Bounding the Support in the Differential Elimination Problem

Mukhina Yulia
Joint work with Gleb Pogudin
Department of Higher Algebra, Lomonosov Moscow State University LIX, CNRS, École Polytechnique

Computer Algebra, June 26-28, 2023

Differential ring

Definition

A differential ring $\left(R,{ }^{\prime}\right)$ is a commutative ring with a derivation ${ }^{\prime}: R \rightarrow R$, that is, a map such that, for all $a, b \in R,(a+b)^{\prime}=a^{\prime}+b^{\prime}$ and $(a b)^{\prime}=a^{\prime} b+a b^{\prime}$. A differential field is a differential ring that is a field. For $i>0, a^{(i)}$ denotes the i-th order derivative of $a \in R$.

Let x be an element of a differential ring. We introduce $x^{(\infty)}:=\left(x, x^{\prime}, x^{\prime \prime}, x^{(3)}, \ldots\right)$.

Ring of differential polynomials

Definition

Let R be a differential ring. Consider a ring of polynomials in infinitely many variables

$$
R\left[x^{(\infty)}\right]:=R\left[x, x^{\prime}, x^{\prime \prime}, x^{(3)}, \ldots\right]
$$

and extend the derivation from R to this ring by $\left(x^{(j)}\right)^{\prime}:=x^{(j+1)}$. The resulting differential ring is called the ring of differential polynomials in x over R.

The ring of differential polynomials in several variables is defined by iterating this construction.

Differential ideal

Definition

Let $S:=R\left[x_{1}^{(\infty)}, \ldots, x_{n}^{(\infty)}\right]$ be a ring of differential polynomials over a differential ring R. An ideal $I \subset S$ is called a differential ideal if $a^{\prime} \in I$ for every $a \in I$.

One can verify that, for every $f_{1}, \ldots, f_{s} \in S$

$$
\left\langle f_{1}^{(\infty)}, \ldots, f_{s}^{(\infty)}\right\rangle
$$

is a differential ideal. Moreover, this is the minimal differential ideal containing f_{1}, \ldots, f_{s}, and we will denote it by $\left\langle f_{1}, \ldots, f_{s}\right\rangle(\infty)$.

Differential ideal

Definition

Let I be an ideal in ring R, and $a \in R$. Then

$$
I: a^{\infty}:=\left\{b \in R \mid \exists N: a^{N} b \in I\right\} .
$$

Note that the resulting set $I: a^{\infty}$ is also an ideal in R. And if I is a differential ideal, than set $I: a^{\infty}$ is also a differential ideal.

The order of differential polynomial

Definition

For every $1 \leq i \leq n$, we will call the largest j such that $x_{i}^{(j)}$ appears in P the order of P respect to x_{i} and denote it by ord ${ }_{x_{i}} P$; if P does not involve x_{i}, we set $\operatorname{ord}_{x_{i}} P:=-1$.

The order of differential polynomial

Definition

For every $1 \leq i \leq n$, we will call the largest j such that $x_{i}^{(j)}$ appears in P the order of P respect to x_{i} and denote it by ord ${ }_{x_{i}} P$; if P does not involve x_{i}, we set $\operatorname{ord}_{x_{i}} P:=-1$.

Example

For differential polynomial

$$
P=\left(x^{\prime}\right)^{2}-4 x^{3}+x
$$

we have

$$
\operatorname{ord}_{x} P=1, \frac{\partial P}{\partial x^{\prime}}=2 x^{\prime}
$$

Problem

Consider a system of differential equations of the form

$$
\begin{equation*}
x^{\prime}=\boldsymbol{f}(x), \tag{1}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a tuple of differential indeterminates and $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)$ is a tuple of polynomials from $\mathbb{C}[\mathbf{x}]$.
One natural elimination task is to eliminate all the variables in the system (1) except one, say x_{1}, that is, describe a differential ideal

$$
\begin{equation*}
\left\langle x_{1}^{\prime}-f_{1}(\boldsymbol{x}), \ldots, x_{n}^{\prime}-f_{n}(\boldsymbol{x})\right\rangle^{(\infty)} \cap \mathbb{C}\left[x_{1}^{(\infty)}\right] . \tag{2}
\end{equation*}
$$

Problem

The ideal (2) is uniquely determined by its minimal polynomial $f_{\text {min }}$ (polynomials are compared first w.r.t. the order and then w.r.t. total degree)

$$
i_{1}>i_{2} \Rightarrow x_{1}^{\left(i_{1}\right)}>x_{1}^{\left(i_{2}\right)}
$$

We can define ideal (2) as

$$
I=\left\langle f_{\min }\right\rangle^{(\infty)}: H^{(\infty)},
$$

with

$$
H=\frac{\partial f_{\min }}{\partial x_{1}^{(h)}} \text { and } h=\operatorname{ord}_{x_{1}} f_{\min } .
$$

