Bounding the Support in the Differential Elimination Problem

Mukhina Yulia

Joint work with Gleb Pogudin

Department of Higher Algebra, Lomonosov Moscow State University

LIX, CNRS, École Polytechnique

Computer Algebra, June 26-28, 2023

A differential ring (R, ') is a commutative ring with a derivation $': R \to R$, that is, a map such that, for all $a, b \in R$, (a + b)' = a' + b' and (ab)' = a'b + ab'. A differential field is a differential ring that is a field. For i > 0, $a^{(i)}$ denotes the *i*-th order derivative of $a \in R$.

Let x be an element of a differential ring. We introduce $x^{(\infty)} := (x, x', x'', x^{(3)}, ...).$

□ ▶ < E ▶ < E ▶</p>

Let R be a differential ring. Consider a ring of polynomials in infinitely many variables

$$R[x^{(\infty)}] := R[x, x', x'', x^{(3)}, ...]$$

and extend the derivation from R to this ring by $(x^{(j)})' := x^{(j+1)}$. The resulting differential ring is called *the ring of differential polynomials in x over R*.

The ring of differential polynomials in several variables is defined by iterating this construction.

回 と く ヨ と く ヨ と

Let $S := R[x_1^{(\infty)}, ..., x_n^{(\infty)}]$ be a ring of differential polynomials over a differential ring R. An ideal $I \subset S$ is called a *differential ideal* if $a' \in I$ for every $a \in I$.

One can verify that, for every $f_1,...,f_s\in S$

 $\langle f_1^{(\infty)}, ..., f_s^{(\infty)} \rangle$

is a differential ideal. Moreover, this is the minimal differential ideal containing $f_1, ..., f_s$, and we will denote it by $\langle f_1, ..., f_s \rangle^{(\infty)}$.

伺 と く ヨ と く ヨ と …

Let I be an ideal in ring R, and $a \in R$. Then

$$I:a^{\infty}:=\{b\in R\mid \exists N: a^Nb\in I\}.$$

Note that the resulting set $I : a^{\infty}$ is also an ideal in R. And if I is a differential ideal, than set $I : a^{\infty}$ is also a differential ideal.

() <) <)
 () <)
 () <)
</p>

For every $1 \le i \le n$, we will call the largest j such that $x_i^{(j)}$ appears in P the order of P respect to x_i and denote it by $\operatorname{ord}_{x_i} P$; if P does not involve x_i , we set $\operatorname{ord}_{x_i} P := -1$.

< ∃ > < ∃ >

For every $1 \le i \le n$, we will call the largest j such that $x_i^{(j)}$ appears in P the order of P respect to x_i and denote it by $\operatorname{ord}_{x_i} P$; if P does not involve x_i , we set $\operatorname{ord}_{x_i} P := -1$.

Example

For differential polynomial

$$P = (x')^2 - 4x^3 + x$$

we have

$$\operatorname{ord}_{x} P = 1, \ \frac{\partial P}{\partial x'} = 2x'.$$

伺 ト イヨ ト イヨト

Consider a system of differential equations of the form

$$= f(\mathbf{x}), \tag{1}$$

伺 と く ヨ と く ヨ と

where $\mathbf{x} = (x_1, ..., x_n)$ is a tuple of differential indeterminates and $\mathbf{f} = (f_1, ..., f_n)$ is a tuple of polynomials from $\mathbb{C}[\mathbf{x}]$.

