ)G(α0)

∣∣∣∣
p=0

Contribution to Green function

∆G(1)(α0)
∣∣∣
p=0

= −2e20

∫
d4K

(2π)4
1

K4RK
.

I.E. Shirokov Automation of quantum corrections calculation
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Two loop example
Type:
F#_1^1{-1}*F_1^1{1}
Option:
SQED
Loops:
2
Order:
4
Propagators:
V_1^1{1}*V_2^1{1}
-1/4*i*e^0*[K4{1}-K5{1}]*I{1^-4}*D#_1{^1}(D_1(D#_1{_1}(d_{1}{12})))
2*i*e^0*I{1^-2}*K4{1}*d_{1}{12}
F#_1^1{1}*F_2^1{1}
-1/4*i*e^0*I{1^-2}*D_1(D#_2(d_{1}{12}))
F1#_1^1{1}*F1_2^1{1}
-1/4*i*e^0*I{1^-2}*D_1(D#_2(d_{1}{12}))
F2#_1^1{1}*F2_2^1{1}
-1/4*i*e^0*K2{1}*D_1(D#_2(d_{1}{12}))
F3#_1^1{1}*F3_2^1{1}
-1/4*i*e^0*K2{1}*D_1(D#_2(d_{1}{12}))
F2_1^1{1}*F3_2^1{1}
-1*i*e^0*K3{1}*D#_1(d_{1}{12})
F2#_1^1{1}*F3#_2^1{1}
-1*i*e^0*K3{1}*D_1(d_{1}{12})
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Two loop example

Vertexes:
1/2*i*e*F#_1^1{6}*V_1^1{-3}*F_1_1{-2}
1/2*i*e^2*F#_1^1{30}*V_1^1{-3}*V_1^1{-5}*F_1_1{-2}
1/3*i*e^3*F#_1^1{210}*V_1^1{-3}*V_1^1{-5}*V_1^1{-7}*F_1_1{-2}
1/6*i*e^4*F#_1^1{1890}*V_1^1{-3}*V_1^1{-5}*V_1^1{-7}*V_1^1{-9}*F_1_1{-2}
-1/2*i*e*F1#_1^1{6}*V_1^1{-3}*F1_1_1{-2}
1/2*i*e^2*F1#_1^1{30}*V_1^1{-3}*V_1^1{-5}*F1_1_1{-2}
-1/3*i*e^3*F1#_1^1{210}*V_1^1{-3}*V_1^1{-5}*V_1^1{-7}*F1_1_1{-2}
1/6*i*e^4*F1#_1^1{1890}*V_1^1{-3}*V_1^1{-5}*V_1^1{-7}*V_1^1{-9}*F1_1_1{-2}
1/2*i*e*F2#_1^1{6}*V_1^1{-3}*F2_1_1{-2}
1/2*i*e^2*F2#_1^1{30}*V_1^1{-3}*V_1^1{-5}*F2_1_1{-2}
1/3*i*e^3*F2#_1^1{210}*V_1^1{-3}*V_1^1{-5}*V_1^1{-7}*F2_1_1{-2}
1/6*i*e^4*F2#_1^1{1890}*V_1^1{-3}*V_1^1{-5}*V_1^1{-7}*V_1^1{-9}*F2_1_1{-2}
-1/2*i*e*F3#_1^1{6}*V_1^1{-3}*F3_1_1{-2}
1/2*i*e^2*F3#_1^1{30}*V_1^1{-3}*V_1^1{-5}*F3_1_1{-2}
-1/3*i*e^3*F3#_1^1{210}*V_1^1{-3}*V_1^1{-5}*V_1^1{-7}*F3_1_1{-2}
1/6*i*e^4*F3#_1^1{1890}*V_1^1{-3}*V_1^1{-5}*V_1^1{-7}*V_1^1{-9}*F3_1_1{-2}
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Two loop contribution
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Two loop exqample, result

Result:
e^4*F#_1^1{-1}*F_1_2{1}*I{3^-2}*I{2^-4}*I{6^-2}*K5^-2{2}
-2*e^4*F#_1^1{-1}*F_1_2{1}*K3{3}*I{2^-6}*K3{6}*K5^-2{2}
-2*e^4*F#_1^1{-1}*F_1_2{1}*K2{6}*I{2^-6}*K2{3}*I{3^2}*K5^-2{2}
e^4*F#_1^1{-1}*F_1_2{1}*K2{3}*I{2^-4}*K2{6}*K5^-2{2}
2*e^4*F#_1^1{-1}*F_1_2{1}*K2{3}*I{2^-6}*K5^-2{2}
e^4*F#_1^1{-1}*F_1_2{1}*I{2^-4}*I{3^-2}*I{6^-2}*K5^-1{2}*K5^-1{3}

Contribution to Green function:

∆G(2)
∣∣∣
p=0

= 4e40

∫
d4K

(2π)4
d4L

(2π)4
1

RKRLL2K4(K + L)2

+ 4e40Nf

∫
d4K

(2π)4
d4L

(2π)4
1

R2
KK4

(
1

(K + L)2L2
− 1

((K + L)2 +M2)(L2 +M2)

)
.

Result coincides with

S.S.Aleshin, et al. Nucl. Phys. B 956 (2020), 115020;
A.L.Kataev and K.V.Stepanyantz, Theor.Math.Phys. 181 (2014) 1531.
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Number of graphs

We give the total number of graphs for the massless theory up to 4 loops.