Toy example

Consider the following model:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2}^{2} \\
x_{2}^{\prime}=x_{2}
\end{array}\right.
$$

Toy example

Consider the following model:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2}^{2} \\
x_{2}^{\prime}=x_{2}
\end{array}\right.
$$

Then

$$
x_{1}^{\prime \prime}=2 x_{2} x_{2}^{\prime}=2 x_{2}^{2}=2 x_{1}^{\prime} .
$$

Toy example

Consider the following model:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2}^{2} \\
x_{2}^{\prime}=x_{2}
\end{array}\right.
$$

Then

$$
x_{1}^{\prime \prime}=2 x_{2} x_{2}^{\prime}=2 x_{2}^{2}=2 x_{1}^{\prime} .
$$

In this case,

$$
I=\left\langle x_{1}^{\prime}-x_{2}^{2}, x_{2}^{\prime}-x_{2}\right\rangle^{(\infty)} \cap \mathbb{C}\left[x_{1}^{(\infty)}\right] .
$$

is uniquely determined by

$$
f=2 x_{1}^{\prime}-x_{1}^{\prime \prime}
$$

How it works

Consider the following model:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}^{2}+x_{2}^{2}, \\
x_{2}^{\prime}=x_{2}+1
\end{array}\right.
$$

How it works

Consider the following model:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}^{2}+x_{2}^{2} \\
x_{2}^{\prime}=x_{2}+1
\end{array}\right.
$$

In this case,

$$
I=\left\langle x_{1}^{\prime}-x_{1}^{2}-x_{2}^{2}, x_{2}^{\prime}-x_{2}-1\right\rangle^{(\infty)} \cap \mathbb{C}\left[x_{1}^{(\infty)}\right]
$$

is uniquely determined by

$$
\begin{aligned}
f= & \left(x_{1}^{\prime \prime}\right)^{2}+4 x_{1}^{4}+4 x_{1}^{2}\left(x_{1}^{\prime}\right)^{2}+4 x_{1}^{2}+4\left(x_{1}^{\prime}\right)^{2}-8 x_{1}^{2} x_{1}^{\prime}-4 x_{1} x_{1}^{\prime} x_{1}^{\prime \prime}-4\left(x_{1}^{\prime}-x_{1}^{2}\right) x_{1}^{\prime \prime}+ \\
& +8 x_{1} x_{1}^{\prime}\left(x_{1}^{\prime}-x_{1}^{2}\right)-4 x_{1}^{\prime} .
\end{aligned}
$$

Motivation

Describe/compute the minimal polynomial of the elimination ideal \rightarrow
\rightarrow find the support of the minimal polynomial

Motivation

Describe/compute the minimal polynomial of the elimination ideal \rightarrow
\rightarrow find the support of the minimal polynomial
\triangleright finding truncated power series solutions of $\mathbf{x}^{\prime}=\mathbf{g}(\mathbf{x})$

Problem

Consider the case of system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=g_{1}\left(x_{1}, x_{2}\right) \\
x_{2}^{\prime}=g_{2}\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

where $g_{1}, g_{2}=$ generic polynomials of degrees d_{1} and d_{2}.

Small step for a man

Theorem

Consider the system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=g_{1}\left(x_{1}, x_{2}\right), \\
x_{2}^{\prime}=g_{2}\left(x_{1}, x_{2}\right),
\end{array}\right.
$$

where $g_{1}, g_{2}=$ generic polynomials of degrees 2 and d. Then the Newton polytope of the minimal polynomial in $\left(s_{0}, s_{1}, s_{2}\right)$-coordinates $\left(x_{1}^{s_{0}}\left(x_{1}^{\prime}\right)^{s_{1}}\left(x_{1}^{\prime \prime}\right)^{s_{2}}\right)$ is
(1) a pyramid with vertices $(0,0,0),(4,0,0),(2,2,0),(0,3,0),(0,0,2)$ if $d=1$,
(3) a tetrahedron with vertices $(0,0,0),(2(d+1), 0,0),(0, d+1,0),(0,0,2)$ if $d \geq 2$.

Newton polytope of the minimal polynomial

Figure: Newton polytope of the minimal polynomial for $(2, d)$ case.

Figure: $(2,1)$ case

Figure: $(2, d), d \geq 2$ case

General case

Theorem

Consider the system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=g_{1}\left(x_{1}, x_{2}\right), \\
x_{2}^{\prime}=g_{2}\left(x_{1}, x_{2}\right),
\end{array}\right.
$$

where $g_{1}, g_{2}=$ generic polynomials of degrees d_{1} and d_{2}. Then the Newton polytope of the minimal polynomial in $\left(s_{0}, s_{1}, s_{2}\right)$-coordinates $\left(x_{1}^{s_{0}}\left(x_{1}^{\prime}\right)^{s_{1}}\left(x_{1}^{\prime \prime}\right)^{s_{2}}\right)$ is
(1) a pyramid with vertices
$(0,0,0),\left(d_{1}\left(d_{1}+d_{2}-1\right), 0,0\right),\left(d_{1}\left(d_{1}-1\right), d_{1}, 0\right),\left(0,2 d_{1}-1,0\right),\left(0,0, d_{1}\right)$ if $d_{1}>d_{2}$,
© a tetrahedron with vertices

$$
(0,0,0),\left(d_{1}\left(d_{1}+d_{2}-1\right), 0,0\right),\left(0, d_{1}+d_{2}-1,0\right),\left(0,0, d_{1}\right) \text { if } d_{1} \leq d_{2} .
$$

Newton polytope of the minimal polynomial

Figure: Newton polytope of the minimal polynomial for $\left(d_{1}, d_{2}\right)$ case.