One natural elimination task is to eliminate all the variables in the system (1) except one, say x_1 , that is, describe a differential ideal

x

$$\langle x_1' - f_1(\boldsymbol{x}), ..., x_n' - f_n(\boldsymbol{x}) \rangle^{(\infty)} \cap \mathbb{C}[x_1^{(\infty)}].$$
⁽²⁾

The ideal (2) is uniquely determined by its minimal polynomial f_{min} (polynomials are compared first w.r.t. the order and then w.r.t. total degree)

$$i_1 > i_2 \Rightarrow x_1^{(i_1)} > x_1^{(i_2)}$$

We can define ideal (2) as

$$I = \langle f_{\min} \rangle^{(\infty)} : H^{(\infty)},$$

with

$$H = \frac{\partial f_{\min}}{\partial x_1^{(h)}} \text{ and } h = \operatorname{ord}_{x_1} f_{\min}.$$

(E)

Toy example

Consider the following model:

$$\begin{cases} x_1' = x_2^2, \\ x_2' = x_2. \end{cases}$$

э

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Toy example

Consider the following model:

$$\begin{cases} x_1' = x_2^2, \\ x_2' = x_2. \end{cases}$$

Then

$$x_1'' = 2x_2x_2' = 2x_2^2 = 2x_1'.$$

э

回 ト イヨ ト イヨト

Toy example

Consider the following model:

$$\begin{cases} x_1' = x_2^2, \\ x_2' = x_2. \end{cases}$$

▲御▶ ▲ 臣▶ ▲ 臣♪

Then

$$x_1'' = 2x_2x_2' = 2x_2^2 = 2x_1'.$$

In this case,

$$I = \langle x_1' - x_2^2, x_2' - x_2 \rangle^{(\infty)} \cap \mathbb{C}[x_1^{(\infty)}].$$

is uniquely determined by

$$f=2x_1'-x_1''$$

Consider the following model:

$$\begin{cases} x_1' = x_1^2 + x_2^2, \\ x_2' = x_2 + 1. \end{cases}$$

э

Consider the following model:

$$\begin{cases} x_1' = x_1^2 + x_2^2, \\ x_2' = x_2 + 1. \end{cases}$$

In this case,

$$I = \langle x_1' - x_1^2 - x_2^2, x_2' - x_2 - 1 \rangle^{(\infty)} \cap \mathbb{C}[x_1^{(\infty)}]$$

is uniquely determined by

$$\begin{split} f = & (x_1'')^2 + 4x_1^4 + 4x_1^2(x_1')^2 + 4x_1^2 + 4(x_1')^2 - 8x_1^2x_1' - 4x_1x_1'x_1'' - 4(x_1' - x_1^2)x_1'' + \\ & + 8x_1x_1'(x_1' - x_1^2) - 4x_1'. \end{split}$$

B b

< ∃ >

Describe/compute the minimal polynomial of the elimination ideal \rightarrow \rightarrow find the support of the minimal polynomial

向下 イヨト イヨト

Describe/compute the minimal polynomial of the elimination ideal \rightarrow \rightarrow find the support of the minimal polynomial

 \vartriangleright finding truncated power series solutions of x'=g(x)

向下 イヨト イヨト

Consider the case of system

$$\begin{cases} x_1' = g_1(x_1, x_2), \\ x_2' = g_2(x_1, x_2), \end{cases}$$

where g_1, g_2 = generic polynomials of degrees d_1 and d_2 .

э

() <) <)
 () <)
 () <)
</p>

Theorem

Consider the system

$$\begin{cases} x_1' = g_1(x_1, x_2), \\ x_2' = g_2(x_1, x_2), \end{cases}$$

where $g_1, g_2 =$ generic polynomials of degrees 2 and d. Then the Newton polytope of the minimal polynomial in (s_0, s_1, s_2) -coordinates $(x_1^{s_0}(x_1')^{s_1}(x_1'')^{s_2})$ is

- **3** a pyramid with vertices (0, 0, 0), (4, 0, 0), (2, 2, 0), (0, 3, 0), (0, 0, 2) if d = 1,
- a tetrahedron with vertices (0,0,0), (2(d + 1), 0, 0), (0, d + 1, 0), (0, 0, 2) if d ≥ 2.

Newton polytope of the minimal polynomial

Figure: Newton polytope of the minimal polynomial for (2, d) case.

