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Deciding Summability via Residues in Theory and in Practice

Carlos E. Arreche

The University of Texas at Dallas, Department of Mathematical Sciences, 800 W Campbell Road, Richardson, TX 75080, USA

Abstract
In diơerence algebra, summability arises as a basic problem upon which rests the eơective solution of
other more elaborate problems, such as creative telescoping problems and the computation of Galois
groups of diơerence equations. In 2012 Chen and Singer introduced discrete residues as a theoretical
obstruction to summability for rational functions with respect to the shiƠ and q-dilation diơerence
operators. Since then analogous notions of discrete residues have been deƞned in other diơerence
settings relevant for applications, such as for Mahler and elliptic shiƠ diơerence operators. Very recently
there have been some advances in making these theoretical obstructions computable in practice.

Keywords
diơerence equation, diơerence ƞeld, discrete residues, summability problem

1. DiȂerence fields, diȂerence equations, and summability

1.1. Basic notation and conventions

We suppose throughout thatM is a ƞeld of characteristic zero equipped with an endomorphism
σ : M ↪→ M of inƞnite order, and denote by K the subƞeld of elements c ∈ M such that
σ(c) = c. Thus (M, σ) is a di×erence Ùeld and its subÙeld of invariants is K. We assume that K is
relatively algebraically closed inM, and we ƞx an algebraic closureK ofK.

1.2. Linear diȂerence equations

A linear di×erence equation over M of order r in a formal indeterminate y is one of the form∑r
j=0 ajσ

j(y) = b, ar, . . . , a0, b ∈ M such that ara0 ̸= 0. Such equations help us model many
kinds of interesting sequences, such as the Fibonacci numbers or Catalan numbers, and many
special functions such as the Euler Gamma function and combinatorial generating functions.
Placing the study of such sequences and functions within the abstract setting of diơerence
algebra described above is helpful for designing theoretical and practical algorithms that can
further elucidate their properties based on the diơerence equation(s) that they satisfy.

1.3. The general summability problem

We say that f ∈ M is summable (in M) if there exists g ∈ M such that f = σ(g) − g. The
terminology is justiƞed by the following discrete analogue of the Fundamental Theorem of
Calculus: setting F (n) =

∑n
k=0 σ

k(f), we can eliminate the summation symbol and write
F (n) = σn+1(g)− g for any g such that f = σ(g)− g. The study of summability was initiated
in [1]. The summability problem asks to decide, for a given f ∈ M, whether f is summable in
M. We insist on systematically ignoring the more diƢcult summation problem of computing a
certiÙcate g ∈ M and reduced form h ∈ M such that f = σ(g)−g+h and h is somehow “minimal”.
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For many (but not all!) purposes, the explicit computation of such additional data is both very
onerous and also not needed beyond the answer to the simple question: is f summable or not?

1.4. Linear obstructions to summability

Let us denote the forward di×erence operator ∆ := σ − idM, so that∆(g) = σ(g)− g for g ∈ M.
Observing that∆ is a K-vector space endomorphism ofM, we may rephrase the summability
problem as asking, for a given f ∈ M, whether it belongs to the K-linear subspace im(∆).
It is obvious from a theoretical point of view that there exists another K-linear map on M
whose kernel is precisely im(∆) — namely, the canonical projection M ↠ M/im(∆). It is
also clear that such a map cannot possibly be unique, since for example post-composing with
arbitrary injective K-linear maps into other K-vector spaces will not change the kernel. A
K-linear obstruction to summability is anyK-linear map ρ onM (to any targetK-vector space)
such that ker(ρ) = im(∆). In the next section we describe, for speciƞc examples of diơerence
ƞelds (M, σ) of practical and theoretical interest, explicitK-linear obstructions to summability,
which are called (depending on the context) discrete/orbital residues. In the ƞrst few of these
cases we also describe recent and ongoing eơorts to design algorithms to eƢciently compute
(K-rational representations of) these residues. Although the deƞnitions become progressively
more technical and complicated, we are optimistic that we shall eventually possess practical
algorithms to compute all of them.

2. Discrete residues as obstructions to summability: case studies

2.1. The shiȅ case

In the shiÝ case (S), we considerM = K(x) and σ(x) = x + 1. Given f ∈ K(x), there exists a
unique complete partial fraction decomposition

f = p+
∑

k≥1

∑

α∈K

ck(α)

(x− α)k
, (1)

where p ∈ K[x] is a polynomial and all but ƞnitely many of the ck(α) ∈ K are 0. The discrete
residue of f of order k at the orbit ω ∈ K/Z is deƞned in [7] by the ƞnite sum

dres(f, ω, k) :=
∑

α∈ω

ck(α). (2)

It is proved in [7] that f is summable if and only if dres(f, ω, k) = 0 for every ω ∈ K and
k ∈ N. In [11, 2, 3] it is shown how to compute eƢciently pairs ofK-polynomials (Bk, Dk) with
the following properties: for each orbit ω such that dres(f, ω, k) ̸= 0, there exists a unique
α ∈ ω such that Bk(α) = 0, and for this α we have Dk(α) = dres(f, ω, k). This is desirable
in applications where one wishes to compute with discrete residues but the computation of
the complete partial fraction decomposition (1) is too expensive or impossible. An alternative
computationally feasibleK-rational representation of discrete residues is described in [10].

2.2. The q-dilation case

In the q-dilation case (Q), we again considerM = K(x), but this time we set σ(x) = qx for some
q ∈ K× = K− {0} such that q is not a root of unity (so that σ is of inƞnite order). This time the

orbits are the cosets ω ∈ K
×
/qZ, and we must choose a distinguished representative αω in each
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orbit ω. Relative to the complete partial fraction decomposition (1) of f ∈ K(x), the q-discrete

residue of f of order k at the orbit ω ∈ K
×
/qZ is deƞned in [7] by the ƞnite sum

dres(f, ω, k) :=
∑

n∈Z

q−nkck(q
nαω); and dres(f,∞) := p(0).

Note that making a diơerent choice of distinguished representative α′
ω = qℓαω of the orbit ω has

the eơect of multiplying the corresponding q-discrete residue of order k by qℓk. It is proved in

[7] that f is summable if and only if dres(f,∞) = 0 and dres(f, ω, k) = 0 for every ω ∈ K
×
/qZ

and k ∈ N. It would be desirable to have in this case also eƢcient algorithms analogous to
those of [11, 2, 2] in the shiƠ case (S) that produceK-rational representations of the q-discrete
residues of f whilst bypassing the expensive or impossible computation of the complete partial
raction decomposition (1). No such algorithm exists (yet).

2.3. The Mahler case

In the Mahler case (M), we again consider M = K(x), but this time we set σ(x) = xm for
some integer m ≥ 2. Note that in this case σ is only an endomorphism of M, but not an
automorphism.1 In this case it is helpful to decompose f ∈ K(x), relative to the complete partial
fraction decomposition (1), as a Laurent polynomial component fL := p+

∑
k≥1 ck(0)x

−k and a
complementary component fT := f − fL. It is not diƢcult to see that f is summable if and only
if both fL and fT are summable. For any Laurent polynomial L =

∑
j∈Z ℓjx

j ∈ K[x, x−1], its
Mahler discrete residue is a vector indexed by equivalence classes θ under the equivalence relation
on integer exponents i ∼ j if i/j ∈ mZ, with components deƞned by dres(L,∞)θ :=

∑
j∈θ ℓj.

In this setting we must similarly decomposeK
×
, not into orbits but rather into Mahler trees τ :

these are the equivalence classes in K under the equivalence relation α ∼ β if αmr

= βms

for
some r, s ∈ N. There is a qualitative dichotomy between torsion trees that consist entirely of
roots of unity, and non-torsion trees that contain no roots of unity. For a non-torsion tree τ and
k ∈ N, the Mahler discrete residue dres(f, τ, k) is deƞned in [5] as a vector in K

τ
, all of whose

components are zero except for those indexed by a certain ƞnite set of α ∈ τ of “maximal
height” (relative to f ), for which the corresponding components are deƞned by the ƞnite sum

dres(f, τ, k)α =
∑

s≥k

∑

n≥0

V
(m,n)
s,k αk−smn

cs(α
mn

); where the V
(m,n)
s,k ∈ Q

are certain auxiliary structural constants computed explicitly in [4, 5] for 1 ≤ s ≤ r and n ≥ 0.
The Mahler discrete residues at torsion trees are deƞned similarly, but mediated by additional
technical ingredients necessary to retain control over the pre-periodic behavior of roots of
unity under the Mahler endomorphism ζ ↦→ ζm. It is proved in [4, 5] that f is Mahler summable
if and only if all its Mahler discrete residues vanish. In [5] a generalization of Mahler discrete
residues is developed for the “twisted” Mahler summability problem of deciding, for a given
f ∈ K(x) and λ ∈ Z, whether f = mλσ(g) − g for some g ∈ K(x). There seem to be several
technical diƢculties to overcome in order to develop practical algorithms to compute (twisted)
Mahler discrete residues.

2.4. The elliptic case

In the elliptic shiÝ case (E), we ƞx an elliptic curve E : y2 = x3 +Ax+B for some A,B ∈ K such
that 4A3 + 27B2 ̸= 0, and we denote byME = K(x, y), the ƞeld of rational functions on E . The
elliptic curve E can sometimes be modeled in other ways. In case K is the ƞeld C of complex

1In certain theoretical contexts it can be useful to replace K(x) with
⋃

n∈N
K(x1/n), for which the natural extension

of the Mahler endomorphism σ becomes an automorphism.
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numbers, there exists a lattice Λ ⊂ C such that E ≃ C/Λ, andME is identiƞed with the ƞeld
of meromorphic functions f(z) on C such that f(z + λ) = f(z) for every λ ∈ Λ. In case K is
C or R (or some other complete valued ƞeld, such as a p-adic ƞeld) there exists2 q ∈ K× with
|q| < 1 such that E is isomoprhic to the Tate curve K×/qZ, andME is identiƞed with the ƞeld of
meromorphic functions f(z) onK× such that f(qz) = f(z).

For a givenK-rational non-torsion point t ∈ E , we consider the corresponding automorphism
σ onME obtained by pre-composing rational functions f on E with the addition-by-tmap σ∗ on
E under the elliptic group law. Concretely, if the coordinates x(t) = tx and y(t) = ty, then setting

st :=
y−ty
x−tx

we have σ(x) = s2t − x− tx and σ(y) = st(x− σ(x))− y. In the conceptually simpler
alternative descriptions of E , the corresponding description of σ is more straightforward: when
E = C/Λ, we have σ(f(z)) = f(z + t) for some t ∈ C such that nt /∈ Λ for any n ∈ N; and in
the Tate curve setting E = K×/qZ, we have σ(f(z)) = f(tz) for some t ∈ K× such that t and
q are multiplicatively independent. Working in the algebraic setting, a compatible system of
parameters U = {uα ∈ ME | α ∈ E(K)} is deƞned in [8, 9] by the conditions that ordα(uα) = 1
and σ(uσ∗(α)) = uα. For f ∈ ME and α ∈ E(K), there exist unique ck(α) ∈ K for k ∈ N,

almost all 0, such that f −
∑

k≥1 ck(α)u
−k
α is non-singular at α. Relative to these ancillary

deƞnitions, the orbital residue of f ∈ ME at the orbit ω ∈ E(K)/Z.t of order k ∈ N is deƞned in
[8, 9] by the same formula (2), where it is also proved that if f is summable then all its orbital
residues vanish. However, the converse is not true. An additional set of two obstructions, called
panorbital residues, were introduced in [6] in both the lattice and algebraic settings, where it was
proved f is summable if and only if its orbital and panorbital residues all vanish. The deƞnition
of panorbital and orbital residues in the setting of Tate curves will appear in a forthcoming
publication. It would be desirable also in this case to have algorithms that can compute orbital
and panorbital residues of elliptic functions, at least in the algebraic setting.

Remark 2.1. Another interesting operator onME is obtained by pre-composing f ∈ ME with
the multiplication-by-mmap for an integerm ≥ 2 under the elliptic group law. As far as we
know, no one has yet deƞned aK-linear obstruction to summability in this elliptic Mahler case.
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Abstract
This paper explores the theory and applications of Gröbner bases in polynomial and diơerential systems,
emphasizing their role in solving ideal membership problems, analyzing diơerential equations, and
constructing numerical schemes. The computational framework leverages the Python library PyGInv (a
lightweight variant of GInv), integrated with SymPy, to demonstrate eƢciency in symbolic computations.
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Gröbner bases, Hilbert polynomial, roots of polynomial equations, symmetries of diơerential equations,
diơerence schemes, ƞrst diơerential approximation

Historically, works in the direction of creating the theory of Gröbner bases were focused
on constructively solving the ideal membership problem. One of the ƞrst works was done in
1900 by [12]. An admissible monomial ordering was introduced by Macaulay in 1927 [15]. In
1939 [13], Gröbner used admissible monomial ordering to ƞnd a basis of the quotient ring for a
zero-dimensional ideal. Gröbner bases were introduced by Buchberger in his dissertation in
1965 [7]. In his subsequent works, Buchberger applied the algorithm for constructing Gröbner
bases to the study of systems of polynomial equations.
An alternative approach to the Gröbner basis method emerged during the investigation of

diơerential equations. It was focused on reducing the system to a form that allows determining
the dimension of the solution space. The concept of involutiveness was introduced by Cartan [8]
while studying PfaƢan-type equations in total diơerentials. An involutive system of diơerential
equations contains all integrability conditions, and prolongations of the system do not yield
new compatibility conditions. The completion of a system with its integrability conditions is
called closure.
Riquier [17], while studying solutions of diơerential equations in the form of formal series,

proposed a complete ordering for partial derivatives. Using this ordering, he identiƞed a subset
of derivatives called principal, with respect to which the system of PDEs can be resolved. The
remaining derivatives, called parametric, determine the arbitrariness in the solution and aơect
the formulation of initial conditions. As a result, Riquier developed a theory containing the
Cauchy-Kovalevskaya theorem as a special case.
Janet [14] further developed Riquier’s approach. For principal derivatives, he introduced a

partition of independent variables into multiplicative and non-multiplicative. As a result, all
prolongations of the system were divided into multiplicative and non-multiplicative, and if
prolongations by non-multiplicative variables yielded the same system as prolongations by
multiplicative variables, such a system was called passive.
The diơerence between Gröbner bases and their extension by involutive bases is best illus-

trated in Figure 1. On the leƠ ƞgure, cones of divisible monomials are shown in diơerent colors.
As a result of ƞxing the monomial ordering in the general polynomial case, at the intersection
points of the cones, it is necessary to compute S-polynomials with respect to the current basis
and add them to the basis. Upon completion of this process, a Gröbner basis in the chosen
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Figure 1: Leȅ: standard division; center and right: Janet division.

ordering will be obtained. Now, to determine membership, it is suƢcient to compute the
polynomial’s value with respect to the current basis. The sequence of reductions is unimportant
since all S-polynomials already belong to the basis.

Janet’s partition of variables prohibits division by non-multiplicative variables. As a result, the
cones in the center and right ƞgures do not intersect, and the dimension of the cones without
intersections can be easily calculated. By augmenting the current basis with prolongations
by non-multiplicative variables, all S-polynomials will be computed, and the involutive basis
will contain the Gröbner basis, as shown in the right ƞgure. For it, the Hilbert polynomial can
be easily calculated: HP8 = 3s + 10, where s ≥ 8 denotes the number of monomials up to
total degree s that have no divisors among the leading monomials of the Gröbner basis. The
involutive approach to constructing Gröbner bases was developed in the works [19, 9, 10].
The Gröbner basis in the zero-dimensional case allows constructing a matrix representation

for each variable. For example, for the well-known cyclic roots example cyclic6, the Hilbert
polynomial equals 156, meaning there are exactly 156 monomials wl that have no divisors
among the leading monomials of the Gröbner basis. The transition to matrix representation
can be performed using the formula: xiwl =

∑156
k=1X

i
l, kwk.Here, the matricesXi are integer

coeƢcients obtained by computing the corresponding normal form. The number of non-zero
terms in these matrices is 2789, 2728, 2548, 2406, 1952, 799, and their eigenvalues represent all
roots of the system, accounting for their multiplicity.
Using Rabinowitsch’s trick [16] to represent inequalities by introducing additional variables,

Gröbner bases can be used to solve the graph coloring problem with n colors. For example,
in the case of three colors, the colors for adjacent vertices can be deƞned by the following
polynomials: x(x+1)(x+2), y(y+1)(y+2), (x− y)k− 1. In the last polynomial, the additional
variable k cannot vanish, meaning the colors x and y are distinct. The Gröbner basis aƠer
eliminating the polynomial with k has the following form: x3+3x2+2x, y2+yx+3y+x2+3x+2.
Using these relations, all adjacent vertices can be described, and by constructing the Gröbner
basis, all possible colorings of the given graph can be found.
Another interesting application of polynomial Gröbner bases is presented in the work [2].
The condition for higher symmetries of the Korteweg-deVries equation (abbreviated notation,

e.g., uxxx = u3):
ut + 6u1u+ u3 = 0

uε − F (t, x, u, u1, u2, . . . , u5) = 0

For the second equation of the system, we introduce total derivatives of F .

dF

dt
= Ft + Fu(6u1u+ u3) +

∑

Fui
(6u1u+ u3)i

dF

dx
= Fx + Fuu1 +

∑

Fui
ui+1

This form of notation allows introducing a constant ε into the exact solution of the Korteweg-de
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Vries equation by integrating the second equation. The integrability (compatibility) condition
of this system can be written using the S-polynomial (lexicographic ordering t ≻ x):

(

ut + 6u1u+ u3)ε − uεt +
d

dt
F = 0

In the last equation, due to the Leibniz diơerentiation rule, the derivative with respect to ε

enters the integrability condition linearly.

6uuε1 + 6u1uε + uε3
d

dt
F = 0

Here, we can replace uε with F using total derivatives of F .

6u
d

dx
F + 6u1F +

d3

dx3
F +

d

dt
F = 0 (1)

Since F itself does not depend on derivatives higher than ƞƠh order, we can obtain a system of
linear equations for F . By constructing a Gröbner basis for the resulting system and reƞning
the form of the solution, the explicit form of higher symmetries can be found aƠer several
steps.
Gröbner bases can also be used to construct diơerence schemes [11, 5, 1, 5]. As an example,

consider constructing a compact fourth-order diơerence scheme for the Laplace equation. A
compact scheme for second derivatives is known: 1

10f
′′

i−1 + f ′′

i + 1
10f

′′

i+1 = 6
5
fi+1−2fi+fi−1

h2 . By
introducing three functions with the elimination ordering uxx ≻ uyy ≻ u, the scheme for the
Laplace equation can be written as:

1
10uxxi−1, k + uxxi, k +

1
10uxxi+1, k −

6
5
ui+1, k−2ui, k+ui−1, k

h2 ,
1
10uyyi, k−1 + uyyi, k +

1
10uyyi, k+1 −

6
5
ui, k+1−2ui, k+ui, k−1

h2 ,

uxxi, k − uyyi, k.

This yields the well-known compact fourth-order scheme:
1 4 1
4 −20 4
1 4 1

.

