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Differential ring

Definition
A differential ring (R, ′) is a commutative ring with a derivation ′ : R → R, that
is, a map such that,
for all a, b ∈ R, (a+ b)′ = a′ + b′ and (ab)′ = a′b + ab′.
A differential field is a differential ring that is a field.
For i > 0, a(i) denotes the i-th order derivative of a ∈ R.

Let x be an element of a differential ring. We introduce
x (∞) := (x , x ′, x ′′, x (3), ...).
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Ring of differential polynomials

Definition
Let R be a differential ring. Consider a ring of polynomials in infinitely many
variables

R[x (∞)] := R[x , x ′, x ′′, x (3), ...]

and extend the derivation from R to this ring by (x (j))′ := x (j+1). The resulting
differential ring is called the ring of differential polynomials in x over R.

The ring of differential polynomials in several variables is defined by iterating this
construction.
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Differential ideal

Definition

Let S := R[x
(∞)
1 , ..., x

(∞)
n ] be a ring of differential polynomials over a differential

ring R. An ideal I ⊂ S is called a differential ideal if a′ ∈ I for every a ∈ I .

One can verify that, for every f1, ..., fs ∈ S

⟨f (∞)
1 , ..., f (∞)

s ⟩

is a differential ideal. Moreover, this is the minimal differential ideal containing
f1, ..., fs , and we will denote it by ⟨f1, ..., fs⟩(∞).
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Differential ideal

Definition
Let I be an ideal in ring R, and a ∈ R. Then

I : a∞ := {b ∈ R | ∃N : aNb ∈ I}.

Note that the resulting set I : a∞ is also an ideal in R. And if I is a differential
ideal, than set I : a∞ is also a differential ideal.
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The order of differential polynomial

Definition

For every 1 ≤ i ≤ n, we will call the largest j such that x (j)i appears in P the order
of P respect to xi and denote it by ord xiP; if P does not involve xi , we set
ord xiP := −1.

Example
For differential polynomial

P = (x ′)2 − 4x3 + x

we have

ord xP = 1,
∂P

∂x ′
= 2x ′.
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Problem

Consider a system of differential equations of the form

x′ = f (x), (1)

where x = (x1, . . . , xn) is a tuple of differential indeterminates and f = (f1, ..., fn)
is a tuple of polynomials from C[x].
One natural elimination task is to eliminate all the variables in the system (1)
except one, say x1, that is, describe a differential ideal

⟨x ′1 − f1(x), ..., x ′n − fn(x)⟩(∞) ∩ C[x (∞)
1 ]. (2)
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Problem

The ideal (2) is uniquely determined by its minimal polynomial fmin (polynomials
are compared first w.r.t. the order and then w.r.t. total degree)

i1 > i2 ⇒ x
(i1)
1 > x

(i2)
1

We can define ideal (2) as

I = ⟨fmin⟩(∞) : H(∞),

with

H =
∂fmin

∂x
(h)
1

and h = ord x1 fmin.
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Toy example

Consider the following model: {
x ′1 = x2

2 ,

x ′2 = x2.

Then

x ′′1 = 2x2x
′
2 = 2x2

2 = 2x ′1.

In this case,

I = ⟨x ′1 − x2
2 , x

′
2 − x2⟩(∞) ∩ C[x (∞)

1 ].

is uniquely determined by

f = 2x ′1 − x ′′1
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How it works

Consider the following model: {
x ′1 = x2

1 + x2
2 ,

x ′2 = x2 + 1.

In this case,

I = ⟨x ′1 − x2
1 − x2

2 , x
′
2 − x2 − 1⟩(∞) ∩ C[x (∞)

1 ]

is uniquely determined by

f =(x ′′1 )
2 + 4x4

1 + 4x2
1 (x

′
1)

2 + 4x2
1 + 4(x ′1)

2 − 8x2
1 x

′
1 − 4x1x

′
1x

′′
1 − 4(x ′1 − x2

1 )x
′′
1 +

+ 8x1x
′
1(x

′
1 − x2

1 )− 4x ′1.
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Motivation

Describe/compute the minimal polynomial of the elimination ideal →

→ find the support of the minimal polynomial

▷ finding truncated power series solutions of x′ = g(x)
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Problem