Figure: (2,1) case

Figure: $(2, d), d \ge 2$ case

Theorem

Consider the system

$$\begin{cases} x'_1 = g_1(x_1, x_2), \\ x'_2 = g_2(x_1, x_2), \end{cases}$$

where $g_1, g_2 =$ generic polynomials of degrees d_1 and d_2 . Then the Newton polytope of the minimal polynomial in (s_0, s_1, s_2) -coordinates $(x_1^{s_0}(x_1')^{s_1}(x_1'')^{s_2})$ is

• a pyramid with vertices (0,0,0), $(d_1(d_1 + d_2 - 1), 0, 0), (d_1(d_1 - 1), d_1, 0), (0, 2d_1 - 1, 0), (0, 0, d_1)$ if $d_1 > d_2$,

a tetrahedron with vertices $(0,0,0), (d_1(d_1+d_2-1),0,0), (0,d_1+d_2-1,0), (0,0,d_1)$ if $d_1 \le d_2$.

御 と く ヨ と く ヨ とし

Newton polytope of the minimal polynomial

Figure: Newton polytope of the minimal polynomial for (d_1, d_2) case.

Figure: $d_1 \le d_2$ case

() <) <)
 () <)
 () <)
</p>

Proof

Proof plan

• ord $f_{\min} = 2$. **2** $f_3 = (f_1)' = 0 \rightarrow$ $\begin{cases} f_1 = x'_1 - g_1(x_1, x_2), \\ f_3 = x''_1 - x'_1 \frac{\partial}{\partial x_2} g_1(x_1, x_2) - g_2(x_1, x_2) \frac{\partial}{\partial x_2} g_1(x_1, x_2). \end{cases}$ (3)**3** Res _{x₂}(f_1, f_3) = $(f_{\min})^n, n \in \mathbb{N}$ • Res $_{x_2}(f_1, f_3)$ is irreducible + deg Res $_{x_2}(f_1, f_3) = d \Rightarrow$ \Rightarrow for $(x_1)^{s_0}(x_1')^{s_1}(x_1'')^{s_2}$ in Res $x_2(f_1, f_3)$ $s_0 + s_1 + s_2 < d$.

-

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

(1, *d*) case

Consider the system

$$\begin{cases} x_1' &= g_1(x_1, x_2) = c_1 x_1 + c_2 x_2 + c_3, \ c_2 \neq 0, \\ x_2' &= g_2(x_1, x_2), \end{cases}$$

where $g_1, g_2 =$ polynomials of degrees 1 and d. In this case

$$x_1'' = c_1 x_1' + c_2 x_2'.$$

Consider new system

$$\begin{cases} f_1 &= x_1' - c_1 x_1 - c_2 x_2 - c_3, \\ f_3 &= x_1'' - c_1 x_1' - c_2 g_2(x_1, x_2). \end{cases}$$

Compute the resultant of polynomials f_1 and f_3 to eliminate x_2 .

$$\operatorname{Res}_{x_2}(f_1, f_3) = x_1'' - c_1 x_1' - c_2 g_2(x_1, \frac{1}{c_2}(x_1' - c_1 x_1 - c_3)).$$

・ 御 ト ・ 臣 ト ・ 臣 ト …

In this case

- Res_{x₂} $(f_1, f_3) = f_{\min}$.
- **3** deg $\operatorname{Res}_{x_2}(f_1, f_3) = d \Rightarrow$ for $(x_1)^{s_0}(x_1')^{s_1}(x_1'')^{s_2}$ in $\operatorname{Res}_{x_2}(f_1, f_3)$ we have

 $s_0+s_1+s_2\leq d.$

3 Res $_{x_2}(f_1, f_3)$ contains $x_1'', (x_1')^d$ u $(x_1)^d$.

э

(1, *d*) case

Then the Newton polytope of the minimal polynomial in (s_0, s_1, s_2) -coordinates $(x_1^{s_0}(x_1')^{s_1}(x_1'')^{s_2})$ is a tetrahedron with vertices

(0,0,0), (d,0,0), (0,d,0), (0,0,1)

Figure: Newton polytope of the minimal polynomial for (1, d) case.

< 注 > < 注 >

Thank you for your attention!

(E)