In the 1960s, Yanenko and Shokin [18] formulated the method of diơerential approximations
of diơerence schemes. The main idea of this method is to replace the study of properties of
diơerence schemes with the study of a certain problem with diơerential equations that occupy
an intermediate position between the original diơerential problem and the diơerence scheme
approximating it.
The algorithm for constructing the ƞrst diơerential approximation (FDA) for such systems

represents a set of simple operations with formal power series, for which the construction of a
Gröbner basis allows building FDA not only for evolutionary-type equations [4].
For ordinary diơerential equations (ODEs), constructing FDA allows estimating the stiơness

of the ODE system [6].
Constructing FDA for the Van der Pol oscillator [6] enabled correctly determining the order

of the numerical method and its residual term. FDA was constructed for various explicit and
implicit Runge-Kutta methods and multistep Adams-Bashforth and Adams-Moulton methods.
All results showed that FDA has the form hp(Cµp+1u1(u

2 − 1)p+1) + . . .), where p is the order
of the method and C is some constant. The conducted computations demonstrate that using
FDA, one can estimate the residual of the used numerical method depending on the problem
parameters, detect and estimate the stiơness of the ODE system. For computations with variable
step size, given a tolerance tol, computations can be performed using the following formula:
min(h, (tol/(1 + abs(FDA))1/p).
The presented methods allow conducting eƢcient computations using computer algebra

systems. All given examples were computed in PyGInv, which is a “lightweight” version of
GInv [3] (short for Gröbner INVolutive). It is written in “pure” Python and uses the SymPy
computer algebra system for working with parameters.
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Integrable Cases of the Euler–Poisson Equations
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Abstract
In the classical problem of the motion of a rigid body around a ƞxed point, described by the Euler-
Poisson equations, we make an attempt to connect integrability of the system with its properties near its
stationary points. The method gives all known cases of integrability and several new.

Keywords
rigid top, Euler-Poisson equations, ƞrst integral, normal form

1. Introduction

The system of Euler-Poisson equations (1750) (or shortly EP-equations) is a real autonomous
system of six ordinary diơerential equations (ODEs).

Ap′ + (C −B)qr = Mg (y0γ3 − z0γ2) ,

Bq′ + (A− C)pr = Mg (z0γ1 − x0γ3) ,

Cr′ + (B −A)pq = Mg (x0γ2 − y0γ1) ,

γ′1 = rγ2 − qγ3, γ′2 = pγ3 − rγ1, γ′3 = qγ1 − pγ2,

(1)

with dependent variables p, q, r, γ1, γ2, γ3 and parameters A,B,C, x0, y0, z0, satisfying the trian-
gle inequalities

0 < A ⩽ B + C, 0 < B ⩽ A+ C, 0 < C ⩽ A+B. (2)

Here, the prime indicates diơerentiation over the independent variable time t, Mg is the
weight of the body, A,B,C are the principal moments of inertia of the rigid body, x0, y0, z0 are
the coordinates of the center of mass of the rigid body, γ1, γ2, γ3 are the vertical directional
cosines.

EP-equations describe themotion of a rigid top around a ƞxed point [4] and have the following
three ƞrst integrals:

energy: I1
def
= Ap2 +Bq2 + Cr2 − 2Mg (x0γ1 + y0γ2 + z0γ3) = h = const,

momentum: I2
def
= Apγ1 +Bqγ2 + Crγ3 = l = const,

geometric: I3
def
= γ21 + γ22 + γ23 = 1.

EP-equations are integrable if there is a fourth general integral I4. So far, Ùve cases of
integrability are known:
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Case 1. Euler-Poinsot: x0 = y0 = z0 = 0 and the fourth integral is

I4
def
= A2p2 +B2q2 + C2r2 = const.

Case 2. Lagrange-Poisson: B = C, x0 ̸= 0, y0 = z0 = 0, and the fourth integral is

I4
def
= p = const.

Case 3. Kovalevskaya (1890): A = B = 2C, x0 ̸= 0, y0 = z0 = 0, and

I4
def
=

(

p2 − q2 + cγ1
)2

+ (2pq + cγ2)
2 = const,

where c = Mgx0/C.

Case 4. Kinematic symmetry: A = B = C and I4
def
= x0p+ y0q + z0r = const. It is derived from

Case 2.

Case 5. Bruno–Batkhin (2024) [1]: A = B = 2C, x0 ̸= 0, y0 ̸= 0, z0 = 0, the fourth integral is

I4
def
=

(

p2 − q2 + cγ1 − dγ2
)2

+ (2pq + dγ1 + cγ2)
2 = const,

where c = Mgx0/C, d = Mgy0/C.

Let ℓ be a number of nonzero values among parameters x0, y0, z0. Below we consider theory
for all ℓ = 0, 1, 2, 3. We apply it here for the case ℓ = 1 only because of economy of space, but in
our lecture we will consider the cases ℓ = 2, 3 as well.

2. Theory

2.1. Local and global integrability

In [2] the notion local integrability was introduced: An ODE system is locally integrable near a
stationary point (SP) of the system if it has enough analytic integrals in a vicinity of the SP. It is
evident that an integrable system is locally integrable at each of its stationary points.

Hypothesis 1 (Edneral [3]). If an autonomous polynomial ODE system is locally integrable in the
neighborhood of all its stationary points, then it is globally integrable.

Therefore, to ƞnd global integrability, we must ƞrst ƞnd all stationary points of the ODE
system and then ƞnd out whether the system is locally integrable in their neighborhoods.
LetX = (p, q, r, γ1, γ2, γ3), the pointX be a stationary point in the system (1) and

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
B − C

A
r

B − C

A
q 0 −

z0

A

y0

A
C −A

B
r 0

C −A

B
p

z0

B
0 −

x0

B
A−B

C
q

A−B

C
p 0 −

y0

C

x0

C
0

0 −γ3 γ2 0 r −q

γ3 0 −γ1 −r 0 p

−γ2 γ1 0 q −p 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

is a matrix of the linear part of the system (1) near the pointX. The characteristic polynomial
χ(λ) of the matrixM is χ(λ) = λ6 + a4λ

4 + a2λ
2. Canceling it by λ2 we get a biquadratic form,

which discriminant on λ2 is the following

Dλ(χ) = a24 − 4a2. (3)
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It is a rational functionD = G/H, whereG andH are polynomials in system parameters.
A stationary point is locally integrable [2] if a2 < 0 or Dλ(χ) < 0. But this property is not

satisƞed for deƞnite values of system parameters (1).
The stationary points of the EP system form one-dimensional and two-dimensional families

F ℓ
j in R

6. Here ℓ is the number of nonzero values among x0, y0, z0 and j is the number of the
family for given value of ℓ.
The numeratorG of the ƞrst discriminantDλ(χ) (3) depends on the set Ξ of parameters

Ξ
def
={s, A, B, C} (4)

where s is the parameter along the family F ℓ
j and others are parameters of the system (1). Let ξ

be one of the parameters (4). By∆ξ

(

F ℓ
j

)

we denote the secondary discriminant of the numerator

G of the ƞrst discriminant (3) on the parameter ξ.

Hypothesis 2. If near a stationary point X of the family F ℓ
j with certain parameters values (4) the

EP equations are locally integrable, then at these parameter values there is at least one secondary

discriminant ∆ξ

(

F ℓ
j

)

= 0.

We have found some general properties of the integrable cases 1–5, which were formulated
as Hypothesis 2. So we have to compute all the values of the parameters A,B,C, x0, y0, z0 for
which this property is satisƞed.

2.2. Zero eigenvalues

Usually, SP of the EP-equations has two zero eigenvalues. The case where the characteristic
polynomial χ(λ) has zero roots can be studied using the approach from [5]. But here we assume

Hypothesis 3. For EP-equations, the stationary point with four zero eigenvalues is locally integrable.

2.3. Checking for integrability

There are two ways to check the existence of the fourth integral:

• ƞnding this integral in the explicit form;

• using the normal form (NF) of the system near the SP.

In the last case, according to [2, Section 5.3] the coeƢcients of the resonant terms of the NF at a
resonance of order 3, i.e., when there exists a pair of eigenvalues with ratio 2 : 1, should be zero
in integrable cases. They are zero in some subcases, and in other subcases they are nonzero.
So, for a check of integrability, it is suƢcient to provide one step of the normalization trans-

formationX = QY , whereQ is a matrix composed of the eigenvectors ofM and reduces the
linear system of EP-equations into a diagonal form. AƠer the reduction, it is only necessary to
check the coeƢcients of the resonant monomials Y p

j Y
q
k .

3. Case ℓ = 1

3.1. Families of SP for ℓ = 1

Theorem 1. For ℓ = 1 the system (1) has four families of SP:

F1

1 : {p = s, q = r = 0, γ1 = p/k = ±1, γ2 = γ3 = 0} ;

F1

2 :

{

p =
x0

k(C −A)
, q = 0, r =

s

k
, γ1 =

p

k
, γ2 = 0, γ3 =

r

k
,A ̸= C, x0 ̸= 0

}

;
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F1

3 :

{

p =
x0

k(B −A)
, r = 0, q =

s

k
, γ1 =

p

k
, γ2 =

q

k
, γ3 = 0, A ̸= B, x0 ̸= 0

}

;

F1

4 :

{

p =
x0

k(B −A)
, γ1 =

p

k
, γ2 =

q

k
, γ3 =

r

k
,A ̸= B = C, x0 ̸= 0

}

,

where s, q, r are parameters. Under the permutation

q ↔ r, γ2 ↔ γ3, B ↔ C, y0 ↔ z0, t → −t. (5)

families F1
3
↔ F1

2
, the families F1

1
and F1

4
are invariant under that automorphism.

Let’s apply our approach to the case ℓ = 1. In this case x0 ̸= 0, y0 = z0 = 0. Now we study
local integrability for the families F1

1
, F1

2
and F1

4
, because family F1

3
becomes family F1

2
under

the permutation (5).

3.2. Conditions of local integrability for familyF1

1

So, for the family F1
1
we have the following:

coeƢcients a4 and a2 of the characteristic polynomial χ(F1
1
) are

a4 =
(B + C)x0 + s2

(

A2 −AB −AC + 2CB
)

BC
, a2 =

(

(A− C)s2 + x0
) (

(A−B)s2 + x0
)

BC
;

numeratorG of the discriminantDλ(χ) is

G(F1

1 ) = A2 (A− C −B)2 s4 + 2 (BA+AC − 4CB) (A− C −B)x0 s
2 + (B − C)2 x20,

the secondary discriminants∆ξ are the following

∆s2
(

F1

1

)

∼= (A− 2C)2 (A− 2B)2 (A−B − C)6 (B − C)2A2B2C2x60,

∆A

(

F1

1

)

∼= g1A (B − C)2 x30B
2C2s12,

∆B

(

F1

1

)

∼= (A− 2C)2 g1Bx
2

0C s2.

According to permutation B ↔ C we obtain

∆C

(

F1

1

)

∼= (A− 2B)2 g1Cx
2

0Bs2,

where

g1A = 2 (B + C)3 s6 + 3 (C − 5B) (B − 5C) s4x0 + (24B + 24C) s2x20 + 16x30,

g1B = (A− C)s2 + x0, g1C = (A−B)s2 + x0.

3.3. Conditions of local integrability for familiesF1

2
,F1

3

For the family F1
2
we have the following.

CoeƢcients of the characteristic polynomial χ(F1
2
) are

a4 =

(

2AB −AC − CB + C2
)

s2

Ak2B
+

(

A2 − 2AB − 2AC + 3CB + C2
)

x2
0

B k2 (A− C)2C
,

a2 =

(

C(A− C)2s2 + (4C − 3A)x2
0

)

(B − C) s2

C (A− C)BAk4
.

Connection between parameter k and other parameters from the set Ξ is

(A− C)2 k4 = x20 + s2 (A− C)2 .
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NumeratorG of the discriminantDλ(F
1
2
) is the following

G(F1

2 ) = C4 (A− C)4 (A+B − C)2 s4+

2AC (A− C)2 (A+B − C)
(

2A2B −A2C − 6ABC + 2AC2 + 5BC2 − C3
)

s2x20

+A2
(

A2 − 2AB − 2CA+ 3CB + C2
)2

x40

and the secondary discriminants∆ξ are

∆s

(

F1

2

)

∼=(B − C)2 (A− 2C)4 (A− C)16 (A+B − C)6
(

A2 − 2AB − 2AC + 3BC + C2
)2

×

×A6B2C8x120 ,

∆A

(

F1

2

)

∼=(B − C)5h2Ag
2

2AB
8C19x200 s8,

∆B

(

F1

2

)

∼=(A− 2C)2 (A− C)5 g2BA
3C x40s

2,

∆C

(

F1

2

)

∼=f13(s, x0, A,B)g22CA
25B10x28s26,

where

h2A =16B5C7s8 − 8C5B3
(

5B2 − 10BC − 27C2
)

s6x20

+ 3BC3
(

291B4 + 4C B3 − 638B2C2 + 612BC3 + 243C4
)

s4x40

− 8BC (3B + C)
(

9B3 + 249B2C − 557BC2 + 171C3
)

s2x6 + 16 (3B + C)4 x80,

g2A =2(B − C)x20 + C2(B + C)s2,

g2B =(4C − 3A)x20 + C (A− C)2 s2,

g2C =8 (2B −A)x20 +A2 (A+ 2B) s2,

and f13(s, x0, A,B) is a very cumbersome expression.
According to permutationB ↔ C all secondary discriminants∆ξ for familyF1

3
are symmetric

to the corresponding discriminants of the family F1
2
(see (7) and (8) below).

3.4. Local integrability for the familyF1

4

For family F1
4
of SP the coeƢcient a2 of the characteristic polynomial χ(F1

4
) equals to zero.

So, we have here four zero eigenvalues. MatrixM(F1
4
) has only one 2 × 2 Jordan block, and

Hypothesis 3 is applicable, and gives local integrability for the family F1
4
.

3.5. Integrable cases for ℓ = 1

According to Subsections 3.2, 3.3, 3.4 local integrabilities for families F1

j , j = 1, 2, 3, are

F1

1 :L11 = {B = C}, L12 = {A = 2C}, L13 = {A = 2B}, L14 = {A = B + C};

F1

2 :L21 = {B = C};L22 = {A = 2C}, L23 = {A = C}, L24 = {C = A+B};

L25 =
{

A2 − 2AB − 2AC + 3BC + C2 = 0
}

.

F1

3 :L31 = {B = C}, L32 = {A = 2B}, L33 = {A = B}, L34 = {B = A+ C},

L35 =
{

A2 − 2AB − 2AC + 3BC +B2 = 0
}

,

(6)

For all familiesF1

j , j = 1, 2, 3, there is a case L11 ≡ L21 ≡ L31, i.e. B = C. So, it is an integrable

case. For families F1
1
and F1

2
, there are cases L12 ≡ L22, i.e. A = 2C, and for family F1

3
there is

a case L33, i.e. A = B. So, case A = B = 2C is integrable, similarly the case A = C = 2B is
also integrable. Any other combinations of cases of local integrability either contradict to the
triangle inequalities (2), or give the case B = C. These cases of integrability are known.
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In (6) we considered only factors, which does not depend on s and x0. Let us take into account
factors, which do depend on mentioned above parameters:

F1

1 : g1A, g1B, g1C ;

F1

2 : g2A, g2B, g2C , h2A, f13(s, x0, A,B);

F1

3 : g3A, g3B, g3C , h3A, f13(s, x0, A, C),

(7)

where

g3A(B,C) = g2A(C,B), g3B(B,C) = g2C(C,B), g3C(B,C) = g2B(C,B),

h3A(B,C) = h2A(C,B). (8)

Using factor A = B + C for family F1
1
, factors g2B = 0 and g3B = 0 for F1

2
and F1

3
, we obtain a

new integrable case C/B ≈ 2.837994222. Similarly we found other 8 integrable cases with

C/B ∈ {0.9805246687, 1.003244577, 0.06376380978, 0.9970470612, 1.000408184,

0.3901207502, 0.9660040562, 1.006388720}.

But they are only particular cases of integrability. Searching for all of them is a big computational
work.

Cases ℓ = 2 and ℓ = 3 will be considered in lecture.
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Matrices of Infinite Series: Checking Non-Singularity Based

on Truncations

Sergei A. Abramov, Anna A. Ryabenko

FRC CSC RAS, ul. Vavilova 40, Moscow, 119333 Russia

Abstract
Square matrices over a ring of formal power series are considered. The matrix entries (series) are
given “approximately”: for each of them, only a ƞnite number of initial terms are known, and these
numbers may not coincide for diơerent matrix entries. Issues related to the possibility of guaranteeing
the non-singularity of a matrix for which only this kind of “approximate” representation is known are
discussed.

Keywords
strongly non-singular matrices, truncated power series, computer algebra

1. Introduction

In [1], an algorithm is proposed that is applicable to an arbitrary non-singular square matrix
P = (pij), in which all entries pij are polynomials in x over a ƞeldK; the algorithm allows one
to check whether the matrix P +Q is non-singular for any matrixQ with entries from the ring
K[[x]] of formal power series that, ƞrst, is of the same size as P and, second, has the property

val Q ⩾ 1 + degP. (1)

Recall that the valuation val f(x) of a power series or polynomial is the lowest power of x that
has a nonzero coeƢcient in f(x) (for example, for f(x) = −3x2+5x3+ . . . we have val f(x) = 2;
by deƞnition val 0 = ∞). The valuation of a matrix composed of power series or polynomials is
the smallest of the valuations of all entries of this matrix. The degree of a matrix composed of
polynomials is considered to be the largest of all the degrees of the entries, wherein deg 0 = −∞.
A matrix P for which the matrix P +Q is non-singular whenever for a matrixQ of the same

size as P , the inequality (1) is satisƞed, is called in [1] strongly non-singular. A strongly non-
singularmatrix remains non-singular whenwe add “tails” to its entries, turning the polynomials
into series with coeƢcients inK. When adding “tails”, it is necessary that the lowest power
(valuation) of each such “tail” exceed degP .

Let a matrix P be non-singular and be obtained by truncating some matrix

M = (mij), (2)

whose entries are formal power series, and the degree of truncation for all entries is equal to
a ƞxed non-negative integer d: all terms of higher degrees than d are removed.
Then, if d = degP , using the algorithm proposed in [1], we can check whether the matrixM

(we do not know this matrix) cannot be singular. For this purpose, the strong non-singularity of
the matrix P is checked.

Remark 1. If d is greater than a power of some pij, then it is implied that the coeƢcients at
the powers deg pij + 1, . . . , d inmij are equal to zero.
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We further consider the problem of checking the strong non-singularity in a more general
version, in comparison with [1], by expanding the very concept of the strong non-singularity,
omitting the assumption that the degrees of truncations of all entries of the original matrix
are the same and, in particular, assuming that the degree of any (and even each) entry of the
matrix P can be less than d— see Remark 1.
Below, P is a non-singular n× n-matrix whose entries are polynomials in x over a ƞeldK.

(The degrees of these polynomials may diơer from each other.)

2. Preliminaries

In [1] the criterion was proved, i.e. a necessary and suƢcient condition for the strong non-
singularity of the matrix P :

Proposition 1. Let P = (pij), pij ∈ K[x], be a non-singular polynomial n× n-matrix and let d be
an integer such that d ⩾ deg pij, i, j = 1, . . . , n. Then the matrix P + Q is non-singular for any
n× n-matrix Q with entries from the ring K[[x]], possessing property val Q ⩾ d+ 1 if and only if

d+ valP ∗
⩾ val detP, (3)

where P ∗ is the cofactor matrix of P .

This criterion will be used substantially further in the algorithm for solving the problem
under consideration.

For a ƞeldK, we assume that there exists an algorithm that checks the consistency of an arbi-
trary given polynomial system of equations overK, provided that the coeƢcients of the system
belong toK and the system has a solution with components inK. In the case of an algebraically
closed ƞeld, such an algorithm is based on Gröbner bases [2].