1 loop 2 loops 3 loops 4 loops
2 14 189 3702

I.E. Shirokov Automation of quantum corrections calculation
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Timing (Windows)

Operating system: Windows 10 x64
Processor: AMD Ryzen 5 1600 Six-Core Processor 3.20 GHz
RAM: 8 GB
Compiler: GNU GCC Compiler
Compilation options: -march=native, -O3

contribution ∼ N0
f 1 loop 2 loops 3 loops

ξ0 = 1 0.052 s. 0.14 s. 2.6 s.
ξ0 ̸= 1 0.067 s. 0.57 s. 2 min. 27 s.

contribution ∼ N1
f 2 loops 3 loops

ξ0 = 1, m = 0 0.16 s. 6.6 s.
ξ0 ̸= 1, m = 0 0.52 s. 13 min. 49 s.
ξ0 = 1, m ̸= 0 0.41 s. 41.5 s.
ξ0 ̸= 1, m ̸= 0 1.23 s. 3 h. 54 min.

contribution ∼ N2
f 3 loops

ξ0 = 1, m = 0 4.2 s.
ξ0 ̸= 1, m = 0 6.6 s.
ξ0 = 1, m ̸= 0 35 s.
ξ0 ̸= 1, m ̸= 0 2 min. 58 s.

I.E. Shirokov Automation of quantum corrections calculation
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Timing (Ubuntu)

Operating system: Ubuntu 22.04.1 LTS
Processor: AMD Ryzen 5 1600 Six-Core Processor 3.20 GHz
RAM: 8 GB
Compiler: GNU GCC Compiler
Compilation options: -march=native, -O3

contribution ∼ N0
f 1 loop 2 loops 3 loops

ξ0 = 1 0.0031 s. 0.0077 s. 0.16 s.
ξ0 ̸= 1 0.0048 s. 0.013 s. 5.43 s.

contribution ∼ N1
f 2 loops 3 loops

ξ0 = 1, m = 0 0.0047 s. 0.17 s.
ξ0 ̸= 1, m = 0 0.012 s. 1 min. 57 s.
ξ0 = 1, m ̸= 0 0.011 s. 1.35 s.
ξ0 ̸= 1, m ̸= 0 0.036 s. 6 min. 14 s.

contribution ∼ N2
f 3 loops

ξ0 = 1, m = 0 0.12 s.
ξ0 ̸= 1, m = 0 0.34 s.
ξ0 = 1, m ̸= 0 1.24 s.
ξ0 ̸= 1, m ̸= 0 12.6 s.
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Dependence of running time on the number of loops (case
N

(0)
f ξ0 ̸= 1)
Here is a graph of the dependence of the operating time on the number
of loops for different operating systems:

As you can see, the difference in operating time is from 40 to 13 times.
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Three loop result

∆G(3)
∣∣∣
p=0

=

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
8e60

RKRLRQ

[
−

1

3K4L4Q4
+

1

K4L2Q4(Q+ L)2
+

1

(K + L)2

×
1

K2L4(Q+K + L)2

(
1

Q2
−

2

(Q+ L)2

)]
+Nf

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
16e60 KµLµ

R2
KRLK4L4(K + L)2

×
(

1

Q2(Q+K)2
−

1

(Q2 +M2)((Q+K)2 +M2)

)
+Nf

∫
d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
8e60

R2
KRLK4

×
1

L2

(
2(Q+K + L)2 −K2 − L2

Q2(Q+K)2(Q+ L)2(Q+K + L)2
−

2(Q+K + L)2 −K2 − L2

(Q2 +M2)((Q+K)2 +M2)((Q+ L)2 +M2)

×
1

((Q+K + L)2 +M2)
+

4M2

(Q2 +M2)2((Q+K)2 +M2)((Q+ L)2 +M2)

)
− (Nf )

2

×
∫

d4K

(2π)4
d4L

(2π)4
d4Q

(2π)4
8e60

R3
KK4

(
1

Q2(Q+K)2
−

1

(Q2 +M2)((Q+K)2 +M2)

)(
1

L2(L+K)2

−
1

(L2 +M2)((L+K)2 +M2)

)
+O(e80),
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Dependence of the ratio of the Feynman diagram generation
time to the total operation time

Let us present the dependence (in percent) of the ratio of the generation
time to the total operation time on the number of loops in the massless
theory c (ξ0 = 1).

As can be seen, the generation makes a larger contribution, however, the
growth of this contribution is observed only up to three loops.
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Conclusion and perspectives

A new computer-algebraic approach to the generation and
calculation of Feynman diagrams in supersymmetric theories was
proposed, based on the generation of diagrams from first principles.
A program was created that implements this approach, at the
moment it obtains results suitable for analysis in supersymmetric
quantum electrodynamics up to three loops.
At the moment, there is a problem of final reduction of similar ones
(including the possible finding of an analogue of master integrals).
This makes it impossible to use the results of calculations in four
loops and higher.
It is necessary to improve the algorithm for generating diagrams in
order to calculate diagrams in higher loops in this theory, as well as
in other theories with a large number of vertices.
It is also planned to generalize the program for calculations of other
types, for example, for calculations of vacuum graphs (that is, those
that do not contain external lines).
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Thank you for your attention!
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