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Matrices are used in all areas of mathematics. The rank serves as an
essential characteristic of a matrix. If K is a field and m× n-matrix A over
K (i.e. A ∈ Km×n), r = RankA then the situation of incomplete rank is
possible, i.e. the situation in which d = min{m, n} − r > 0. This is an
obstacle to carrying out some transformations of the matrix A and
performing calculations related to A.
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Rank regulation

Proposition 1

Let A be a matrix of size m × n over a field K with r = RankA and
d = min{m, n} − r > 0, which implies that the rank of A is not full.

Then it is possible to choose algorithmically d elements from A such that,
upon replacement of their values with any other values from K , yield a
matrix Ã of full rank (when m = n, the matrix Ã is nonsingular).
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A matrix element, whose replacement increases the rank of the matrix, will
be called a rank-regulating element. We prove that an incomplete rank
matrix necessarily contains rank-regulating elements.

If A is of size m × n, r = RankA and d = min{m, n} − r > 0 then A
contains d rank-regulating elements belonging to different rows and
columns. Those d elements have the property formulated in Proposition 1.

Example 1

Consider the following 5× 5-matrix over the field of rational numbers:

A =


1 −1 2 3 4
2 1 −1 2 0
−1 2 1 1 3
1 5 −8 −5 −12
3 −7 8 9 13

 . (1)

Its rank is 3. It can be shown that a22 and a44 are rank-regulating
elements of A.

S. Abramov, M. Petkovšek, A. Ryabenko On Incomplete Rank Matrices 4 / 17



A matrix element, whose replacement increases the rank of the matrix, will
be called a rank-regulating element. We prove that an incomplete rank
matrix necessarily contains rank-regulating elements.

If A is of size m × n, r = RankA and d = min{m, n} − r > 0 then A
contains d rank-regulating elements belonging to different rows and
columns. Those d elements have the property formulated in Proposition 1.

Example 1

Consider the following 5× 5-matrix over the field of rational numbers:

A =


1 −1 2 3 4
2 1 −1 2 0
−1 2 1 1 3
1 5 −8 −5 −12
3 −7 8 9 13

 . (1)

Its rank is 3. It can be shown that a22 and a44 are rank-regulating
elements of A.
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A =


1 −1 2 3 4

2 1 −1 2 0
−1 2 1 1 3

1 5 −8 −5 −12

3 −7 8 9 13

 . (2)

Replacing them by zeros, we obtain a matrix Ã with det Ã = 55;

if instead we add 1 to each of the initial a22, a44, then for the resulting

matrix ˜̃A we have det ˜̃A = −11 (obviously, Rank Ã = Rank ˜̃A = 5).
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Example 2

Consider a non-square matrix. Let A be the following 6× 4-matrix over
the field of rational numbers:

A =



2 1 1 1
1 3 1 1
1 1 4 1
4 5 6 3
1 −2 0 0
1 1 4 1

 . (3)

It can be shown that any of

a44, a54, a64

is a rank-regulating element of A. For example, replacing a54 (which is
equal to 0) by 1 we obtain Ã of full rank: Rank Ã = 4 = min{6, 4}.
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The following example shows that not every element is rank-regulating.

Example 3

A =

1 2 3
2 4 6
0 1 1

 .
It can be seen that, for example, the element a33 does not affect the
rank, unlike, say, a13:

not 1 2 3
2 4 6

0 1 1

 ,
but 1 2 3

2 4 6
0 1 1

 .
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Matrices over truncated formal series
Below, we consider the field K as the formal Laurent series field F ((x))
over a field F . (The field F ((x)) is the quotient field of the formal power
series ring F [[x ]].)

Let the elements of the matrix A be polynomials, which are considered as
truncated power series. If detA = 0 then A has obviously a prolongation
which is a singular matrix belonging to F [[x ]]n×n: such a prolongation can
be obtained by adding to each element of A an infinite sequence of zero
terms.

On the other hand, using the recipe from Proposition 1, we can construct
a prolongation which gives a nonsingular matrix Ã. To do this, we can, for
example, add to each of the rank-regulating elements some terms that
have degrees higher (say, by 1) than the degrees of the elements of the
matrix A.
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Some important concepts

The degree of a polynomial p(x) =
∑

pix
i (of an element of K [x ] or

K [x−1, x ]) is defined by deg p(x) = max {i | pi 6= 0}, deg 0 = −∞. The
degree of a polynomial matrix A is equal to the largest of the degrees of
the elements of this matrix.