Together with the matrix P , the integers dij ⩾ −1, i, j = 1, . . . , n are considered given. Let

P = (pij), pij ∈ K[x], deg pij ⩽ dij , d = max
i,j

dij . (4)

With respect to the entry mij of the matrix (2), it is assumed that mij = pij + qij, where
qij ∈ K[[x]] is some series such that val qij ⩾ dij + 1. The equality dij = −1means that we have
no information about the entrymij of the matrixM , except for its membership inK[[x]].

Example 1. Let the matrix

(

2x+ x2 0
0 x

)

and the truncation degrees d11 = 2, d12 = 0, d21 = 2,

d22 = 1 be given. These data deƞne the truncated matrix

(

2x+ x2 +O(x3) O(x0)
O(x3) x+O(x2)

)

.

The notation O(xk) is used for some (unspeciƞed) formal series, whose valuation is greater
than or equal to k.

This problem of checking the non-singularity of a matrix M is more diƢcult than that
considered in [1], where none of the added terms can have a degree less than d+ 1. Thus, the
added term does not aơect the initial terms of the determinant.

The solution of this new problem is reduced below to a series of consistency checks (in other
words, — checks for the presence of solutions, solvability) of systems of polynomial equations.

We assume that among the integers dij there are non-negative ones. Thus, d ⩾ 0 in (4).
If all dij are equal to each other, then the matrix P will be called Üat.
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3. Clarification of the concept of the strong non-singularity of a matrix

Deƞnition 1. Amatrix P satisfying conditions (4) will be called strongly non-singular if for any
n × n-matrix Q = (qij) whose entries belong to K[[x]], val qij ⩾ dij + 1, the matrix P + Q is
non-singular. (If dij = −1, then qij can be any element of K[[x]], and for any qij the matrix
P +Q is non-singular.)

It will be shown that for a given matrix P , it is possible to ƞnd out algorithmically whether
this matrix is strongly non-singular in the sense of Deƞnition 1.

Deƞnition 2. Let (4) hold. For a matrix P , itsK-completion is the matrix obtained by adding to
each pij for dij < d some monomials of degrees dij + 1, . . . , d with coeƢcients fromK. Formal
completion is a completion in which all added monomials have diơerent indeƞnite (symbolic)
coeƢcients.

It is easy to see that the following proposition is true:

Proposition 2. A matrix P is strongly non-singular if and only if any of its K-completions (each of
which is a Üat matrix) is strongly non-singular.

Example 2. For the matrix from Example 1, we get d = 2 and P̃ =

(

2x+ x2 t1 + t2x+ t3x
2

0 x+ t4x
2

)

is its formal completion where t1, t2, t3, t4 are diơerent unknowns. We get det P̃ = 2x2 + (2t4 +
1)x3 + t4x

4. In this case, the valuation of det P̃ doesn’t depend on the unknowns. Then this
valuation is equal to 2 for any K-completions and, since d = 2, condition (3) holds for any
K-completions. Then the given matrix is strongly non-singular.

Example 3. Now consider a more complex case.

For the truncated matrix P =

(

x+O(x3) O(x2)
1 +O(x3) x+ x2 +O(x3)

)

, we get d = 2.

Then P̃ (t) =

(

x tx2

1 x+ x2

)

(t is an unknown), and det P̃ (t) = x3 + (−t + 1)x2. In this case,

the valuation of det P̃ (t) depends on t. Then this valuation is equal to 2 or 3 for diơerent K-
completions and condition (3) holds or does not hold. To check the strong non-singularity of P ,
we have to consider diơerentK-completions.

In what follows, considering statements that are true for all solutions of some polynomial
system of equations, we assume that if the system is empty (does not contain equations), then
any set of values of the unknowns is its solution.

Theorem 1. Let p(x; t1, . . . , tm) be a polynomial in x whose coeácients are polynomials over K
in unknowns t1, . . . , tm. Let S be a polynomial over K consistent system of equations (possibly
empty) with respect to unknowns t1, . . . , tm. There exists an algorithm (let us call it A) that allows
one to Ùnd all values of val p that are realized (arise) for some values t1, . . . , tm ∈ K that satisfy
the system S. Together with each found value ν of the valuation, this algorithm Ùnds a consistent
system Sν of polynomial overK equations, the solutions of which are all those solutions of the system S

for which val p = ν. The result of the algorithm is a list of conditional valuations of the form (ν, Sν).

4. Checking the strong non-singularity of a matrix

AlgorithmA and criterion (3) lead to an algorithm for solving the main problem. The idea is as
follows: usingA, for the formal completion P̃ of the matrix P ƞnd all pairs

val det P̃ , val (P̃ )∗, (5)
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that are realized for certain speciƞcK-completions of the originalmatrix; for each of these pairs,
check the satisfying of inequality (3). This may indicate the existence of aK-completion of P
that is a singular matrix, or a matrix for which (3) does not hold. Then P is not a strongly non-
singular matrix. If this does not happen, then anyK-completion yields a strongly non-singular
matrix, and by Proposition 2, P is strongly non-singular.

Example 4. For P from Example 3, we get val det P̃ (t) = 2 if t ̸= 1 (since d = 2, condi-

tion (3) holds). Otherwise, we get K-completion P̃ (1) =

(

x x2

1 x+ x2

)

with det P̃ (1) = x3,

val det P̃ (1) = 3. The cofactor matrix for P̃ (1) is

(

x+ x2 −1
−x2 x

)

, its valuation is equal to 0.

Condition (3) doesn’t hold for P̃ (1), and therefore P is not strongly non-singular.
Above, in Example 2, the case of a strongly non-singular matrix was considered.

The algorithm for checking the strong non-singularity of a matrix with elements in the form
of truncated series has been implemented by us in the environment of the computer algebra
Maple 2025 (see [4]) as the StronglyNonSingular procedure. The Maple library containing this
procedure, as well as the Maple session with examples of using the procedure, is available at [5].
To determine the consistency of polynomial overQ systems that arise during the operation

of the procedure, the Solve procedure of the Groebner package built into Maple is used (see [3]).
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Formal Stability Investigation in Hamiltonian Systems with

Resonances
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Abstract
Amethod for studying formal stability of equilibrium points in multiparameter Hamiltonian systems
with three degrees of freedom is proposed in the case of resonances present. We detail a technique for
the symbolic computation of resonance conditions, employing computer algebra and power geometry to
represent the resonant variety as a rational algebraic curve and provide its polynomial parametrization.

Keywords
Hamiltonian system, equilibrium state, normal form, formal stability, resonance condition, elimination
ideal

1. Introduction

Resonances are fundamental to the behavior of oscillatory systems, signiƞcantly impacting
their dynamics and stability. This study investigates the formal stability analysis within a
multiparameter Hamiltonian framework possessing three degrees of freedom, with particular
emphasis on the calculation of resonance conditions. The employment of computer algebra
alongside power geometry facilitates the symbolic representation of these conditions in the
form of rational algebraic curves.

Here we focus on studying stability in the case of resonances of the third and fourth orders of
multiplicity 1 (see Deƞnition 1). Earlier in [4] a schematic description of a method was proposed
to study the formal stability of the stationary point of a Hamiltonian system. The drawback of
this approach is that it does not take into account multi-frequency resonances of order three
or more, which appear in systems with more than two degrees of freedom. This drawback
was corrected in papers [1, 2], where a method for computing the parametric representation
of a resonant variety of an arbitrary 3-frequency resonance of multiplicity 1 was proposed.
However, in those papers, the problem of stability in the presence of such a resonance was leƠ
aside. Here we correct for this issue.
The principal characteristics can be outlined as follows.

1. Deƞnition of a resonant variety for a speciƞc resonant vector using the characteristic
polynomial coeƢcients of the linear Hamiltonian system.

2. Utilization of computer algebra and power geometry techniques to obtain polynomial
parametrization of the resonant variety.

3. Application of these results to investigate the formal stability regions of equilibrium in a
Hamiltonian multiparameter system, including the presentation of a non-trivial example.
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2. Normal form and scheme of formal stability investigation

We consider an autonomous Hamiltonian system with an analytic function γ(ξ,η) and with n
degrees of freedom (DOF)

ξ̇ =
∂γ

∂η
, η̇ = −∂γ

∂ξ
, (1)

whose stationary point (SP) coincides with the origin ζ
def
=(ξ,η) = 0.

If the Hamilton function γ(ζ) is analytic at this point, then it expands into a convergent power
series

γ(ζ;P) =
∑

γpq(P)ξ
pηq, (2)

where p, q ∈ Z
n, p,q ⩾ 0, γpq(P) are constant coeƢcients that can depend smoothly on a

parameter vector P ∈ Π.

Deƞnition 1. For each resonance, the following are deÙned:

• multiplicity k: the number of linearly independent solutions p ∈ Z
n to the resonant equation

⟨p,λ⟩ = 0; (3)

• order q: q = min |p| over p ∈ Z
n\{0}, satisfying Eq. (3);

• k-frequency resonance: if exactly k nonzero eigenvalues λj are included in the nontrivial
solution of the resonance equation;

• strong resonances are called the resonances of orders 2, 3 or 4.

Deƞnition 2. Condition An
k for a system with n DOF takes place if the resonant equation (3) has no

integer solutions p ∈ Z
n with |p| ⩽ k.

This condition means that there are no resonances up to and including the order k.
In particular, under the conditionAn

2 we have g = ⟨ρ,λ⟩+ g̃(3)(z, z̄), and under the condition
An

4 we have
g = ⟨ρ,λ⟩+ ⟨Cρ,ρ⟩+ g̃(5)(z, z̄), (4)

where C is n× nmatrix.

Theorem 1 (Dirichlet). If ConditionAn
2 in DeÙnition 2 is satisÙed and the values ℜλj , j = 1, . . . , n,

are of the same sign, then the stationary point ζ = 0 is stable according to Lyapunov.

In the cases of resonances of multiplicity 1 and order 3 or 4 so called Birkho× stability or
instability are considered as Lyapunov stability of the truncated up to the 4th order normal
form.

Theorem 2 ([7]). For resonance of order 3 with resonant vector p, the truncated up to the 3rd order
NF g̃ takes the form g̃ = ⟨ρ,λ⟩ + 2A

√
ρp cosψ, ψ = ⟨p,ϕ⟩. If A ̸≡ 0 then the SP is Lyapunov

unstable. For resonance of order 4 with resonant vector p, the truncated up to the 4th order NF g̃ takes

the form g̃ = ⟨ρ,λ⟩ + 2A
√
ρp cosψ + ⟨Cρ,ρ⟩, ψ = ⟨p,ϕ⟩. If A < S

def
= | ⟨Cp,p⟩ |/ (2√pp) then

this condition is suácient for Lyapunov stability of the SP, otherwise it is unstable.

Deƞnition 3 ([8]). A stationary point ζ = 0 of a real Hamiltonian system (1) is formally stable if
there exists a (possibly diverging) power series f(ζ) that is a formal positive deÙnite Ùrst integral
{f, γ} = 0.

Formal stability means that the divergence of solutions from the vicinity of SP is very slow:
slower than any ƞnite degree of t.

Let L ⊂ R
n be a linear shell of integers q satisfying equation ⟨α,q⟩ = 0, andQ = {q ⩾ 0,q ̸=

0} ⊂ R
n is a nonnegative orthant without the origin.
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Theorem 3 (Formal Stability Theorem [5]). If Condition An
4 is satisÙed and in (4)

⟨Cq,q⟩ ̸= 0 for q ∈ L ∩Q,

then the point ζ = 0 is formally stable in the sense of DeÙnition 3.

We ƞnally discuss the situation when any resonance of multiplicity 1 takes place, i.e. there
exists the only integral vector kp, k ∈ Z\{0}, p ∈ Z

n, satisfying the resonant equation (3).
Let ωj, j = 1, . . . , n − 1, be the basis of the orthogonal complement to the one-dimensional
solution space, then ⟨ωj ,ρ⟩ is the ƞrst integral of the normalized system with Hamiltonian
g(z, z̄) [6, Ch.I, Sect. 3]. Note that in the case of resonance of multiplicity 1, the normal form g

is always integrable since it has n independent ƞrst integrals: ⟨ωj ,ρ⟩, j = 1, . . . , n− 1, andG
from equation g(z, z̄) = g2(z, z̄) +G(z, z̄).

Theorem 4 ([3]). If there exists only one resonant vector kp, k ∈ Z, which does not belong to the
positive orthant Q, then SP ζ = 0 is formally stable.

Remark 1. If the coordinate structure of the resonant vector p does not meet the criteria outlined in
Theorem 4, it is necessary to examine the deÙniteness of the normal form portion g3 + g4 along the
ray where the integral I ≡ 0 is deÙned, as referenced in [7]. Should this examination reveal positive
deÙniteness, a formally real positive deÙnite integral I +G2 is achieved.

Theorem 4 has an application area essentially wider than Theorem 2.

3. Description of themethod

Here we describe a method for investigating formal stability of the SP for a multiparameter
Hamiltonian system with 3 degrees of freedom. Consider a Hamiltonian system in the vicinity
of the SP for which the following conditions are satisƞed:

• the number of degrees of freedom of the system is greater than two;

• the quadratic form γ2 in expansion (2) is nondegenerate and is not deƞnite;

• the Hamiltonian function γ smoothly depends of the vector of parameters P.

Corollary 1 (of Formal Stability Theorem 3). If under the condition of Theorem 3 in R
3 the inter-

section of the plane ⟨λ,q⟩ = 0 and the cone ⟨Cq,q⟩ either does not belong toQ, or belongs toQ = R
3
+,

but does not contain the integral vector q, then the stationary point is formally stable.

To examine the formal stability of a stationary point of a Hamiltonian system (1), we should:

• ƞnd in the space of parameters Π the stability set Σ of the linear part of system (1)

• ƞnd such domains, in which the quadratic form γ2(z) is not sign deƞnite

• ƞnd parts Sk in these domains that do not contain strong resonances

• normalize the Hamiltonian in each of these parts Sk up to order four, and then

• apply Formal Stability Theorem 3

The border of the stability set Σ in generic case is the resonant varietyR3(1, 1, 0). For n = 3
the borders between the parts Sk are deƞned by the following resonant varieties:

• R(2,1,0)
3 ,R(3,1,0)

3 corresponding two-frequency resonances and

• R(1,1,1)
3 ,R(2,1,1)

3 corresponding three-frequency resonances
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Figure 1: Resonance manifolds in variables ν1, ν2.

The implicit and parametric representation of all resonant varieties is given in [3]. The
projective representation is shown in Fig. 1.

The application of themethodwould be demonstrated on an nontrivial example in the lecture.
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Parametric Expansions of an Algebraic Variety Near its

Singularities
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Abstract
In works [2, 3], parametric expansions near 5 singular points and 3 curves consisting of singular points
were computed for a two-dimensional algebraic variety Ω. This paper presents general methods for
computing expansions of the variety near its singularities.

Keywords
algebraic variety, singular point, local parametrization, power geometry

1. Introduction

While investigating homogeneous spaces in [1], a set Ω of parameter values a1, a2, a3 was en-
countered, described by the equation:

Q(s1, s2, s3) ≡(2s1 + 4s3 − 1)
(
64s51 − 64s41 + 8s31 + 240s21s3 − 1536s1s

2
3−

−4096s33 + 12s21 − 240s1s3 + 768s23 − 6s1 + 60s3 + 1
)
−

− 8s1s2(2s1 + 4s3 − 1)(2s1 − 32s3 − 1)(10s1 + 32s3 − 5)−
− 16s21s

2
2

(
52s21 + 640s1s3 + 1024s23 − 52s1 − 320s3 + 13

)
+

+ 64(2s1 − 1)s32(2s1 − 32s3 − 1) + 2048s1(2s1 − 1)s42 = 0,

where s1, s2, s3 are elementary symmetric polynomials, given by: s1 = a1 + a2 + a3, s2 = a1a2 +
a1a3 + a2a3, s3 = a1a2a3. In [4], for symmetry reasons, a transition was made from coordinates
a = (a1, a2, a3) to coordinates A = (A1, A2, A3) via a linear transformation aT = MAT , where
M is a speciƞc matrix.
Let ϕ(X) be a polynomial, X = (x1, . . . , xn). A pointX = X0 in the set ϕ(X) = 0 is called

a singular point of order k if at this point all partial derivatives of the polynomial ϕ(X) with
respect to x1, . . . , xn up to order k vanish and at least one partial derivative of order k + 1 does
not vanish.

In [4], all singular points of the variety Ωwere found in the coordinates A = (A1, A2, A3): ƞve

third-order points P
(3)
1 = (0, 0, 3/4), P

(3)
2 = (0, 0,−3/2), . . ., P

(3)
5 = (1, 1, 1/2); three second-

order points P
(2)
1 , P

(2)
2 , P

(2)
3 ; and three algebraic curves of ƞrst-order singular points F , I,K.

The points P
(3)
3 , P

(3)
4 , P

(3)
5 are similar, as they transform into each other under a rotation of the

planeA1, A2 by 2π/3 around the origin, as do all points P
(2)
1 , P

(2)
2 , P

(2)
3 . The curves F , I,K each

have two similar counterparts. Therefore, it suƢces to study the varietyΩ in the neighborhoods

6
th International Conference “Computer Algebra”, Moscow, June 23–25, 2025

� 10.22363/12585-2025-6-006
EDN: AOCHHS
∗Corresponding author.
e³ abruno@keldysh.ru (A.D. Bruno); azimov_alijon_akhmadovich@mail.ru (A. A. Azimov)
B� http://brunoa.name/ (A.D. Bruno)
i³ 0000-0002-7465-1258 (A.D. Bruno); 0000-0002-7799-2525 (A. A. Azimov)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Bruno, A.D., Azimov, A. A. 35

https://doi.org/10.22363/12585-2025-6-006
https://elibrary.ru/aochhs
mailto:abruno@keldysh.ru
mailto:azimov_alijon_akhmadovich@mail.ru
http://brunoa.name/
https://orcid.org/0000-0002-7465-1258
https://orcid.org/0000-0002-7799-2525
https://creativecommons.org/licenses/by/4.0/deed.en


of the points P
(3)
1 , P

(3)
2 , P

(3)
5 , P

(2)
3 and the curves F , I,K. Here, we consider the structure of Ω

near the singular point P
(3)
1 .

2. Structure of the variety near the singular point P
(3)
1

Near the point P
(3)
1 = (0, 0, 3/4), we introduce local coordinates x1, x2, x3:

A1 = x1, A2 = x2, A3 =
3

4
+ x3.

From the polynomial R(A)
def
= Q(s) = 0, we obtain a 12th-degree polynomial:

S(x1, x2, x3) = R(A) = Q(s1, s2, s3).

We compute its support, the Newton polyhedron Γ1, its faces Γ
(2)
j , and their outer normals

using the PolyhedralSets package in the Maple 2021 computer algebra system (CAS). We

obtain 5 faces Γ
(2)
j . The graph of the polyhedron Γ1 is shown in Fig. 1.

Figure 1: Graph of the polyhedron Γ1.

The top row shows the entire polyhedron, the next row shows all two-dimensional faces,
followed by edges, vertices, and the empty set at the bottom. The outer normals to its two-
dimensional faces are:

N71 =

(
−1,−1,−1

2

)
, N143 = (1, 1, 1), N215 = (−1, 0, 0), N239 = (0,−1, 0), N241 = (0, 0,−1).