Figure: $d_{1}>d_{2}$ case

Figure:
$d_{1} \leq d_{2}$ case

Proof plan

(1) ord $f_{\min }=2$.
(2) $f_{3}=\left(f_{1}\right)^{\prime}=0 \rightarrow$

$$
\left\{\begin{array}{l}
f_{1}=x_{1}^{\prime}-g_{1}\left(x_{1}, x_{2}\right), \tag{3}\\
f_{3}=x_{1}^{\prime \prime}-x_{1}^{\prime} \frac{\partial}{\partial x_{1}} g_{1}\left(x_{1}, x_{2}\right)-g_{2}\left(x_{1}, x_{2}\right) \frac{\partial}{\partial x_{2}} g_{1}\left(x_{1}, x_{2}\right) .
\end{array}\right.
$$

(3) $\operatorname{Res}_{x_{2}}\left(f_{1}, f_{3}\right)=\left(f_{\text {min }}\right)^{n}, n \in \mathbb{N}$
(1) $\operatorname{Res}_{x_{2}}\left(f_{1}, f_{3}\right)$ is irreducible $+\operatorname{deg} \operatorname{Res}_{x_{2}}\left(f_{1}, f_{3}\right)=d \Rightarrow$
\Rightarrow for $\left(x_{1}\right)^{s_{0}}\left(x_{1}^{\prime}\right)^{s_{1}}\left(x_{1}^{\prime \prime}\right)^{s_{2}}$ in $\operatorname{Res}_{x_{2}}\left(f_{1}, f_{3}\right)$

$$
s_{0}+s_{1}+s_{2} \leq d
$$

$(1, d)$ case

Consider the system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=g_{1}\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}+c_{3}, c_{2} \neq 0 \\
x_{2}^{\prime}=g_{2}\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

where $g_{1}, g_{2}=$ polynomials of degrees 1 and d. In this case

$$
x_{1}^{\prime \prime}=c_{1} x_{1}^{\prime}+c_{2} x_{2}^{\prime} .
$$

Consider new system

$$
\left\{\begin{array}{l}
f_{1}=x_{1}^{\prime}-c_{1} x_{1}-c_{2} x_{2}-c_{3}, \\
f_{3}=x_{1}^{\prime \prime}-c_{1} x_{1}^{\prime}-c_{2} g_{2}\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

Compute the resultant of polynomials f_{1} and f_{3} to eliminate x_{2}.

$$
\operatorname{Res}_{x_{2}}\left(f_{1}, f_{3}\right)=x_{1}^{\prime \prime}-c_{1} x_{1}^{\prime}-c_{2} g_{2}\left(x_{1}, \frac{1}{c_{2}}\left(x_{1}^{\prime}-c_{1} x_{1}-c_{3}\right)\right) .
$$

$(1, d)$ case

In this case
(1) $\operatorname{Res}_{x_{2}}\left(f_{1}, f_{3}\right)=f_{\text {min }}$.
(c) $\operatorname{deg} \operatorname{Res}_{x_{2}}\left(f_{1}, f_{3}\right)=d \Rightarrow$ for $\left(x_{1}\right)^{s_{0}}\left(x_{1}^{\prime}\right)^{s_{1}}\left(x_{1}^{\prime \prime}\right)^{s_{2}}$ in $\operatorname{Res}_{x_{2}}\left(f_{1}, f_{3}\right)$ we have

$$
s_{0}+s_{1}+s_{2} \leq d
$$

(3) $\operatorname{Res}_{x_{2}}\left(f_{1}, f_{3}\right)$ contains $x_{1}^{\prime \prime},\left(x_{1}^{\prime}\right)^{d}$ и $\left(x_{1}\right)^{d}$.

$(1, d)$ case

Then the Newton polytope of the minimal polynomial in (s_{0}, s_{1}, s_{2})-coordinates $\left(x_{1}^{s_{0}}\left(x_{1}^{\prime}\right)^{s_{1}}\left(x_{1}^{\prime \prime}\right)^{s_{2}}\right)$ is a tetrahedron with vertices

$$
(0,0,0),(d, 0,0),(0, d, 0),(0,0,1)
$$

Figure: Newton polytope of the minimal polynomial for $(1, d)$ case.

Thank you for your attention!