Given a series a(x) and a truncation degree l ∈ Z ∪ {−∞}, the
l-truncation of a(x) is obtained from a(x) by discarding all its terms of
degree exceeding l . For a matrix M ∈ K [[x ]]n×n and a given truncation
degree l , the l-truncation of M is obtained by replacing all the entries of
M by their l-truncations.

A prolongation of the polynomial p(x) with deg p(x) = d is any series of
the form p(x) + xd+1q(x), q(x) ∈ K [[x ]]. A prolongation of a matrix
A ∈ K [x ]n×n with degA = d is any matrix M of the form A + xd+1B,
where B ∈ K [[x ]]n×n (if d = −∞, i.e. A = 0 then the factor xd+1 should
be ignored.)
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We consider a system Ay = 0 in which the nonzero polynomial matrix A
of degree l is the l-truncation of an unknown matrix M ∈ K [[x ]]n×n.
Can we expect that the system My = 0 has non-zero solutions in K ((x))n?
We show that by examining a given matrix A, one can algorithmically find
out which of the following two cases takes place:

C1 Under no prolongation of the matrix A does the system My = 0 have
nonzero solutions in K ((x))n.

C2 Depending on the particular prolongation of the matrix A, the system
My = 0 may or may not have a nonzero solution in K ((x))n.
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It is noteworthy that these two cases do not include the possibility where
the system My = 0 has a non-zero solution for all prolongations of the
matrix A, which would happen if the matrix A
were singular for all possible prolongations. The fact is that for a matrix
A = [aij ] ∈ F [x ]n×n, detA = 0, there exists its non-singular polynomial
prolongation

Ã = [ãij ] ∈ F [x ]n×n, det Ã 6= 0.
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On the initial segments of series solutions invariant under the
prolongation of the matrix A

It is easy to see that the following corollary of Proposition 1 holds:

Corollary 1

Let A ∈ K [[x ]]n×n with detA = 0. Then there exists no nonzero
p ∈ K [x−1, x ]n such that for any matrix M that is a prolongation of the
matrix A, the system My = 0 has a solution in the form of a prolongation
of p belonging to K ((x))n.

Indeed, A has a prolongation M such that the system My = 0 has no
nonzero solutions.
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It can be noted here that this situation differs from that observed in
connection with linear homogeneous differential equations with truncated
power series in the role of coefficients. It can be shown that for the
operator

L = (−1 + x + x2) θ2 + (−2 + x3) θ + (x + 6x2), θ = x
d

dx
, (4)

the equation L̃y = 0, for any prolongation L̃ of the coefficients of L, has a
Laurent-series solution with valuation −2, namely

x−2 − 5 x−1 + 1 + O(x) .
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Thus, here a desired Laurent polynomial is, e.g.,

p = x−2 − 5 x−1 + 1.

Similar examples were considered in

S. Abramov, D. Khmelnov, and A. Ryabenko. 2019. Linear Ordinary
Differential Equations and Truncated Series. Computational
Mathematics and Mathematical Physics 59 (2019), 1649–1659.
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It is pertinent here to note that in the differential case, the operator
L ∈ K [[x ]][θ] and the differential equation Ly = 0 are associated with an
algebraic equation called the indicial equation — see, e.g., Ch. 9, §8 in the
book

E. A. Coddington and N. Levinson. 1955. Theory of Ordinary
Differential Equations. McGraw, Hill, New York.

If Ly = 0 has a Laurent-series solution with valuation ν, then ν is an
integer root of the corresponding indicial equation.
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The indicial equation does not depend on the terms of high powers in x
appearing in the coefficients of the operator L.

It turns out that it is possible to establish whether the equation Ly = 0
has a Laurent-series solution with a chosen valuation ν, and in the case
when such a solution exists, to construct the first few terms of such a
solution, using for this purpose only the terms of some low degrees
entering into the coefficients of the operator L.

Thus, the terms of a sufficiently high degree in the coefficients of the
operator do not play any role in testing the existence of Laurent-series
solutions and do not affect the initial terms of Laurent-series solutions.
But note that changing the coefficients of the operator by adding terms of
lesser degree can significantly change the picture.
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E.g., by changing the operator

L = (−1 + x + x2) θ2 + (−2 + x3) θ + (x + 6x2)

to
L̄ = (−1 + x + x2) θ2 + (−2 + x3) θ + (1 + x + 6x2),

we get the equation L̄y = 0, which has no Laurent-series solutions.
However, L is equal to (4), and it has been noted that (4) has
Laurent-series solutions.

In the previous sections of our presentation, the ”sensitivity” of systems
of linear algebraic equations to changes in the coefficients of terms of high
degrees was shown. At the same time, as we see, in the differential case,
even for scalar linear equations, ”sensitivity” to changes in terms of small
powers is manifested.
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