Only one normal,N71, has all negative coordinates. Therefore, the neighborhood of the point
x1 = x2 = x3 = 0 is approximately described by the zeros of the truncated polynomial:

f̂1 = −4096

81
x83+

3

4
x41+

3

4
x42+

64

3
x21x

4
3−

16

3
x31x

2
3+

64

3
x22x

4
3−

16

3
x32x

2
3+

3

2
x21x

2
2+16x21x2x

2
3+16x1x

2
2x

2
3,
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corresponding to face 71 with normalN71 = (−2,−2,−1). We ƞnd a unimodular matrix:

α =

⎛
⎝

1 0 0
0 1 0
−2 −2 1

⎞
⎠ ,

such that N71α = (0, 0,−1). Consequently, we perform a power transformation:
(ln y1, ln y2, ln y3) = (lnx1, lnx2, lnx3)α, i.e., (lnx1, lnx2, lnx3) = (ln y1, ln y2, ln y3)α

−1.

Since α−1 =
(

1 0 0
0 1 0
2 2 1

)
, we have:

x1 = y1y
2
3, x2 = y2y

2
3, x3 = y3. (1)

At the same time, f̂1(x1, x2, x3) = y83 · F1(y1, y2), where

F1(y1, y2) = −4096

81
+

3

4
y41 +

3

4
y42 +

64

3
y21 −

16

3
y31 +

64

3
y22 −

16

3
y32 +

3

2
y21y

2
2 +16y21y2+16y1y

2
2. (2)

According to the algcurves program in the CAS Maple, the curve F1(y1, y2) = 0 has genus
0 and the parametrization:

y1 = b1(t) =− 8(21434756829626557083983t4 + 1417074727891594177202560t3+

+ 31706038193372580461588706t2 + 335726200061958227448792184t+

+ 8333103427347345384379)/δ,

y2 = b2(t) =− 56(3053430900966931440569t4 + 198407502991736938316080t3+

+ 3883533208553253313258158t2 + 9193559104820491279715848t−
− 262262822183337506658650323)/δ,

δ =9
(
85576987369t2 + 3099727166140t+ 37630556816821

)2
,

(3)

The graph of this curve is shown in Fig. 2.
This is a curvilinear triangle with vertices:

(y1, y2) = −8

3
(1, 1), −8

3

(
−1 +

√
3

2
,

√
3− 1

2

)
, −8

3

(√
3− 1

2
,−

√
3 + 1

2

)
.

Now, to describe the structure of the variety Ω near the point P
(3)
1 , we perform the power

transformation (1) in the polynomial S and obtain the polynomial T (y1, y2, y3). It decomposes
into the sum:

T (y1, y2, y3) = y83

m∑

k=0

Tk(y1, y2)y
k
3 ,

where T0(y1, y2) = F1(y1, y2). Using the Maple command coeff(f,y[k],m), we select mono-
mials containing ymk . For k = 3 andm = 1, we obtain:

T1
def
= G(y1, y2) = 8y41 + 16y21y

2
2 + 8y42 −

1216

27
y31 +

1216

9
y21y2 +

1216

9
y1y

2
2 −

1216

27
y32+

+
3584

27
y21 +

3584

27
y22 −

65536

729
. (4)

In the polynomials Tk(y1, y2), we substitute:

y1 = b1(t) + ε, y2 = b2(t) + ε. (5)
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Figure 2: Graph of the curve F1(y1, y2) = 0.

We obtain the polynomial u(ε, y3) = T (y1, y2, y3)/y
8
3 with coeƢcients depending on t through

b1(t) and b2(t). In this polynomial:

u(ε, y3) =
m∑

k=0

Tk(b1 + ε, b2 + ε)yk3 =
∑

p,q≥0

upqε
py

q
3,

where u00 = F1(b1(t), b2(t)) from (2), hence u00 = 0.
By the implicit function theorem (see [2]), the equation u(ε, y3) = 0 has a solution in the form

of a power series in y3:

ε =
∞∑

k=1

ck(t) · yk3 , (6)

where ck(t) are rational functions expressed in terms of the coeƢcients upq(t), which in turn
are expressed in terms of b1(t) and b2(t).
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Block Fermat Numbers in Modular Arithmetic

Benjamin Chen, Eugene Zima∗

University of Waterloo, Waterloo, Canada

Abstract
We show how to select balanced in size moduli of the form 2

n
+ 1 to achieve accelerated modular

reduction and reconstruction. Experimental implementation demonstrates that this choice of moduli
provides better performance of modular arithmetic compared to the popular moduli of the form 2

n
− 1.

Keywords
accelerated modular arithmetic, fast modular reduction, fast reconstruction, scalable moduli, Fermat
type numbers and polynomials

1. Introduction

Conversion to a modular representation is a popular technique to accelerate the arithmetic of
computer algebra systems. The choice of speciƞc values of moduli can signiƞcantly inƟuence
the time complexity of both the calculations modulomi and the reconstruction of the result.
One of the oldest examples of such an approach is described in [7, 6]: several relatively prime
moduli of the form 2n − 1 (sometimes referred to as Mersenne type moduli) are selected (using
gcd(2n − 1, 2m − 1) = 1 if and only if gcd(n,m) = 1). This replaces division with remainder in
the residue computation by shiƠ and addition operations that are much simpler. In [8] this was
expanded to moduli of the forms 2n + 1 (sometimes referred to as Fermat type moduli). Two
schemes for generating the moduli set: “shiƠ” scheme and “block” scheme were considered,
both based on the fact that gcd(2n + 1, 2m + 1) = 1 if and only if ν2(n) ̸= ν2(m) (here ν2(x)
is binary valuation of a natural number x). One important feature of Fermat type moduli
is that (unlike in the case of Mersenne type moduli) the relative primality of two moduli is
preserved under scaling (i.e. when 2 is replaced by 2c for a natural c). Another feature that
was explored in [8] for shiƠ scheme is that inverses that appear during reconstruction from
modular representation [2, 6, 3] preserve bit pattern under scaling: for moduli of the form
mi = 2a2

i

+ 1, i = 0, 2, . . . , k, (a is an arbitrary positive integer) it was shown that

M−1
i mod mi = 2a2

i
−1 − 2a−1 + 1, i = 1, 2, ..., k, (1)

where Mi =
∏i−1

j=0mj , i = 0, 1, . . . , k − 1. With this choice of moduli, there is no need to
(pre-)compute and to store inverses. Inverse is deƞned by the value of a (which is the same for
allmoduli) and the index i. This allows reconstruction to become essentiallymultiplication-free.
ShiƠ-based moduli are also scalable (with scaling factor a) which means informally that setting
a to an arbitrary valuewill not change the relative primality of themodulimi andwill not change
the sparsity (number of set bits) of the inverses in sparse balanced binary representation [4, 5].
However, the modulimi in the shiƠ scheme are imbalanced in size: the bit length ofmi is larger
than the bit-length of the productm0m1 . . .mi−1, which makes the practicality of such a choice
questionable.

The “block” schemes proposed in [8] generates more balanced in size moduli with exponents
of the same bit length, however scalability of inverses was not explored in [8] and performance
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of block scheme Fermat type moduli reported by authors was similar to the performance of
Mersenne type moduli.
We present new results related to the scalability of inverses for Fermat type moduli. In fact

we established that any pair or relatively prime moduli 2n + 1,2m + 1 has scalable inverses.
This makes block scheme more competitive compared to similar in size set of Mersenne type
moduli, which is also conƞrmed by our GMP experimental implementation.

2. Fermat polynomials and their properties

It is more convenient to represent a modulus as the result of the evaluation of a polynomial.
For example,m = 2n+1 can be viewed as f(2) for f(x) = xn+1, scaled modulusm = (2c)n+1
can be viewed as f(2c). The following properties of Fermat polynomials are useful to select a
block of relatively prime Fermat type moduli with scalable inverses: consider two Fermat type
polynomials f(x) = xn + 1 and g(x) = xm + 1 inQ[x].

1. Then

gcd(xn + 1, xm + 1) =

{

1, ν2(n) ̸= ν2(m)

xgcd(n,m) + 1, otherwise

2. If gcd(f(x), g(x)) = 1 then for any integer ℓ ≥ 1 numbers f(2ℓ) and g(2ℓ) are relatively
prime.

3. If gcd(f(x), g(x)) = 1 then the coeƢcients of Bézout cofactors s(x) and t(x) in equation

s(x)f(x) + t(x)g(x) = 1

are dyadic with the numerators±1 and denominators equal to 2. Thus 2ℓn +1 and 2ℓm +1
is scalable pair of moduli with scalable inverses for any ℓ ≥ 2.

4. If the cofactors s(x), t(x) have more than 1 term, the diơerence in adjacent degrees of
the terms in the cofactors ordered by the degree is h = gcd(n,m). Speciƞcally, s(x) =
±1

2x
m−h ± 1

2x
m−2h ± · · · ± 1

2 , t(x) = ±1
2x

n−h ± 1
2x

n−2h ± · · · ± 1
2 .

5. If gcd(f(x), g(x)) = 1 then there exist polynomials p(x) with deg p(x) ≤ m and q(x) with
deg g(x) ≤ n having coeƢcients from the set {0,±1/2,±1} such that f(2ℓ)−1 mod g(2ℓ) =
p(2ℓ), g(2ℓ)−1 mod f(2ℓ) = q(2ℓ).

The last property means that the number of set bits in the scaled inverses is the same as the
support of polynomials p(x) and q(x) and will be preserved under scaling. For example, if
f(x) = x15 + 1 and g(x) = 220 + 1 then q(x) = 1

2x
15 + 1

2x
10 + 1

2x
5 + 1 and for any integer ℓ ≥ 1

g(2ℓ)−1 mod f(2ℓ) = q(2ℓ) = 215ℓ−1 + 210ℓ−1 + 25ℓ−1 + 1.

3. Selecting better block of Fermat typemoduli

If we need to ƞnd a moduli set of size b, there exist many possible “block” style moduli sets.
Two greedy schemes to generate the exponents of a moduli set of size b are presented in [8]:

1. ek = 2b − 2k−1 for k = 1, 2, . . . , b.

2. ek = 2b−1 + 2b−k−1 for k = 1, 2, . . . , b− 1 and eb = 2b−1.

The key to generating a moduli set is to ensure that every exponent has a diơerent binary
valuation. For a moduli set of size b, as long as we keep the binary valuation of the exponents
diơerent, we have the freedom to choose the bits prior to the ƞrst 1-bit counting from the least
signiƞcant digit in the binary form of the exponents. For example, let b = 4, the generated
moduli exponents using the ƞrst scheme are 15, 14, 12, 8. Themoduli set is {215+1, 214+1, 212+
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1, 28+1}. The generatedmoduli exponents using the second scheme are 12, 10, 9, 8. Themoduli
set is {212 + 1, 210 + 1, 29 + 1, 28 + 1}. However, the exponent set 12, 10, 11, 8 is also a valid set.
It is worth noting that the two “greedy” block schemes are not optimal in terms of the total

amount of set bits in the inverses. This number is the same as the total support (total number
of non-zero terms) of Bézout cofactors for every pair of relatively prime Fermat polynomials
in the set. For example, if we want to generate a set of moduli of size b = 6, the ƞrst scheme
generates the exponents {63, 62, 60, 56, 48, 32}. The total number of terms in the inverses is 289.
The second scheme generates the exponents {48, 40, 36, 34, 33, 32}. The total number of terms
in the inverses is 233. However, if we consider an exponent set that follows neither of the two
schemes, {63, 56, 48, 42, 36, 32}, the total number of terms in the inverses is 141. Which means
that the overhead related to multiplication by these inverses is almost twice as small compared
to greedy choice of exponents.

Note, that due to scalability the selection ofmoduli set of a given size b is conducted only once,
and we can use exhaustive search with back-tracking to ƞnd a set of b exponents of diơerent
binary valuations with the least total support of Bézout cofactors.

The bit-size of themoduli generated by “block” schemes grows exponentiallywith the number
of needed moduli b. For example, to obtain 9 moduli, the moduli have exponents of the
magnitude 29. To obtain 10 moduli, the moduli have exponents of the magnitude 210. This
makes Fermat type moduli practical only for moderate values of b. Nevertheless, small sets of
relatively large moduli with scalable inverses can be used in upper layer of layered modular
arithmetic and provide improvement in performance, as shown in [1].

4. Implementation and Benchmark

We compared performance of Mersenne type moduli and Fermat type moduli. The results of
the running time on the standard benchmark of integer matrix multiplication are presented in
Table 1.

Dim Bitsize M Mult M Overh M Total F Mult F Overh F Total

8 218 0.124 0.282 0.407 0.114 0.093 0.207

- 219 0.287 0.693 0.980 0.297 0.188 0.485

- 220 0.768 1.583 2.351 0.783 0.376 1.167

16 218 0.931 1.056 1.988 0.887 0.387 1.274

- 219 2.229 2.742 4.972 2.271 0.786 3.058

- 220 5.970 6.338 12.308 6.004 1.571 7.613

32 218 7.376 4.305 11.683 7.165 1.542 8.709

- 219 14.882 8.980 23.864 16.124 2.781 18.908

- 220 39.726 20.806 60.536 39.887 5.652 45.675

64 218 49.410 14.472 63.890 47.457 5.460 52.925

- 219 119.274 36.020 155.304 120.622 11.566 132.199

- 220 318.661 83.032 401.706 318.602 22.857 341.985

Table 1
Timing (in seconds) of matrix multiplication benchmark: Dim - matrix dimension, Bitsize - bitsize of elements of matrices,

M - 7 moduli of the form 2
n
− 1, F - 7 moduli of the form 2

n
+ 1, Mult - the time spent for multiplication in RNS,

Overh - the time spent for conversion to and from RNS (note, that column M Overh includes the time to compute inverses,

while column F Overh inverses are not computed and obtained from scaling), Total - the total time spent performing

computations (measured separately), Hardware used is AMD EPYC 7502P 32C@ 2.5 GHz with 503GB of RAM.

From the table, we can see that Fermat-type moduli outperformMersenne-type moduli in
terms of overhead (conversion to RNS and reconstruction from RNS) due to the scalability of
the inverses.
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5. Conclusion and open question

Block Fermat type moduli provide the ability to scale up a given moduli set without recomputa-
tion of the inverses at the cost of the moduli being only slightly unbalanced. Implementation
and standard benchmarks shows signiƞcant reduction in the overhead when using Fermat type
moduli compared to Mersenne type moduli, aligning with the theoretical performance gain.
Our current approach to ƞnding the optimal block of b exponents is exhaustive search with

pruning. The size of search space is proportional to 22
b−2

. Recall that for bmoduli of the form
2n + 1 to be pairwise relatively prime the exponents must have at least b bits. Greedy schemes
of constructing exponents provide sets with reasonably good characteristics, but it would be
interesting to know if there is better algorithm to ƞnd close to optimal block of balanced in size
exponents that guaranties pairwise relative primality of the moduli.
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Non-Minimality of Minimal Telescopers Explained by

Residues⋆

Shaoshi Chen1,2,∗, Manuel Kauers3, Christoph Koutschan4, Xiuyun Li1,2,
Rong-hua Wang5 and Yisen Wang1,2

1KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 6 Beijing, 100190, China
2School of Mathematical Sciences, University of Chinese Academy of Sciences, 6 Beijing 100049, China
3Institute for Algebra, Johannes Kepler University, 6 Linz A-4040, Austria
4RICAM, Austrian Academy of Sciences, 6 Linz A-4040, Austria
5School of Mathematical Sciences, Tiangong University, 6 Tianjin, 300387, China

Abstract
Elaborating on an approach recently proposed byMark vanHoeij, we continue to investigate why creative
telescoping occasionally fails to ƞnd the minimal-order annihilating operator of a given deƞnite sum or
integral. We oơer an explanation based on the consideration of residues.

Keywords
creative telescoping, residues, symbolic integration, symbolic summation, telescoper

Creative telescoping is the standard approach to deƞnite summation and integration in
computer algebra. Its purpose is to ƞnd an annihilating operator for a given deƞnite sum
∑

k f(n, k) or a given deƞnite integral
∫

Ω
f(x, y)dy.

Such operators are obtained from annihilating operators of the summand or integrand that
have a particular form. In the case of summation, suppose that we have

(L− (Sk − 1)Q) · f(n, k) = 0 (1)

for some operator L that only involves n and the shiƠ operator Sn but neither k nor the shiƠ
operator Sk, and another operatorQ that may involve any of n, k, Sn, Sk. Summing the equation
over all k yields

L ·
∑

k

f(n, k) =
[

Q · f(n, k)
]

∞

k=−∞
.

If the right-hand side happens to be zero, we ƞnd that L is an annihilating operator for the sum.
In the case of integration, having

(L−DyQ) · f(x, y) = 0 (2)

for some operator L that only involves x and the derivation Dx but neither y nor the deriva-
tionDy, and some other operatorQ that may involve any of x, y,Dx, Dy, implies the equation

L ·

∫

Ω

f(x, y) dy =
[

Q · f(x, y)
]

Ω
.

If the right-hand side happens to be zero, we ƞnd that L is an annihilating operator for the
integral.
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An operator L as in equations (1) and (2) is called a telescoper for f , andQ is called a certiÙcate
for L. The degree of Sn orDx in L is called the order of L. If L is such that there is no telescoper
of lower order, then L is called a minimal telescoper. The minimal telescoper is unique up to
multiplication by rational functions (from the leƠ).
Algorithms for testing the existence of telescopers and computing them if they exist mean-

while have a long history in computer algebra, see [9, 10, 7, 1, 2, 6] for classical results and recent
developments on thematter. In his recent paper [8], vanHoeij proposed a fresh view on creative
telescoping. He explains why a telescoper can oƠen be written as a least common leƠ multiple
of smaller operators, and why the minimal telescoper is sometimes not the minimal-order
annihilating operator for the sum or integral under consideration.
Let C be a ƞeld of characteristic zero and C(n, k) be the ƞeld of rational functions in n, k

over C. Let An,k = C(n, k)⟨Sn, Sk⟩ be the ring of all linear recurrence operators in Sn, Sk

with rational function coeƢcients, and An = C(n)⟨Sn⟩ be the subalgebra consisting of all
operators that do not involve k or Sk. For a given summand f(n, k), consider the An-module
Ω := An,k · f(n, k) and the quotient moduleM := Ω/((Sk − 1)Ω). An operator L ∈ An is then a
telescoper forH = f(n, k) if and only if it is an annihilating operator of the imageH ofH inM .
In this setting, van Hoeij makes the following observations:

• IfM can be written as a direct sum of submodules, sayM = M1 ⊕M2, then the minimal
telescoper ofH is the least common leƠ multiple of the minimal annihilating operators
of the projections π1(H) and π2(H) ofH inM1 andM2, respectively.

• If, moreover, the deƞnite sum whose summand corresponds to π1(H) happens to be zero
identically, then every annihilating operator of π2(H) is already an annihilating operator
of the deƞnite sum overH, even though it may not be a telescoper forH.

In order to take advantage of the second observation, it is necessary to understand under which
circumstances a deƞnite sum can be zero. Such “vanishing sums” are themselves examples
when a minimal telescoper fails to be a minimal annihilator. For example, we have

∑

k

(−1)k
(

2n+ 1

k

)2

= 0,

so the minimal annihilator is 1. However, the minimal telescoper of (−1)k
(

2n+1

k

)2
is

L = (2n+ 3)Sn + (8n+ 8).

Note that since L is irreducible, the moduleM , which is isomorphic to An/LAn, has no non-
trivial submodules.
We propose an explanation of why certain sums are identically zero which is based on the

investigation of residues. Also based on residues, wewill explainwhy telescopers tend to be least
common leƠmultiples. We are not the ƞrst to use residues in the context of creative telescoping.
For rational functions and algebraic functions in the diơerential case, it was observed by Chen,
Kauers, and Singer [5] that telescopers and residues are closely related. Chen and Singer also
used residues in the context of summation problems [4]. Residues are also tied to creative
telescoping through the equivalence of extracting residues with taking diagonals and positive
parts and the computation of Hadamard products [3].
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On Relative Primality and Other Properties of Trinomials
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Abstract
We discuss some properties of trinomial polynomials. These can be used to generate new balanced-size
sets of moduli for accelerated modular arithmetic.