Consider the case of system {
x ′1 = g1(x1, x2),

x ′2 = g2(x1, x2),

where g1, g2 = generic polynomials of degrees d1 and d2.
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Small step for a man

Theorem

Consider the system {
x ′1 = g1(x1, x2),

x ′2 = g2(x1, x2),

where g1, g2 = generic polynomials of degrees 2 and d . Then the Newton
polytope of the minimal polynomial in (s0, s1, s2)-coordinates (x s01 (x ′1)

s1(x ′′1 )
s2) is

1 a pyramid with vertices (0, 0, 0), (4, 0, 0), (2, 2, 0), (0, 3, 0), (0, 0, 2) if d = 1,
2 a tetrahedron with vertices (0, 0, 0), (2(d + 1), 0, 0), (0, d + 1, 0), (0, 0, 2) if

d ≥ 2.
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Newton polytope of the minimal polynomial

Figure: Newton polytope of the minimal polynomial for (2, d) case.

Figure: (2, 1) case Figure: (2, d), d ≥ 2 case
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General case

Theorem
Consider the system {

x ′1 = g1(x1, x2),

x ′2 = g2(x1, x2),

where g1, g2 = generic polynomials of degrees d1 and d2. Then the Newton
polytope of the minimal polynomial in (s0, s1, s2)-coordinates (x s01 (x ′1)

s1(x ′′1 )
s2) is

1 a pyramid with vertices
(0, 0, 0), (d1(d1 + d2 − 1), 0, 0), (d1(d1 − 1), d1, 0), (0, 2d1 − 1, 0), (0, 0, d1) if
d1 > d2,

2 a tetrahedron with vertices
(0, 0, 0), (d1(d1 + d2 − 1), 0, 0), (0, d1 + d2 − 1, 0), (0, 0, d1) if d1 ≤ d2.
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Newton polytope of the minimal polynomial

Figure: Newton polytope of the minimal polynomial for (d1, d2) case.

Figure:
d1 > d2 case

Figure:
d1 ≤ d2 case
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Proof

Proof plan
1 ord fmin = 2.
2 f3 = (f1)

′ = 0 →f1 = x ′1 − g1(x1, x2),

f3 = x ′′1 − x ′1
∂

∂x1
g1(x1, x2)− g2(x1, x2)

∂

∂x2
g1(x1, x2).

(3)

3 Res x2(f1, f3) = (fmin)
n, n ∈ N

4 Res x2(f1, f3) is irreducible + degRes x2(f1, f3) = d ⇒
⇒ for (x1)

s0(x ′1)
s1(x ′′1 )

s2 in Res x2(f1, f3)

s0 + s1 + s2 ≤ d .
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(1, d) case

Consider the system{
x ′1 = g1(x1, x2) = c1x1 + c2x2 + c3, c2 ̸= 0,
x ′2 = g2(x1, x2),

where g1, g2 = polynomials of degrees 1 and d . In this case

x ′′1 = c1x
′
1 + c2x

′
2.

Consider new system {
f1 = x ′1 − c1x1 − c2x2 − c3,

f3 = x ′′1 − c1x
′
1 − c2g2(x1, x2).

Compute the resultant of polynomials f1 and f3 to eliminate x2.

Res x2(f1, f3) = x ′′1 − c1x
′
1 − c2g2(x1,

1
c2

(x ′1 − c1x1 − c3)).
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(1, d) case

In this case
1 Res x2(f1, f3) = fmin.
2 degRes x2(f1, f3) = d ⇒ for (x1)

s0(x ′1)
s1(x ′′1 )

s2 in Res x2(f1, f3) we have

s0 + s1 + s2 ≤ d .

3 Res x2(f1, f3) contains x ′′1 , (x
′
1)

d и (x1)
d .
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(1, d) case
Then the Newton polytope of the minimal polynomial in (s0, s1, s2)-coordinates
(x s01 (x ′1)

s1(x ′′1 )
s2) is a tetrahedron with vertices

(0, 0, 0), (d , 0, 0), (0, d , 0), (0, 0, 1)

.

Figure: Newton polytope of the minimal polynomial for (1, d) case.
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Thank you for your
attention!
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