Keywords
modular arithmetic, cyclotomic polynomials, resultant, dyadic rational.

1. Introduction

A popular technique to speed up computations with integer arithmetic is to reduce the input
modulo several relatively prime numbers, compute with the residues, then reconstruct the
result with the Chinese remainder theorem [3, 2, 5]. In [1], it was proposed to use “trinomial”
moduli of the form

2n − 2k + 1, 0 < k < n, (1)

which are not only pairwise relatively prime, but also have pairwise scalable inverses. By that,
we mean that replacing 2 with 2c does not change the sparsity or bit-pattern of the modular
inverses. For example, the moduli 220 − 212 + 1 and 220 − 24 + 1 satisfy the following property:
for any integer c ≥ 1,

((2c)20 − (2c)12 + 1)−1
≡ (2c)8 + 1 (mod (2c)20 − (2c)4 + 1)

((2c)20 − (2c)4 + 1)−1
≡ (2c)20 − (2c)12 − (2c)8 + 1 (mod (2c)20 − (2c)12 + 1).

Using ad-hocmethods, the authors of [1] discovered a set of ƞve pairwise relatively primemoduli
of this form and used them in upper-layer on top of [2] to show improvement in a standard
integer matrix multiplication benchmark.
Their work leƠ open the following questions:

1. When are two trinomial moduli relatively prime?

2. Are there arbitrarily large sets of trinomial moduli with the same bit length?

3. For a ƞxed bit length, how can we eƢciently ƞnd these sets?

Our aim is to answer some of these questions by examining the pure polynomial trinomials

xn − xk + 1, 0 < k < n. (2)

It seems reasonable to establish the relative primality of trinomial pairs of the form (2), then
use this to deduce the relative primality of moduli of the form (1). Unfortunately, this does not
work. Almost all pairs of trinomials of the form (2) are relatively prime over the rationals, yet
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only a small proportion of moduli of the form (1) are relatively prime integers. In other words,
the substitution x = 2 in (2) does not preserve relative primality.

Our results include a simple condition based on the resultant of two trinomials which ensures
the relative primality of moduli of the form (1), a proof that arbitrarily large sets of relatively
prime moduli exist, and some discussions on how to ƞnd such sets.

2. Dyadically resolving pairs

Deƞnition 1. Apair ofmonic polynomials f(x) and g(x) inZ[x] dyadically resolve if their resultant
is a signed power of 2.

If a pair of monic polynomials dyadically resolve, then they are relatively prime inQ[x]. Their
unique Bézout cofactors a(x) and b(x) with deg a < deg g and deg b < deg f in the equation

a(x)f(x) + b(x)g(x) = 1

will have dyadic coeƢcients. This is because the resultant is the determinant of the Sylvester
matrix of f(x) and g(x), which is the coeƢcient matrix used to construct a(x) and b(x). The
converse is also true, but it is not obvious.

Theorem 1. The coeácients of the Bézout cofactors of f(x) and g(x) are all dyadic if and only if f(x)
and g(x) dyadically resolve.

If the trinomials xn − xk + 1 and xn − xj + 1 dyadically resolve then there exists an integer-
coeƢcient polynomial p(x) such that

gcd(2cn − 2ck + 1, 2cn − 2cj + 1) = 1

(2cn − 2ck + 1)−1 mod (2cn − 2cj + 1) = p(2c)
(3)

for suƢciently large positive integers c. In other words, the corresponding moduli that arise
aƠer setting x = 2c are relatively prime, and their inverses have a stable bit pattern.
We do not know of any simple, widely applicable condition that implies resolvability. For

example, observe the sporadic behavior of powers of 2 in the following matrix.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 3 1 3 31 9 8 3
1 0 1 1 4 1 31 16 8
3 1 0 1 3 1 3 31 9
1 1 1 0 1 1 1 1 31
3 4 3 1 0 1 3 4 3
31 1 1 1 1 0 1 1 1
9 31 3 1 3 1 0 1 3
8 16 31 1 4 1 1 0 1
3 8 9 31 3 1 3 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 1: res(x10 − xi + 1, x10 − xj + 1) for 1 ≤ i, j ≤ 9.

As a ƞrst step to understanding these resultants, we report the following results.

Theorem 2. As n → ∞, there are arbitrarily large sets of trinomials of the form (2) which dyadically
resolve pairwise.

Our proof of this theorem is constructive, meaning that we can write down arbitrarily large
sets at will. Unfortunately, the bit lengths used in our proof grow too quickly to be useful in
practice. See Table 1.
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size exponents

1 {1}

2 {1, 2}

3 {2, 3, 4}

4 {12, 15, 16, 18}

5 {720, 760, 765, 768, 780}

6 {48372480, 48434496, 48435465, 48435712, 48436128, 48439664}

Table 1

Exponents constructed in the proof of Theorem 2. For each size, the given set consists of k such that the

polynomials xn − xk + 1 dyadically resolve pairwise. The degree n is any fixed integer larger than the largest

element of the set.

Theorem 3. Let i, j < n be positive integers.

1. xn − xk + 1 and xn − xj + 1 dyadically resolve if k − j divides k.

2. xn − xk + 1 and xn − xj + 1 dyadically resolve if and only if xn − xn−k + 1 and xn − xn−j + 1
are.

3. If 2v is the largest power of 2 that divides k − j, then xn − xk + 1 and xn − xj + 1 do not
dyadically resolve if 2v divides either k or n− k.

There is a closed-form expression for the resultant of two binomials which has been known
for many years (see [4]), but this is not true for trinomials. We can report a formula in a very
special case.

Theorem 4. If k − j divides n, then

res(xn − xk + 1, xn − xj + 1) = ±

⎛

⎜

⎝

∏

m|
(k−l)

gcd(k,k−l)

Φm(2)

⎞

⎟

⎠

gcd(k,k−l)

where Φm(x) is the mth cyclotomic polynomial.

3. Relative primality

For a ƞxed n, almost all pairs of trinomials of the form (2) are relatively prime. In fact, if n is
odd, then all of them are. The following theorem gives very strict conditions under which two
trinomials can share a common factor over the rationals.

Theorem 5. If g(x) = gcd(xn − xk + 1, xn − xj + 1) is not constant, then:

1. n is even;

2. k − j is divisible by 6; and

3. g(x) is a product of cyclotomic polynomials whose orders are multiples of 6.

The preceding result shows that the only common factors two trinomials can have are
cyclotomic polynomials. We can further describe exactly which cyclotomic polynomials divide
which trinomials.

Theorem 6. Φd(x) divides x
n − xk + 1 if and only if d is a multiple of 6, and

(n, k) ≡ ±(d/3, d/6) (mod d).

Using these results and some number theory, it is possible to show that roughly 97% of all
pairs of trinomials for large even n are relatively prime.
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4. Open questions

Our results answer some of the questions inspired by [1], but there remain open questions.

Minimal pairwise resolvability What is the smallest n such that there exists a set of k trinomials
of the form (2) with degree n that dyadically resolve pairwise? The below table shows the ƞrst
few values of this sequence.

set size k smallest n

2 3
3 5
4 5
5 10
6 11
7 22
8 41
9 82
10 1668
11 ???

Resultant of two trinomials Is there a formula for the resultant of two trinomials of the form
(2) in terms of the cyclotomic polynomials evaluated at integers?

Fast construction of trinomialmoduli What is the fastest way to construct large sets of pairwise
dyadically resolving trinomials? Using maximal clique algorithms we have a method which is
faster than a naive brute force approach, but there could be better ways.

Acknowledgments: We thank the Digital Research Alliance of Canada and the OƢce of Research Computing and

Data Services at Dartmouth College for computational resources to run experiments.
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Abstract
The report describes the application of the normal formmethod to the study of a polynomialmodiƬcation
of the Liĕnard equation with a ǂthǾorder nonlinearityǧ A twoǾdimensional set of parameter values is
found for which the corresponding system has a Ƭrst integralǧ

Keywords
resonance normal formǨ integrabilityǨ Liĕnard equationǨ computer algebra

1. Introduction

In previous works we proposed an algorithmic approach that involves reducing the study of
integrability of autonomous ODE systems with a polynomial rightǾhand side to solving a system
of polynomial equations for the parameters of the system Ċƿċǧ Although this approach works
eƯectively in cases of resonances in the linear part of the ODEǨ it also sometimes allows us to
study the nonǾresonant case as well ĊǄċǧ The approach is based on the hypothesis that local
integrability of an ODE system in the neighborhoods of its Ƭxed points is necessary for its
integrability in a certain region of the phase spaceǧ
In the works ĊǅǨ ǆċ a method was also proposed for reducing the study of the integrability of

an ODE system to solving a system of algebraic equationsǨ based on the study of the algebraic
possibility of integrating an ODE system using the Darboux method Ċƿƾċǧ HoweverǨ the current
version of this method assumes a ƿǩƿ resonance in the linear partǨ as well as a homogeneous
nonlinearity of the polynomial on the rightǾhand sideǧ In additionǨ not every deƬnition of
integrability can be said to reduce it to Darboux integrabilityǧ In this reportǨ we will consider
obtaining integrability conditions for the coeưcients of an ODE system with a 1 : 3 resonance
and a nonhomogeneous polynomial on the rightǾhand sideǧ We will also brieƭy dwell on the
problems that arise when solving this problemǧ

2. The problem

To demonstrate the methodǨ we chose an autonomous ODE system constructed based on the
Liĕnard equation ĊǇċ

d2 x(t)

d x2
+ P (x(t))

d x(t)

(d x
+Q(x(t)) = 0. Ĉƿĉ

In the original notationǨ this equation assumes that P is even and Q is oddǧ We will treat
these functions as polynomials without deƬned parity properties and write equation Ĉƿĉ as a
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parameterized polynomial system

d x(t)
d t

= y(t),

d y(t)
d t

= (a0 + a1x(t) + a2x
2(t)) y(t) + b1x(t) + b2x

2(t) y + b3x
3(t) + b4x

4(t),

Ĉǀĉ

here t is independentǨ x(t) and y(t) are dependent variablesǨ and a0, . . . , b4 are parametersǧ Our
task is to determine for what values of the parameters the system Ĉǀĉ has a Ƭrst integral andǨ
thusǨ is integrableǧ

3. Calculation of the local integrability condition at the origin

According to the hypothesis about the necessity of local integrability at stationary points of an
ODE system for its integrability ĊǃċǨ we need to construct the corresponding algebraic systems
of equations for the parametersǨ and do this for the case of resonance in its linear part ĊǀǨ ǁċǧ It
turned out that if there are several stationary points in the phase space of the systemǨ it is easier
to obtain and then solve this condition for one of these pointsǨ and then check its fulƬllment
for the othersǧ

Wewill be interested in the system Ĉǀĉ with a resonance 1 : 3 in the linear partǧ The resonance
1 : M takes place there if the relation

b1 =
a20M

(M − 1)2
.

Calculating further at resonance withM = 3 the normal form up to the ƿǀth orderǨ we obtain
the Ƭrst three algebraic equations of the local integrability condition at the originǧ
A remarkable phenomenon observed for autonomous polynomial ODE systems is the ǷsatuǾ

rationǷ of the standard basis of equations of the local integrability condition with an increase in
their numberǧ This circumstance was discovered for the Liĕnard and Bautin systems ĊǃǨ Ǆċ and
is manifested in the fact thatǨ starting from a certain orderǨ when higher equations are added
to this conditionǨ the solutions of the system cease to changeǧ In our exampleǨ it is apparently
suưcient to limit ourselves to three equationsǧWe do not write out this system here due to its
bulkinessǨ we will designate it as SystemƿǨ it is given in the Ƭles ĊƿƿǨ ƿǀċǧ

NextǨ it was necessary to obtain rational solutions of the algebraic system Systemƿ of the ǀǂth
order from Ǆ variables a0, a1, a2, b2, b3, b4ǧ It was not possible to do this ǶheadǾonǷǧ

4. A special case of integrability

In the work Ċǂċ an example of an integrable case of the Liĕnard system was written out

d x̃(t)
d t

= y(t),

d y(t)
d t

=
(

25
12 − 3x̃2(t)

)

y(t)− 125
432 + 25

36 x̃(t) + 5x̃(t) + 7x̃3(t) + 3x̃4(t).

Ĉǁĉ

By shiƮing one of the Ƭxed points to the originǨ this system can be rewritten as Ĉǀĉ

d x(t)
d t

= y(t),

d y(t)
d t

=
(

2− x(t)− 3x2(t)
)

y(t) + 3x(t)(1 + x(t))3,

where x̃(t) = x(t) + 1
6 .

Ĉǂĉ
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Substitution of values of system parameters Ĉǀĉ corresponding to case Ĉǂĉ

a0 = 2, a1 = −1, a2 = −3, b1 = 3, b2 = 9, b3 = 9, b4 = 3,

b1 =
3
4a

2
0

into the algebraic system SystemƿǨ satisƬes it identicallyǧ ThusǨ we have at least one zeroǾ
dimensional solution and it really corresponds to the integrable caseǧ It is interesting to look
for families of solutions that include the one foundǧ To do thisǨ we parametrize the system in a
similar Ĉǂĉ form

d x(t)
d t

= y(t),

d y(t)
d t

= (c0 + c1x(t) + c2x
2(t)) y(t) + d1x(t)(1 + d2x(t))

3.

Ĉǃĉ

In this caseǨ the parameters in Ĉǀĉ are related to the current ones as follows

a0 = c0, a1 = c1, a2 = c2, b1 = d1, b2 = 3d1d2, b3 = 3d1d
2
2, b4 = d1d

3
2,

where d1 =
3
4c

2
0.

ĈǄĉ

Replacing variables in the system Systemƿ using formulas ĈǄĉǨ we obtain an algebraic system of
three equations with respect to parameters c0, c1, c2, d2ǧ We denote it as SystemǀǨ see Ƭle ĊƿƿǨ ƿǀċǧ
Using the Solve procedure of the MATHEMATICAǾƿƿ systemǨ we can obtain its rational solutions

{c1 = 0, c2 = 0, d2 = 0}, {c1 = −
1

2
c0 d2, c2 = −

3

2
c0 d

2
2}. Ĉǅĉ

These same solutions also identically satisfy Systemƿ with the appropriate change of variǾ
ables ĈǄĉǧ

5. Results

The Ƭrst of the solutions Ĉǅĉ reduces the system to a linear integrable form and is of no interestǨ
the second gives a system with two free parameters c0 and d2

d x(t)
d t

= y(t),

d y(t)
d t

= 1
4c0(d2x(t) + 1)[3c0x(t)(d2x(t) + 1)2 + 2y(t)(3d2x(t)− 2)].

This system is integrable because it has a Ƭrst integral of the form

I(x(t), y(t)) = 3
√

c0x(t)(d2x(t) + 1)2 + 2y(t)×

⎛

⎝

c0(d2x(t)+1)2 2F1

(

1,1; 5
3
;−

c0(d2x(t)+1)3

2d2y(t)−c0(d2x(t)+1)2

)

c0(d2x(t)+1)2−2d2y(t)
+ 2

⎞

⎠ .

Here 2F1 is a hypergeometric functionǧ

References

Ċƿċ Aǧ Dǧ BrunoǨ Vǧ Fǧ EdneralǨ On the integrability of a planar system of ODEs near a degenerate
stationary pointǨ Journal of Mathematical Sciences ƿǄǆĈǁĉ Ĉǀƾƿƾĉ ǁǀǄāǁǁǁǧ doiǩ10.1007/
s10958-010-9983-0ǧ

Edneral, V. F. 53

http://dx.doi.org/10.1007/s10958-010-9983-0
http://dx.doi.org/10.1007/s10958-010-9983-0


Ċǀċ Aǧ Dǧ BrunoǨ Analytical form of diƯerential equations ĈIǨ IIĉǨ volume ǀǃǨ ǀǄǨ NaukaǨ MǧǨ ƿǇǅƿǨ
ƿǇǅǀǧ Transǧ Moscow Mathǧ SocǧǨ volǧ ǀǃǨ ƿǁƿāǀǆǆ ĈƿǇǅƿĉǨ volǧ ǀǄǨ ƿǇǇāǀǁǇ ĈƿǇǅǀĉǧ

Ċǁċ Aǧ Dǧ BrunoǨ Local Methods in Nonlinear DiƯerential EquationsǨ Springer VerlagǨ Berlin
Heidelberg NewYork London Paris TokyoǨ ƿǇǆǇǧ

Ċǂċ Mǧ Vǧ Demina Ĉǀƾǀƾĉǧ Private Communicationsǧ
Ċǃċ Vǧ Fǧ EdneralǨ Integrable cases of the polynomial LiĕnardǾtype equation with resoǾ

nance in the linear partǨ Mathematics in Computer Science ƿǅ Ĉǀƾǀǁĉ ƿǇǧ doiǩ10.1007/
s11786-023-00567-6ǧ

ĊǄċ Vǧ Fǧ EdneralǨ Integrable cases of the Bautin systemǨ Mathematics in Computer Science
Ĉǀƾǀǃĉǧ In printingǧ

Ċǅċ Bǧ FerčecǨ Jǧ GinĕǨ Vǧ Gǧ RomanovskiǨ Vǧ Fǧ EdneralǨ Integrability of complex planar systems
with homogeneous nonlinearitiesǨ Journal of Mathematical Analysis and Applications ǂǁǂ
ĈǀƾƿǄĉ ǆǇǂāǇƿǂǧ doiǩ10.1016/j.jmaa.2015.09.037ǧ

Ċǆċ Bǧ FerčecǨ Mǧ ŽuljǨ Mǧ MencingerǨ On the integrability of persistent quadratic threeǾ
dimensional systemsǨ Mathematics ƿǀĈǇĉ Ĉǀƾǀǂĉ ƿǁǁǆǧ doiǩ10.3390/math12091338ǧ

ĊǇċ Aǧ LiĕnardǨ Etude des oscillations entretenuesǨ Revue gĕnĕrale de lǵĕlectricitĕ ǀǁ ĈƿǇǀǆĉ
ǇƾƿāǇƿǀ and ǇǂǄāǇǃǂǧ

Ċƿƾċ Vǧ Gǧ RomanovskiǨ Dǧ Sǧ ShaferǨ The Center and Cyclicity Problemsǩ A Computational
Algebra ApproachǨ BirkhƃserǨ BostonǨ ǀƾƾǇǧ

Ċƿƿċ Systƿ and Systǀ algebraic systemsǨ ǀƾǀǃǧ The Ƭle ǷSystemsǧpdfǷ is available at httpsǩ//diskǧ
yandexǧru/i/UQQHOowSeqƹyƹwǧ

Ċƿǀċ Systƿ and Systǀ algebraic systemsǨ ǀƾǀǃǧ The Ƭle ǷSystemsǧnbǷ is available at httpsǩ//diskǧ
yandexǧru/d/JpRƴcƸƵcEzKGHQǧ

54 Computer Algebra 2025

http://dx.doi.org/10.1007/s11786-023-00567-6
http://dx.doi.org/10.1007/s11786-023-00567-6
http://dx.doi.org/10.1016/j.jmaa.2015.09.037
http://dx.doi.org/10.3390/math12091338
https://disk.yandex.ru/i/UQQHOowSeq6y6w
https://disk.yandex.ru/i/UQQHOowSeq6y6w
https://disk.yandex.ru/d/JpR1c52cEzKGHQ
https://disk.yandex.ru/d/JpR1c52cEzKGHQ


The Dual Quaternion Algebra and its Implementation in
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Abstract
The algebras of dual quaternions and screws are oƠen opposed to geometric algebra. The purpose of
this paper is to describe the algebra of dual quaternions and the algebra of screws, to give a number
of examples of the use of dual quaternions to describe the screw motion of points, lines and planes in
three-dimensional space. This algebra is very poorly covered in the literature, and the actively used
principle of Kotelnikov-Study transfer is apparently forgotten. All calculations were performed using
the Asymptote language. Structures were created that implement dual numbers, quaternions, and dual
dual quaternions, as well as a set of computational tests to verify these structures.

Keywords
screws, motors, rotations, translations, computer geometry, Asymptote

1. Introduction

In the course of research on the application of analytical projective geometry in the ƞeld of
computational geometry [2], the authors oƠen came across references to motors, propellers,
and dual dual quaternions. All mentions were very brief and basically boiled down to the
fact that the mentioned entities are extremely unintuitive and diƢcult to understand and use.
They were oƠen contrasted with geometric algebra methods, which were presented as more
understandable and logical [4].
The search for a detailed description of the mathematical apparatus of the algebra of screws

and dual quaternions led the authors to works in the ƞeld of mechanics of absolutely rigid
bodies. It turned out that the theory of screws was developed back in the late 19th and early 20th
centuries in the works of R. S. Ball, E. Study [3], A. P. Kotelnikov. Themost complete description
can be found in the monograph [1]. However, at present this theory is little known and there
are practically no soƠware implementations of screw algebras and dual quaternions.
Another methodological problem is the lack of examples of the application of screws and

dual quaternions to computer geometry problems. The sources found are mainly focused on
the problems of applied mechanics. In this paper, we have tried to at least partially eliminate
this shortcoming.

Since all the examples are focused on the application of dual quaternion algebras and screws
to geometric problems, the Asymptote languagewas chosen as the language for implementation.
This language allows you to create custom data structures (data types) and overload all the basic
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algebraic operators. This made it possible to create data types for dual numbers, quaternions,
and dual dual quaternions. You can also create second-order functions that return other
functions that implement screw motion using Roderig’s screw formulas and sandwich products
of dual quaternions.

2. Dual numbers and quaternions

Here we list the basic concepts used in the construction of dual quaternionic algebra.
A dual number is a parabolic complex number z = a + bε, where the imaginary unit is a

parabolic imaginary unit deƞned by the equality ε2 = 0. For these numbers, you can deƞne the
same operations as for the usual (elliptical) complex numbers.
For two numbers z1 = a1 + b1ε and z2 = a2 + b2ε, addition, subtraction, and multiplication

can be deƞned. The formula for multiplication will look like this:

z1z2 = a1a2 + (a1b2 + b1a2)ε,

A dual conjugation is a number z = a+ bε = a− bε. The square of the module of the number
|z|2 = zz = a2, and the module itself as |z| = |a|.

Quaternion is a hypercomplex number of the form q = q0 + q1i+ q2j + q3k = q0 + q, where
the imaginary units i, j, k are determined by the equality i2 = j2 = k2 = ijk = −1. From this
equality, we can obtain a multiplication table of i, j, k among themselves and deƞne quaternion
multiplication, which is most easily expressed in terms of the scalar and vector parts of the
quaternion as follows:

qp = q0p0 − (q,p) + q0p+ p0q+ q× p.

A pure quaternion is a quaternion without a scalar part q0. A pure quaternion is associated with
a vector, an ordinary quaternion with q0 = 1 is associated with an aƢne point, and a quaternion
with q0 ̸= 0.1 is associated with a point mass. The q0 component plays the role of a weight
coordinate in this case.

3. Dual quaternions

A dual quaternion is a dual number with coeƢcients in the form of quaternions (Cayley-Dickson
doubling procedure):

Q = q + qoε,

where the quaternion q is the main part, and qo is the moment part. Q can be written as a
number with eight components

Q = q0 + q1i+ q2j + q3k + qo0ε+ qo1iε+ qo2jε+ qo3kε.

Axiomatically, it is assumed that the parabolic imaginary unit ε commutes with elliptical
imaginary units i, j, k, that is, iε = εi, jε = εj, kε = εk.
Simplifying somewhat, we will call a screw a dual quaternion, both parts of which are pure

quaternions. We will denote the screw in bold: Q = q+ qoε.
Three diơerent conjugation operations are deƞned for a dual quaternion

• Q∗ = (q + qoε) = q∗ + qo∗ε— quaternionic (complex) conjugation;
• Q = q + qoε = q − qoε— dual conjugation;
• Q† = (q + qoε)∗ = q∗ − qo∗ε is a quaternion dual conjugation.

dual quaternion multiplication can be deƞned for dual quaternions, and scalar and screw
(vector) multiplications for screws.
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4. The principle of Kotelnikov–Study transference

The principle of transference in the form in which A. P. Kotelnikov formulated it states. All
formulas of the theory of ƞnite rotations and kinematics of motion of a rigid body with one
ƞxed point, when replacing real quantities in them with dual analogues, turn into formulas for
ƞnite displacements and kinematics of motion of a free rigid body.
For example, consider the Rodrigues formula for rotating a point P with a radius vector p

around an axis passing through the origin with a guide vector a by an angle θ:

p′ = cos θp+ sin θa× p+ (1− cos θ)(a,p)a.

According to the principle of transfer, the angle θ should be replaced in this formula by the dual
angle Θ = θ + θoε, the radius vector p by the screw L = v+mε, guiding vector a onto screw
A = a+ aoε. The scalar and vector product of the vectors will then be replaced by the scalar
and screw product of the screws.

5. Dual quaternion formulas for screwmotion

If in the unit quaternion λ for the rotation of the vector (pure quaternion) p around the axis

a is given by the formula λ = cos
θ

2
+ sin

θ

2
a, then replacing the angle θ and the vector a

with dual analogues using the principle of transference, then we get a dual quaternion: Λ =

cos
Θ

2
+ sin

Θ

2
A which implements the screw movement of points, straight lines and planes.

The sandwich formula for a straight line represented by a screw L = v + mε looks like
L′ = ΛLΛ∗. An aƢne point is represented using a dual quaternion of the following form:
P = 1 + pε. Planes can also be written as a dual quaternion Π = n+ dε, where n is the normal
vector of the plane, and d is the distance from the plane to the origin. The same formulas work
for the screw motion of a point and a plane: P ′ = ΛPΛ† and Π′ = ΛΠΛ†.

6. Conclusion

The Kotelnikov-Study transference principle is naturally implemented programmatically if the
types of dual numbers, quaternions, and dual quaternions are deƞned, as well as arithmetic
and algebraic operators are overloaded, and scalar and vector multiplications are deƞned. In
this case, the calculation of the screw motion is reduced to a compact program code, since all
the computational complexity is already implemented in the created data types. And since the
implementation of dual quaternions uses ready-made types of dual numbers and quaternions,
part of the complexity is transferred to the implementation of these types, thus distributing the
overall complexity at diơerent levels. The speciƞc details of the implementation are planned to
be outlined in the presentation of the report.
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Abstract
Computer algebra methods are used to investigate the planar oscillations of a system of two bodies
connected by a spherical joint that moves along an elliptic orbit under the action of gravitational torque
in the plane of the orbit. It is shown that the motion of the two-body system is described by periodic
planar oscillations. All the relevant symbolic computations are performed with the help of computer
algebra systems.

Keywords
two connected bodies, spherical joint, gravitational torque, elliptic orbit, Lagrange equations, periodic
solution, power series, computer algebra

1. Introduction

We study the dynamics of a two-body system (satellite and stabilizer) connected by a spherical
joint that moves in gravitational ƞeld in the plane of an elliptical orbit using computer algebra
methods. The dynamics of various schemes for satellite-stabilizer gravitational orientation
systems on a circular orbit was discussed in many papers, some review of them can be found in
papers [12, 10, 3].
Since the problem is very complicated, in the previous works we studied the equilibrium

orientations of the system on a circular orbit only in the simplest cases when the spherical
joint is located at the intersection of the satellite and stabilizer principal central axis of inertia
and in the case where the spherical joint is positioned on the line of intersection between two
planes formed by the principal central axes of inertia of the satellite and stabilizer [3, 11, 2, 5, 4].
The application of computer algebra makes it possible to ƞnd the solutions of this problem. A
detailed investigation of the oscillations of a satellite (a rigid body) in the plane of an elliptical
orbit and the conditions for their stability were carried out in [15].
The works devoted to the study of planar oscillations of a system of two coupled bodies on a

slightly elliptic orbit were carried out only for simple cases, when the centers of mass of the
ƞrst and second bodies coincide [7], [1]. Here, we consider the planar oscillations of a two-body
system on a slightly elliptic orbit in case when the spherical joint is located at the intersection of
the ƞrst and second body principal central axis of inertia. Applying the perturbation techniques
and appropriate symbolic computations with the help of computer algebra systemWolfram
Mathematica [14], we construct the periodic solution in the form of a power series in a small
parameter.
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2. Equations of motion

We consider the problem of two bodies connected by a spherical hinge that move on an elliptic
orbit. To write the equations of motion of two-body system, we introduce the following right-
handed Cartesian coordinate systems: OXY Z is the orbital coordinate system, the OZ axis
is directed along the radius vector connecting the Earth center of mass C and the center of
mass O of the two-body system, the OX axis is directed along the linear velocity vector of the
center of mass O, and the OY axis coincides with the normal to the orbital plane. The axes
of coordinate systems O1x1y1z1 and O2x2y2z2, are directed along the principal central axes of
inertia of the ƞrst and the second body, respectively. The orientation of the coordinate system
Oixiyizi with respect to the orbital coordinate system is determined by the aircraƠ angles αi

(pitch), βi (yaw), and γi (roll) (see [3]).
Suppose that (ai, bi, ci) are the coordinates of the spherical hinge P in the body coordinate

system Oxiyizi, Ai, Bi, Ci are principal central moments of inertia; M1M2/(M1 +M2) = M ;
Mi is the mass of the ith body; ω is the angular velocity for the center of mass of the two-body
systemmoving along an elliptic orbit. Then we use the expressions for kinetic energy of the
system in the case when b1 = b2 = c1 = c2 = 0 and the coordinates of the spherical hinge P in
the body coordinate systems are (ai, 0, 0) and when the motions of the two-body system are
located in the plane of the elliptic orbit (α1 ̸= 0, α2 ̸= 0, β1 = β1 = 0, γ1 = γ2 = 0, α̇1 = dα1/dt,
α̇2 = dα2/dt, where t is time) in the form [12]

T = 1/2
(

B1 +Ma21
)

(α̇1 + ω)2 + 1/2
(

B2 +Ma22
)

(α̇2 + ω)2

− Ma1a2 cos(α1 − α2)(α̇1 + ω)(α̇2 + ω). (1)

The force function, which determines the eơect of the Earth gravitational ƞeld on the system of
two connected by a hinge bodies, is given by [12]

U = −3µ/(2ρ3)
(

(A1 − C1)sin
2α1 + (A2 − C2)sin

2α2

)

+ 3/2Mµ/ρ3
(

(a1 sinα1 − a2 sinα2

)2
+Mµ/ρ3a1a2 cos(α1 − α2). (2)

Here ρ is a radial distance between the center of mass of the Earth C and center of mass of
the system O; µ = fM0, where f is a gravitational constant, andM0 is the mass of the Earth;
ω = dϑ

dt
= ω0(1 + e cosϑ)2; µ

ρ3
= ω2

0(1 + e cosϑ)3; ϑ is the true anomaly and e is the orbital

eccentricity. On the circular orbit ω = ω0,
µ
ρ3

= ω2
0, ϑ = ω0t.

By using the kinetic energy expression (1) and the expression (2) for the force function, the
equations of motion for this system can be written as Lagrange equations of the second kind by
applying symbolic diơerentiation in theWolframMathematica system [14], [13]

d

dt

∂T

∂α̇i
−

∂T

∂αi
−

∂U

∂αi
= 0, i = 1, 2, (3)

in the form of a system of second-order ordinary diơerential equations in variables α1 and α2

[12].
To ƞnd the periodic solutions we assume that the oscillations are small and replace the sine

and cosine by their expansions in power series. Doing the substitution dt = dϑ/(ω0(1+e cosϑ)2)
in Lagrange equations we change the independent variable from t to ϑ and transform the
Lagrange system to the form

− (1 + e cosϑ)α′′

2 + 2eα′

2 sinϑ+ (B1 +Ma21)/(Ma1a2)
(

(1 + e cosϑ)α1
′′

− 2eα′

1 sinϑ
)

− e(1 + e cosϑ)(α′

2 + 1)2 + e
(

2 sinϑ(1− (B1 +Ma21)/Ma1a2)

+ (4 + 3
(

(A1 − C1)−Ma21
)

/(Ma1a2)
))

= 0, (4)
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− (1 + e cosϑ)α′′

1 + 2eα′

1 sinϑ+ (B2 +Ma22)/(Ma1a2)
(

(1 + e cosϑ)α2
′′

− 2eα′

1 sinϑ
)

+ e(1 + e cosϑ)(α′

1 + 1)2 + e
(

2 sinϑ(1− (B2 +Ma22)/Ma1a2)

+ (2 + 3
(

(A2 − C2)−Ma22
)

/(Ma1a2)
))

= 0.

which determine the oscillations of the system in the plane of the elliptic orbit in the orbital
coordinate system. The prime in (4) denotes diơerentiation with respect to ϑ. One can easily
check that the system (4) has the stationary solution

α1 = α2 = 0. (5)

Our goal is to obtain the periodic solution of the equations of motion (4) in the form of a power
series in a small parameter e (e ≪ 1) in the neighborhood of the stationary solution (5) with
the help of computer algebra system.

3. Periodic oscillations

It is possible to check that a general solution of nonlinear system (4) cannot be found in analytic
form. It is convenient for application of the perturbation techniques [6] and symbolic algorithms
proposed in paper [8]. However, we can seek for an approximate solution in the form of power
series in the small parameter e:

αi(ϑ) = eαi
(1)(ϑ) + e2αi

(2)(ϑ) + ..., (6)

Computation of unknown functions αi(ϑ) in (7) is done in accordance with the techniques
proposed in [6] and [8, 9]. requires quite tedious symbolic computations. In this paper symbolic
computations are performed usingWolframMathematica functions [13]:
Expand,TrigExpand, Series,Normal, Replace,DSolve,NDSolve.
Substituting (6) into (4) and collecting coeƢcients of equal powers of e, we obtain the set of

systems of linear diơerential equations which can be solved in succession. For example, using
in (7) only the ƞrst linear elements we obtain the corresponding periodic solutions in the form

α
(1)
1 (ϑ) = ā1sin(ϑ) + b̄1cos(ϑ), α

(1)
2 (ϑ) = ā2sin(ϑ) + b̄2cos(ϑ), (7)

where the coeƢcients ā1, b̄1, ā2, b̄2 can be deƞned from the linear algebraic system. The ampli-
tudes of the oscillations of the ƞrst and the second bodies have the expressions

R2
1 = (ā21 + b̄21)e

2 = 4
e2b2

d2
, R2

2 = (ā22 + b̄22)e
2 = 4

e2b̄2

d2
, (8)

where

b = (B1 +Ma1(a1 − a2))(3(A2 − C2)−B2)− 4Ma2(a1B2 + a2B1),

b̄ = (B2 +Ma2(a1 − a2))(3(A1 − C1)−B1)− 4Ma1(a1B2 + a2B1), (9)

d = (3(A1 − C1)−B1)(3(A2 − C2)−B2)− 4Ma21(3(A2 − C2)−B2)

− 4Ma22(3(A1 − C1)−B1).

In the present work, we have considered the ƞrst approximation of the planar oscillations of
a system of two bodies connected by a spherical hinge that moves along an elliptic orbit. We
have found the expressions of the periodic motion of the system in the linear approximation.
All the relevant computations in this work are performed with the computer algebra system
WolframMathematica. At the next step we will do the quadratic and cubic approximation of
the periodic solutions which have very cumbersome expressions.
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Searching for an Imperfect Palindrome

Georgii A. Khaziev1,∗, Alexandr V. Seliverstov1 and Oleg A. Zverkov1

1Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy
Karetny per. 19, build.1, Moscow, 127051, Russian Federation

Abstract
Weconsider algorithm for optimizing an imperfect palindrome in the input sequence. Our algorithmruns
in quadratic time, i. e., it is faster than exhaustive search of admissible palindromes. Also we propose
new approach called “trimming” to ƞnd long substrings of a sequence, that are closer to palindrome,
than sequence itself.

Keywords
palindrome, edit distance, Python, Numba, bioinformatics, computational complexity

1. Introduction

There are many works devoted to the search for perfect as well as imperfect and degenerate
palindromes [1]. We consider imperfect palindromes, i. e., sequenceswith gaps andmismatches
in somepositions. On the other hand, the edit distance between two sequences canbe calculated
using dynamic programming[3], but the algorithm does not involve palindromic structures.
The connection between the longest common subsequence problem and the Hecke monoid
has been rediscovered many times in diơerent forms [4].
Let us consider nucleotide sequences. The nucleotides {A,C,G,T} form two complementary

pairs: c(A) = T, c(T) = A, c(C) = G, and c(G) = C. Next, c() denotes the reverse complement,
i. e., c(xy) = c(y)c(x). For example, c(AACG) = CGTT. In DNA, a perfect palindrome is an
inverted sequence repeat, i. e., reverse complement of itself. Let us omit the concatenation
symbol. So, all perfect palindromes are of the type xc(x), where x denotes a sequence. In
particular, a sequence of odd length cannot be any perfect palindrome. There are many ex-
amples of nucleotide sequences with perfect as well as imperfect palindromes [5]. Regulatory
palindromes are typically imperfect [2].
For two sequences x and y, let dist(x, y) denote the edit distance. Of course,

dist(x, y) = dist(c(x), c(y))
dist(wx,wy) = dist(x, y)
dist(xz, yz) = dist(x, y)

2. Results

Let us denote by |x| the length of x. If sequences x and y coincide, then the edit distance in
Theorem 1 vanishes for a perfect palindrome. Let us denote by imp(x) the ratio of theminimum
edit distance to the length of the sequence:

imp(x) =
min{dist(x,wc(w))|x = wz}

|x|
.
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The ratio shows how imperfect the palindrome is. The correctness of the deƞnition is based on
the next theorem.

Theorem 1. There is a quadratic-time algorithm that computes the imp(x) function as well as optimal
partition of the input sequence x as a concatenation x = wz that minimizes the edit distance between
x and the palindrome wc(w).

Theorem 2. imp(x) = imp(c(x)).

Proof. For all x = wz, because the preƞxes match, dist(x,wc(w)) = dist(z, c(w)). And because
the suƢxes match, dist(x, c(z)z) = dist(w, c(z)). Of course, since dist(a, b) is symmetric, it
is true that dist(z, c(w)) = dist(c(w), z) = dist(w, c(z)). Thus, dist(x,wc(w)) = dist(x, c(z)z).
Next, for all z, dist(x, c(z)z) = dist(c(x), c(z)z) because c(z)z is a palindrome. So, the equality
dist(x,wc(w)) = dist(c(x), c(z)z) holds.

Theorem 3. For all even-length sequences it is true that imp(x) ≤ 1/2. For all odd-length sequences
it is true that 0 < imp(x) ≤ (1 + 1/|x|)/2.

Substring is a contiguous sequence of characters within a string. The main idea behind the
algorithm to select an imperfect palindrome is checking whether one of the optimal lengths of
the preƞx w of the input sequence x diơers signiƞcantly from |x|/2. If such case occurs, then
the algorithm deletes either preƞx or suƢx by diơerence between |w| and |x|/2.

The soƠware implementation in Python with the Numba library is available at http://lab6.iitp.
ru/-/trimmers. Using Numba generally increases performance of Python code. Performance
increase in comparisonwith base Python is achieved using JIT ( just-in-time) compilation. While
the base Python interpreter compiles programs into bytecode, which is executed on a virtual
machine, Numba recompiles this bytecode intomachine code with optimizations tailored to the
CPU architecture being used. Additionally, a signiƞcant performance beneƞt is gained through
Numba’s use of type inference, allowing type-speciƞc optimization during compilation.
All three functions pref_trimmer, suff_trimmer, and double_trimmer take as in-

put nucleotide sequence x, sorted list optimal_lengths of optimal preƞx lengths |w|,
and Ɵoating-point number cutoff_condition. Note that min(optimal_lengths) and
max(optimal_lengths) are the ƞrst and last elements of optimal_lengths, respectively.
The pref_trimmer function trims ƞrst rd symbols of x, where

rd = max(optimal_lengths)−

⌊
|x|

2

⌋

,

when rd ≥ length(x) · cutoff_condition is satisƞed.
The suff_trimmer function trims last ld symbols of x, where

ld =

⌊
|x|

2

⌋

−min(optimal_lengths),

when ld ≥ |x| · cutoff_condition is satisƞed.
The double_trimmer function initially computes

rd = max(optimal_lengths)−

⌊
|x|

2

⌋

and

ld =

⌊
|x|

2

⌋

−min(optimal_lengths).

Subsequently it checks if
rd ≥ |x| · cutoff_condition
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and
ld ≥ |x| · cutoff_condition.

If the ƞrst inequality is satisƞed, the function trims the ƞrst rd symbols from the string x.
Similarly, if the second inequality is satisƞed, the function trims the last ld symbols from x.

Theorem 4. For perfect palindrome x for any cutoff_condition > 0 no trimming would be
performed.

Proof. Let x be perfect palindrome. Then it’s only optimal partition is precisely at
⌊
|x|
2

⌋

. Then,

ld =
⌊
|x|
2

⌋

−
⌊
|x|
2

⌋

= 0 and rd =
⌊
|x|
2

⌋

−
⌊
|x|
2

⌋

= 0. For non-zero cutoff_condition rd and ld

will both be less than |x| · cutoff_condition so no trimming would be performed.

Theorem 5. For any n ≥ 3, there exist cutoff_condition > 0 and x with length of at least n,
which satisÙes both preÙx and suáx trimming conditions such that

pref_trimmer(xsuff ) ̸= suff_trimmer(xpref ),

where xsuff and xpref are results of suáx and preÙx trimming of x, respectively.

Proof. Let x = ATA...ATA
⏞ ⏟⏟ ⏞

α

where α = 2
⌊
n
2

⌋
+ 1, i. e. minimal odd number greater than or equal

to n. For that x optimal partitions would be at
⌈
n
2

⌉
− 1 and

⌈
n
2

⌉
+ 1. Minimal index of optimal

partition corresponds to perfect palindrome AT...AT
⏞ ⏟⏟ ⏞

α−1

and maximal index of optimal partition

corresponds to perfect palindrome AT...AT
⏞ ⏟⏟ ⏞

α+1

. Let us choose cutoff_condition = 1

10α
. Since

this value would satisfy both preƞx and suƢx trimming condition, xsuff and xpref could be
computed and will be AT...AT

⏞ ⏟⏟ ⏞

α−1

and T...ATA
⏞ ⏟⏟ ⏞

α−1

, respectively. Note, that both sequences are perfect

palindromes and thus neither suƢx nor preƞx trimming would be performed for them.

3. Conclusion

We are conƞdent that the obtained results will be successfully applied to the prediction of
imperfect palindromes in nucleotide sequences. In particular, it is crucial for predicting gene
expression regulations as well as RNA structures. The implementation of algorithms in Python
will enable a wide range of bioinformaticians to apply them in their work. Moreover, low
computational complexity allows eƢcient processing of large datasets.
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QuantumMechanics Through the Lens of Finite Groups:

Computer Algebra Insights

Vladimir V. Kornyak

Joint Institute for Nuclear Research, 6 Joliot-Curie St, Dubna, 141980, Russian Federation

Abstract
The use of non-constructive inƞnities in physical theories can lead to contradictions and non-physical
artifacts. Quantum behavior can be fully described using only ƞnite subgroups of the general unitary
group — speciƞcally, theWeyl–Heisenberg group and its extension, the Cliơord group. By formulating
quantum theory in terms of these groups, we completely eliminate the need for the continuous unitary
group, which leads to important empirical consequences. Crucially, this approach provides a natural
explanation for the observed absence of quantum entanglement and interference between distinct types
of elementary particles. Moving away from continuum-based mathematics also requires redeƞning
the concept of quantum states: the continuous projective Hilbert space should be replaced by some
combinatorial structure. Using computer algebra calculations, we study a potential framework for
building constructive quantum states, governed by a ƞxed set of physically motivated criteria.

Keywords
cyclic group,Weyl–Heisenberg group, Cliơord group, quantum evolution, constructive quantum states

1. Introduction

In standard quantummechanics, the evolution of a closed system is described by a continuous

one-parameter unitary group generated by a Hamiltonian: Ut = e−iH
h̄
t =

(

e−iH
h̄

)t

= Et. Any

continuous one-parameter group is isomorphic to the unitary group U(1), usually realized as
the unit circle in the complex plane. Without loss of describing physical reality, we can assume
that time t is an integer parameter, and the operator E is an element of a representation of a
ƞnite cyclic group ZN , whereN is a large natural number. In [1], assuming that time t is given

in Planck units, estimates are providedN ∼
{

Exp(Exp(20)) for 1 cm3 of matter,

Exp(Exp(123)) for the entire Universe.

In applications, the one-parameter group U(1) can be used as a continuum approximation of the
discrete group ZN asN → ∞. However, this approximation fails to capture certain empirically
observed fundamental quantum phenomena that depend on the number-theoretic properties
ofN . Key example: the primary decomposition of ZN (via the Chinese remainder theorem)
implies the decomposition of a N -dimensional quantum system into completely decoupled
subsystems, i.e. there is nether quantum entanglement nor energy interaction between them.
HermannWeyl was the ƞrst to discover [6] that ƞnite groups ZN , ZN × ZN , and a central

extension of the latter are needed to describe quantum behavior in a ƞnite-dimensional Hilbert
spaceHN . Although unitary evolution can be fully described by the cyclic group, the product be-
comes necessary to incorporate the concept of observation into the theoretical framework. The
factors of the product group are associated with mutually unbiased bases – a concept introduced
by Julian Schwinger [4] that provides a mathematical reƞnement of Bohr’s complementarity
principle. Subsequently, the ideas of Weyl and Schwinger have been actively developed in
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various ƞelds, including the foundations of quantum theory, quantum information theory [2],
and signal processing theory [5].

2. Weyl–Schwinger formalism

Noting that the canonical Heisenberg commutation relation [x̂, p̂] = ih̄1, – and hence standard
quantummechanics as a whole – can only be realized in an inƞnite-dimensional Hilbert space,
Weyl proved that in physically more meaningful ƞnite-dimensional case, the commutation
relation in the Hilbert space HN must be of the form ZX = ωXZ, where X is an operator
of cyclic permutation of N basis vectors in HN , Z is the Pontryagin dual of X, ω is a N th
primitive root of unity. Later, Schwinger proved that the eigenbases of operatorsX and Z in
HN constitute a mutually unbiased pair. Following ’t HooƠ’s terminology, we will refer to the
basis vectors cyclically permuted by the operatorX as ontic vectors. The pair of operatorsX
and Z generates a projective representation of the group ZN × ZN inHN — this representation
underlies the description of quantum behavior. In short, the main elements of the formalism
are as follows.
Let Kn denote the group of nth roots of unity. The element τ = − eπi/N generates KN if

N = 2k + 1 andK2N ifN = 2k. TheWeyl–Heisenberg group is deƞned as WH(N) = ⟨τ,X,Z⟩.
The order of WH(N) is N3 or 2N3 depending on the parity of N . Quantum evolutions are

generated by the displacement operators Dp = τp1p2Xp1Zp2, p =

(

p1
p2

)

∈ Z
2, which form the

projective Weyl–Heisenberg group PWH(N) ∼= ZN × ZN of order N2. The composition
DpDq = τ ⟨p,q⟩Dp+q contains the symplectic form ⟨p,q⟩ = p2q1 − p1q2. The symmetry group of
this form, the symplectic group Sp(2,ZN ), is the outer automorphism group of WH(N).
Combining inner and outer automorphisms, we arrive at a semidirect product called the

Cliơord group CL(N) = Aut(WH(N)) ∼= WH(N)⋊ Sp(2,ZN ).
Traditionally, the Cliơord group is deƞned as the normalizer of theWeyl–Heisenberg group

in the unitary group U(N). The need for U(N), which remains a relic of continuous theory,
follows neither from the description of quantum evolution by ƞnite cyclic groups nor from
Weyl’s arguments. We will consider the Cliơord group exclusively as the symmetry group of the
Weyl–Heisenberg group without resorting to a reference to the continuous group U(N).

In terms of generators, the Cliơord group can be presented as CL(N) = ⟨X,F, S⟩, where F is
the Fourier transformmatrix and S = diag

(

τ i(i+N), i = 0, . . . , N − 1
)

.
The projective Cliơord group — the quotient group of CL(N) by its center Z(CL(N)) — is

generated by the same elements, but matrices that diơer only by a phase factor are considered
equivalent: PCL(N) = ⟨X,F, S⟩/Z(CL(N)) .

3. Decomposition of a N-dimensional quantum system in subsystems

LetN =
∏

i ni be a factorization ofN into pairwise coprime integers {ni}. For concreteness,
we assume that all factors take the form ni = pℓii , where

{

pℓii

}

are prime powers with distinct

primes. The cyclic group ZN can be decomposed into a direct product of primary cyclic groups
ZN

∼=
∏

i Zni
. This isomorphism provides a natural way to decompose the N -dimensional

quantum system into subsystems. Speciƞcally, the global Hilbert space admits a decomposition
as a tensor product of local Hilbert spaces HN =

⊗

iHni
. Using the shorthand notation GH

for element-wise group action and the tensor product identity AX ⊗BY = (A⊗B) (X ⊗ Y ),
the equivalence class of this decomposition — accounting for the freedom in choosing Hilbert
space coordinates — can be formally expressed as:

G(N)HN ≃
∏

i

G(ni)
⊗

i

Hni
, (1)
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whereG(d) denotes the symmetry group acting on a d-dimensional Hilbert space. Since the
product of local groups is a subgroup of the global group,

∏

iG(ni) ≤ G(N), description (1)
reduces toG(N)HN ≃

⊗

iHni
, implying that all decompositions related by the action ofG(N)

are equivalent. The equivalence class is uniquely ƞxed by the coprime factorizationN =
∏

i ni.
The assumptionG(N) = U(N) can lead to artifacts, since the continuous group U(N) freely

“mixes” states between diơerent components of the tensor product, which would lead to non-
observable in nature entanglement between fundamental particles of diơerent types.
The assumptionG(N) = CL(N) does not cause such problems, since in the global Cliơord

group does not contain transformations that mix states between local Hilbert spaces of coprime
dimensions. Mathematically, this is expressed by the fact, proved using the Chinese remainder
theorem, that the global Cliơord group decomposes into a direct product of local ones: CL(N) =
∏

i CL(ni) . The absence of quantum entanglement between subsystems means that during any
evolutions of the global system, only quantum states that are tensor products of the states of
the subsystems (or their classical combinations, called separable states) are possible.
By applying the Chinese remainder theorem to the eigenvalues of the Hamiltonian for the

cyclic evolution of the global system [3], we derive the additive decomposition of energy levels
between the global quantum system and its local subsystems:

Ek/N =
∑

i

Eki/ni
, (2)

where Eν = hν represents Planck’s energy-frequency relation. Equality (2) demonstrates that:

1. The energy of the global system equals the sum of the energies of its subsystems, and

2. No interaction energies exist between components.

This result implies that subsystems of coprime dimensions are completely decoupled, showing
no quantum entanglement or energy exchange, and thus permit fully independent investigation.
In prime-dimensional quantum systems, quantum interference can occur. However, they

cannot exhibit quantum entanglement due to absence of proper subsystems. Entanglement is
possible only in a system of non-trivial prime power dimension.
Consequently, the most physically signiƞcant systems for study are:

1. Systems of prime dimensions (N = p), only quantum interference is possible, and

2. Systems of prime power dimensions (N = pℓ, ℓ > 1) where quantum entanglement
emerges.

4. Constructive quantum states

In continuous quantummechanics, the set of pure states in aN -dimensional Hilbert space is
the complex projective space P(HN ) = CP

N−1, which is a homogeneous space of the unitary
group U(N), i.e., CPN−1 is the orbit of an arbitrary unit vector, e.g., |0⟩, under the action of the
unitary group: CPN−1 ∼= OrbU(N)(|0⟩) = U(N) |0⟩ .
In our approach, the group of symmetries of quantum systems is the ƞnite Cliơord group,

which acts on the set of quantumstates non-transitively, splitting it into disjoint orbits. Replacing
U(N)with CL(N) as the group of symmetries, we assume that the constructive set of pure quan-
tum states, which we denote as CQS(N), consists of elements of the form |a⟩ =

∑N−1
i=0 ϕiαi |i⟩ ,

where αi ∈ R,
∑N−1

i=0 α2
i = 1, ϕi ∈ Z(CL(N)), i.e., the phase factors belong to the center

of the Cliơord group CL(N). The set CQS(N) must 1) be CL(N)-invariant; 2) contain ontic
vectors; 3) consist only of elements with rational Born probabilities of transitions between
themselves; 4) contain all superpositions of vectors with phase factors from Z(CL(N)) that
satisfy the rationality requirement.
To study the properties of the quantum states corresponding to these requirements, we

implemented a procedure to sequentially construct the orbits that make up the set CQS(N). At
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ƞrst, the orbit O1 = Orb
CL(N)

(|0⟩) is constructed. In dimensions N = pℓ this orbit consists of
N (N + 1) vectors, forming a complete set ofN + 1mutually unbiased bases and, in particular,
contains the ontic basis. Next, we construct other orbits using superpositions of already existing
elements. The results of computer experiments possibly indicate the formation of a dense
subset in CP

N−1.

4.1. Computations in dimensions 2 and 3

Table 1

Generators, centers, and sizes of the CliȂord groups in dimensions 2 and 3, ω = − 1

2
+ i

√

3

2
.

N X F S Z(CL(N)) |CL(N)|

2

(

0 1
1 0

)

1
√

2

(

1 1
1 −1

) (

1 0
0 i

)

K8 192

3

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠

1
√

3

⎛

⎝

1 1 1
1 ω ω2

1 ω2 ω

⎞

⎠

⎛

⎝

1 0 0
0 ω2 0
0 0 ω2

⎞

⎠ K12 2592

For quantum states |a⟩, |b⟩ ∈ CQS(N), we deƞne the distance function Dist(a, b) = 1−P(a, b) ≡
sin2DFS(a, b) , where P(a, b) = |⟨a | b⟩|2 is the Born probability of transition between states, and
DFS(a, b) is the length of the geodesic line in the natural for CPN−1 Fubini–Study metric.
To estimate the density of states for a subset S ⊂ CQS(N) in the complex projective space,

we deƞne the function∆(S) = maxa∈S minb∈S\{a}Dist(a, b) that computes, for each point in S,
the distance to its nearest neighbor and then takes the maximum of these minimal distances.

4.1.1. N = 2

The results permit geometric visualization: pure states reside in the complex projective line
CP

1, which is isomorphic to the Riemann sphere (Bloch sphere). The projective Cliơord group
PCL(2) = CL(2) /K8 has order 24. We calculated — initial steps are shown in Fig. 1 — a subset
of states S ⊂ CQS(2), which is the union of 986 orbits with a total number of elements 23646.
The maximum distances between neighboring states for the initial orbit and for the entire
computed set of states are, respectively,∆(O1) = 1/2 and∆(S) = 1/1515 ≈ 10−3.
The initial orbitO1 = OrbCL(2)(|0⟩) consists of six vectors, orthogonal pairs of which form a

complete set of three mutually unbiased bases:

O1 =

{

|0⟩ , |1⟩ ; |0⟩+ |1⟩√
2

,
|0⟩ − |1⟩√

2
;

|0⟩+ i |1⟩√
2

,
|0⟩ − i |1⟩√

2

}

. (3)

4.1.2. N = 3

The order of the projective group PCL(3) = CL(3) /K12 is 216. The initial orbit forms a com-

plete set of four mutually unbiased bases: O1 =

{

|0⟩, |1⟩, |2⟩; 1√
3

⎛

⎝

1
1
1

⎞

⎠, 1√
3

⎛

⎝

1
ω

ω2

⎞

⎠, 1√
3

⎛

⎝

1
ω2

ω

⎞

⎠;

1√
3

⎛

⎝

1
ω2

ω2

⎞

⎠, 1√
3

⎛

⎝

1
1
ω

⎞

⎠, 1√
3

⎛

⎝

1
ω

1

⎞

⎠; 1√
3

⎛

⎝

1
ω

ω

⎞

⎠, 1√
3

⎛

⎝

1
1
ω2

⎞

⎠, 1√
3

⎛

⎝

1
ω2

1

⎞

⎠

}

. The set of states S ⊂ CQS(3)

that we calculated consists of 169 orbits that contain a total of 27237 vectors. The maximum
distances between neighboring states for the initial orbit and for the entire calculated set of
states are, respectively,∆(O1) = 2/3 and∆(S) = 1/99 ≈ 10−2.
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(a) (b) (c)

Figure 1: Initial steps in generating constructive quantum states in dimension 2:

(a) the vectors of orbit (3) form the vertices of an octahedron, whose spatial diagonals represent the three

mutually unbiased bases;

(b) pairwise interferences of the vectors in (a) with rational transition probabilities add one orbit of size 24;
(c) pairwise interferences of the vectors in (b) add 16 orbits of size 24 to the set of constructive quantum states.
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Abstract
Third- and fourth-order FEM schemes with multivariate Hermite interpolation polynomials of a d-
dimensional hypercube for solving boundary value problems (BVPs) on hyperparallelepipedal meshes
are elaborated. An exactly solvable model of a system of several identical particles with pair oscillator
interaction known as the Moshinsky atom is used as a test example. To describe the energy spectra
of symmetric and antisymmetric bound states, the 2-,3-,4-, and 5- dimensional BVPs with Dirichlet
and Neumann boundary conditions on a nonrectangular domain are formulated. To generate new
FEM schemes with mixed partial derivatives, additional aƢne coordinate transformations are applied.
Benchmark calculations of the BVPs conƞrm the order of declared FEM schemes.

Keywords
multivariate Hermite interpolation polynomials, hyperparallelepipedal mesh, ƞnite element method,
Moshinsky atom

1. Introduction

At present, in connection with the study of energy spectra and electromagnetic transitions
of collective quadrupole-octupole models of heavy and superheavy atomic nuclei in a self-
consistent relativistic mean ƞeld parameterization, it is relevant to develop computational
schemes and programs for solving multidimensional (up to six-dimensional) boundary value
problems (BVPs) for elliptic equations with mixed partial derivatives [1]. Their speciƞc feature
is that the calculation of the tabulated coeƢcients of diơerential equations even with restricted
accuracy takes quite a long time. So, the problem of constructing nonstructured grids does
not arise, and it is suƢcient to restrict ourselves to constructing FEM schemes on hyperparal-
lelepipedal grids. To save computer resources, the BVP is solved not on a parallelepiped, but
on a complex domain composed of parallelepipeds [2]. It was tested by solving d = 2 BVPs for
a system of elliptic diơerential equations by means of the 2DFEM program implemented in
WolframMathematica [1].

In the present communication, we continue elaborating FEM schemes and programs for
solving themultidimensional BVPs. As a test example, we choose a BVP with known degenerate
spectrum, the so-called Moshinsky atom describing a system of A ≥ 3 one-dimensional identi-
cal particles with pair oscillatory interaction. In the center-of-mass system in symmetrized
coordinates [3], it is reduced to a BVP of dimension d = A−1with Dirichlet or Neumann bound-
ary conditions on a non-rectangular domain. AƠer an aƢne transformation, the problem is
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Figure 2: The diȂerencesEn −Eex
n plotted vs their exact degenerate valuesEex

n for the FEM schemes of order p

approximating the four-dimensional BVP of the relative motion of five identical particles

reduced to a BVP on a rectangular domainwithmixed derivatives. Some large-scale calculations
were performed on the Multifunctional Information and Computing Complex MLIT JINR.

2. Formulation of BVP and FEM scheme

Consider a self-adjoint BVP for the d-dimensional elliptic diơerential equation [1]

(T+V (x)−En) Φn(x) = 0, T=− 1

g0(x)

d
∑

i,j=1

∂

∂xi
gij(x)

∂

∂xj
, g0(x)>0, gij(x)=gji(x) (1)

in a bounded domainΩ(x), x=(x1, ..., xd)∈Ω(x)⊂Rd withmixed Dirichlet and Neumann bound-
ary conditions, where V (x) is the potential energy, En is an eigenenergy. For the principal part
coeƢcients of Eq. (1), the condition of uniform ellipticity holds in the bounded domain Ω(x) of
the Euclidean spaceRd, i.e., the constants µ > 0, ν > 0 exist such that µξ2 ≤

∑d
i,j=1

ξiξj ≤ νξ2,

ξ2 ≤
∑d

i=1
ξ2i , ∀ξi ∈ R. The leƠ-hand side of this inequality expresses the requirement of

ellipticity, while the right-hand side expresses the boundedness of the coeƢcients gij(x).
To solve the BVP, third- and fourth-order FEM schemes with rectangular ƞnite elements

were used. Local functions are products of one-dimensional third- (p=3) or fourth-order (p=4)
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Table 1

The dimension of the algebraic problemDS,A
p and the number of nonzero elementsNS,A

p (in 106) for
FEM schemes of order p approximating a three-dimensional BVP of the relative motion of four identical

particles. Calculated on a mesh of hyperparallelepipeds with equal step h in all variables forming cells

∆j , in which the potential V (x) satisfies the condition V (x ∈ ∆j) < Vmax, h = 0.6

Vmax DS
3

NS
3

DS
4

NS
4

DA
3

NA
3

DA
4

NA
4

40 6888 0.56 20153 2.8 5539 0.41 17293 2.2

20 3136 0.23 8825 1.1 2373 0.16 7234 0.84

Table 2

The dimension of the algebraic problemDS,A
p and the number of nonzero elementsNS,A

p (in 106) for
the FEM schemes of order p approximating the four-dimensional BVP of the relative motion of five

identical particles. Here h = 1 for p = 3 and in two last columns, and h = 1.6 for p = 4

Vmax DS
3

NS
3

DS
4

NS
4

DA
3

NA
3

DA
4

NA
4

DA
4

NA
4

40 16272 5.3 17683 10.7 9901 2.5 11107 4.8 41593 23.4

20 7264 2.0 8065 4.2 3969 0.75 4624 1.5 15934 7.2

Hermite interpolation polynomials ϕ3

i (x) or ϕ
4

i (x), which in the interval x ∈ [0, 1] have the form

ϕ3

i (x=0)=δi1,
dϕ3

i (x)

dx

⃓

⃓

⃓

⃓

x=0

=δi2, ϕ3

i (x=1)=δi3,
dϕ3

i (x)

dx

⃓

⃓

⃓

⃓

x=1

=δi4,

ϕ3

1(x)=(x−1)2(1+2x), ϕ3

2(x)=(x−1)2x, ϕ3

3(x)=x2(3−2x), ϕ3

4(x)=x2(x−1),

ϕ4

i (x=0)=δi1,
dϕ4

i (x)

dx

⃓

⃓

⃓

⃓

x=0

=δi2, ϕ4

i (x=1/2)=δi3, ϕ4

i (x=1)=δi4,
dϕ4

i (x)

dx

⃓

⃓

⃓

⃓

x=1

=δi5,

ϕ4

1(x)=(4x+1)(1−2x)(x−1)2, ϕ4

2(x)=x(1−2x)(x−1)2, ϕ4

3(x)=16x2(x−1)2,

ϕ4

4(x)=x2(1−2x)(4x−5), ϕ4

5(x)=x2(2x−1)(x−1).

Algorithms for constructing FEM schemes are given in Ref. [2].

3. Moshinsky atom: BVP in symmetrized and aȂine coordinates

The Moshinsky atom equation describing the relative motion dynamics ofA ≥ 3 identical parti-
cles with pair oscillatory interaction in the center-of-mass system in symmetrized coordinates
X=(X1, ..., Xd)∈Rd, d=A−1 has the form [3]

(

A−1
∑

i=1

(

− ∂2

∂X2

i

+X2

i

)

− ES,A
n

)

ΦS,A
n (X) = 0.

To construct states that are symmetric (S) or antisymmetric (A) with respect to permutations of
pairs of particles, the problem should be solved in one of the regions bounded by planes

2−
√
A√

A− 1
X1 +

1√
A− 1

A−1
∑

i=2

Xi = 0, Xj−1 −Xj = 0, j = 2, ..., A− 1

with Dirichlet or Neumann boundary conditions, respectively. The degenerate spectrum is

ES
n = A− 1, A+ 3, A+ 5, A+ 7, A+ 9, ..., (2)

EA
n = A2 − 1, A2 + 3, A2 + 5, A2 + 7, A2 + 9, ...
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Table 3

The first 6 energy levelsES
n for the 3rd order FEM scheme approximating the five-dimensional BVP of

the relative motion of six identical particles, whereES
4
,ES

5
are double degenerate,ES

6
is fourfold ones.

ES
1

ES
2

ES
3

ES
4

ES
5

ES
6

DS
3

exact 5 9 11 13 15 17 NS
3

Vmax=12, h=1 5.003 9.029 11.012 13.014 15.003 16.963 17.035 21312

p=3 13.109 15.062 17.054 17.273 23.1

Vmax=18, h=1 5.003 9.029 11.014 13.020 15.023 17.028 17.047 34528

p=3 13.116 15.080 17.103 17.321 41.6

In aƢne coordinates x=(x1, ..., xd)∈Rd, d=A−1 of the center-of-mass system of A particles:

x1 =
2−

√
A√

A− 1
X1 +

1√
A− 1

A−1
∑

i=2

Xi, xj = Xj−1 −Xj , j = 2, ..., A− 1,

the BVP has the form (1) with

g0(x) = 1, gij(x) = {2, i = j;−1, i = j ± 1; 0 otherwise}, i, j = 1, ..., A− 1

and potential energy V (x) =
∑A−1

i=1
(Xi(x))

2 and the spectrum (2). The BVP is solved in a
rectangular domain Ω(x) bounded by planes xi ∈ [0,+∞), i = 1, ..., A− 1.

4. Results

As an example, Tables 1 and 2 present the dimensionsDS,A
p of the algebraic eigenvalue problem

and the number of nonzero elementsNS,A
p (in 106) for FEM schemes of order p, approximating

3D- and 4D- BVPs for the relative motion of four and ƞve identical particles, calculated on
reduced domain meshes with hyperparallelepiped cells∆j in which the potential satisƞes the
condition V (x∈∆j)<Vmax (see, e.g., Fig. 1a for d=3). The diơerences between the exact and
approximate eigenvalues are shown in Figs. 1b and 2. The eigenvalues obtained by solving
the 5D BVP are given in Table 3. The main results of the benchmark calculations of the BVPs
presented in the above tables and the visible slopes of straight lines connecting the dots in the
above ƞgures conƞrm the declared order of the developed FEM schemes.
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Existence of Liouvillian Solutions in the Problem of Motion of

a Heavy Gyrostat Under the Action of Gyroscopic Forces

Alexander S. Kuleshov∗, Anton D. Skripkin

Department of Mechanics and Mathematics, Lomonosov Moscow State University, Main building of MSU, Leninskie Gory,
Moscow, 119234, Russian Federation

Abstract
Westudy theproblemofmotion of a gyrostat about a ƞxedpoint under the action of gravity and gyroscopic
forces in the Hess integrability case. It is shown, that the solution of the problem is reduced to the
integration of the second -– order linear diơerential equation with rational coeƢcients. Using the
Kovacic algorithm, we obtain the conditions on the parameters of the problem under which we can ƞnd
the general solution of the corresponding second order linear diơerential equation in explicit form.

Keywords
gyrostat with a ƞxed point, Hess case, linear second order diơerential equation, Liouvillian solutions,
Kovacic algorithm

1. Problem formulation

Let us consider the problem ofmotion of a gyrostat with a ƞxed point under the action of gravity
and gyroscopic forces in the Hess case of integrability. Equations of motion of the gyrostat can
be written as follows [1]:

A1ω̇1 + (A3 −A2)ω2ω3 − s2ω3 = −Mgx2γ3 + λx2ω3 (γ1x1 + γ2x2) ,

A2ω̇2 + (A1 −A3)ω1ω3 + s1ω3 = Mgx1γ3 − λx1ω3 (γ1x1 + γ2x2) ,

A3ω̇3 + (A2 −A1)ω1ω2 + s2ω1 − s1ω2 = Mg (x2γ1 − x1γ2) + λ (x1ω2 − x2ω1) (γ1x1 + γ2x2) ;

γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2.

(1)
Here ω1, ω2, ω3 are the components of angular velocity vector of the gyrostat, γ1, γ2, γ3 are the

components of the unit vector of upward vertical, A1, A2, A3 are the moments of inertia of the
gyrostat with respect to principal axes of inertia at the ƞxed point, x1, x2 are the components
of the radius – vector from the ƞxed point to the center of mass of the gyrostat, s1, s2 are
the components of the gyrostatic momentum vector, M is the mass of the gyrostat, g is the
acceleration due to gravity, λ is a parameter of gyroscopic forces. The components x1, x2 are
connected with the moments of inertia A1, A2, A3 by the following condition:

A2 (A3 −A1)x
2

2 = A1 (A2 −A3)x
2

1, A2 > A3 > A1; (2)
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Equations (1) possess the following ƞrst integrals:

1

2

(

A1ω
2

1 +A2ω
2

2 +A3ω
2

3

)

+Mg (x1γ1 + x2γ2) = E, γ21 + γ22 + γ23 = 1,

(A1ω1 + s1) γ1 + (A2ω2 + s2) γ2 +A3ω3γ3 +
λ

2
(x1γ1 + x2γ2)

2 = k,

A1ω1x1 +A2ω2x2 +
A1x1 (s2x1 − s1x2)

(A3 −A1)x2
= 0. (3)

Let us introduce the following new variables:

L1 =
A1ω1x1 +A2ω2x2

√

x2
1
+ x2

2

, L2 =
A2ω2x1 −A1ω1x2

√

x2
1
+ x2

2

, L3 = A3ω3,

ν1 =
γ1x1 + γ2x2
√

x2
1
+ x2

2

, ν2 =
γ2x1 − γ1x2
√

x2
1
+ x2

2

, ν3 = γ3, k1 =
s1x1 + s2x2
√

x2
1
+ x2

2

,

k2 =
s2x1 − s1x2
√

x2
1
+ x2

2

, Γ = Mg

√

x2
1
+ x2

2
, Λ = λ

(

x21 + x22
)

,

a =
A2x

2
1
+A1x

2
2

A1A2

(

x2
1
+ x2

2

) , b =
(A1 −A2)x1x2

A1A2

(

x2
1
+ x2

2

) , c =
1

A3

.

Using the variables L1, L2, L3, ν1, ν2, ν3, we can rewrite equations (1) as follows:

L̇1 = −bL3

(

L1 −
ck2

b

)

, L̇2 = (a− c)L1L3 + bL2L3 − ck1L3 − Λcν1L3 + Γν3,

L̇3 = − (a− c)L1L2 + bL2
1
− bL2

2
+ (k1b− k2a)L1 + (k1c− k2b)L2+

+ Λ(bL1 + cL2) ν1 − Γν2,

ν̇1 = cL3ν2 − (cL2 + bL1) ν3, ν̇2 = (aL1 + bL2) ν3 − cL3ν1,

ν̇3 = − (aL1 + bL2) ν2 + (cL2 + bL1) ν1.

(4)

From the ƞrst equation of the system (4) we can obtain the ƞrst integral (3). It has the form

L1 =
ck2

b
. (5)

Under conditions (2), (5) equations (4) are noticeably simpliƞed and take the form:

L̇2 = bL2L3 + (F −Gc)L3 − Λcν1L3 + Γν3, L̇3 = −bL
2

2 − (F −Gc)L2 + ΛcL2ν1 − Γν2,

ν̇1 = cL3ν2 − cL2ν3, ν̇2 = −cL3ν1 + bL2ν3 + Fν3, ν̇3 = cL2ν1 − bL2ν2 − Fν2.

(6)
Here we introduce the following notations:

L2 = L2 + k2, F =

(

ac− b2
)

k2

b
, G =

ck2

b
+ k1.

Equations (6) possess the following ƞrst integrals

c

2

(

L
2

2 + L2

3

)

+ Γν1 = E; L2ν2 + L3ν3 +Gν1 +
Λ

2
ν21 = k; ν21 + ν22 + ν23 = 1. (7)
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2. Reduction to the second order linear diȂerential equation

Let us introduce now the dimensionless variables y and z

y = L2

√

c

Γ
, z = L3

√

c

Γ
,

the dimensionless time τ :
t =

τ√
Γc

,

the dimensionless constants of the ƞrst integrals

h =
E

Γ
, p1 = k

√

c

Γ

and the dimensionless parameters

d1 =
b

c
, Q = Λ

√

c

Γ
, A =

F√
Γc

, B = G

√

c

Γ
.

Now we can rewrite equations (6) and the ƞrst integrals (7) in dimensionless form:

dy

dτ
= d1yz + (A−B) z −Qν1z + ν3,

dz

dτ
= −d1y

2 − (A−B) y +Qν1y − ν2,

dν1

dτ
= zν2 − yν3,

dν2

dτ
= d1yν3 − zν1 +Aν3,

dν3

dτ
= −d1yν2 + yν1 −Aν2,

(8)

y2 + z2

2
+ ν1 = h, yν2 + zν3 +Bν1 +

Q

2
ν21 = p1, ν21 + ν22 + ν23 = 1.

In the system (8) we make the following change of variables

y = x cosϕ, z = x sinϕ.

Then for x and ϕ we have the system of two diơerential equations

x
dx

dτ
= −

√

P8 (x)

8
,

x2
dϕ

dτ
= −d1x

3 cosϕ− 3Q

8
x4 +

1

2
(Qh+B − 2A)x2 − 1

2

(

Qh2 + 2Bh− 2p1
)

,

(9)

P8 (x) = −Q2x8 + 8
(

BQ+Q2h− 2
)

x6 + 8
(

8h− 2B2 − 6BQh− 3Q2h2 + 2p1Q
)

x4+

+32
(

2− 2h2 − 2p1B − 2p1Qh+ 2B2h+ 3QBh2 +Q2h3
)

x2 − 16
(

Qh2 + 2Bh− 2p1
)2

.

From this system it is easy to ƞnd the diơerential equation for ϕ = ϕ (x):

dϕ

dx
=

8d1x
2

√

P8 (x)
cosϕ+

3Qx4 − 4 (Qh+B − 2A)x2 + 4
(

2p1 −Qh2 − 2Bh
)

x
√

P8 (x)
. (10)

Using the change of variables

w = tan
ϕ

2
,

we reduce this equation to the Riccati equation

dw

dx
= f2w

2 + f0, (11)
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f2 =
3Qx4 − 8d1x

3 + 4 (2A−B −Qh)x2 + 4
(

2p1 −Qh2 − 2Bh
)

2x
√

P8 (x)
,

f0 =
3Qx4 + 8d1x

3 + 4 (2A−B −Qh)x2 + 4
(

2p1 −Qh2 − 2Bh
)

2x
√

P8 (x)
.

(12)

It is well known from the general theory of ordinary diơerential equations [3], that if the
Riccati equation has the form:

dw

dx
= f2w

2 + f0,

then the substitution of the form

u (x) = exp

(

−
∫

f2wdx

)

reduces it to the second order linear diơerential equation

d2u

dx2
+ a (x)

du

dx
+ b (x)u = 0, a (x) = − 1

f2

df2

dx
, b (x) = f0f2. (13)

Taking into account that the functions f2 and f0 have the form (12), we can conclude, that
the coeƢcients of the linear second order diơerential equation (13) are rational functions of x.
Thus, we have the following theorem.

Theorem 1. The solution of the problem of motion of a gyrostat with a Ùxed point under the action
of gravity and gyroscopic forces in the integrable Hess case is reduced to solving the second order linear
di×erential equation (13) with rational coeácients.

Direct application of the Kovacic algorithm [2] to the diơerential equation (13) gives the
following result.

Theorem 2. Let Q ̸= 0 (gyroscopic forces are present) and d1 ̸= 0 (the mass distribution of the
gyrostat does not correspond to the Lagrange integrable case). Then the second order linear di×erential
equation (13) admits a general solution expressed in terms of Liouvillian functions under the condition

A =

(

d2
1
+ 1

)

Q
.
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Symbolic Investigation of a DiȂerence Scheme for Wave

Processes in Coaxial Elastic Cylindrical Shells Filled with an

Incompressible Viscous Fluid

Artem V. Mesyanzhin1, Yury A. Blinkov2,∗

1SC Design Bureau of Industrial Automatics, 239 B. Sadovaya St, Saratov, 410005, Russian Federation
2Saratov State University, 83 Astrakhanskaya St, Saratov, 410012, Russian Federation

Abstract
This study investigates difference schemes for modelling wave processes in coaxial elastic cylindrical
shells filled with an incompressible viscous fluid. Using symbolic computation methods (Gröbner bases)
and numerical methods, the authors derive a Crank–Nicolson-type scheme for a coupled nonlinear
system of equations analogous to the Korteweg–de Vries (KdV) equation. The first differential
approximation method is employed to analyze the scheme’s accuracy, supported by exact soliton
solutions and numerical experiments.

Keywords
Gröbner bases, difference schemes, first differential approximation, Korteweg–de Vries equation,
nonlinear shells, viscous fluid

The problem of geometrically and physically nonlinear coaxial shells filled with a viscous
incompressible fluid is of great importance for acoustic diagnostics and non-destructive material
testing systems.

We assume that the radii of the shells are small compared to the characteristic wavelength of
longitudinal deformation. The fluid flow is described by hydrodynamic lubrication theory, and
there is no dependence on the Reynolds number. Transitioning to dimensionless variables and
combining the method of multiple scales with the method of matched asymptotic expansions
leads to the following system [3, 5]:

φ
(1)
t + 6σ0φ

(1)φ(1)
η + φ(1)

ηηη6σ1φ
(1)2φ(1)

η + φ(1) − φ(2) = 0,

φ
(2)
t + 6σ0φ

(2)φ(2)
η + φ(2)

ηηη6σ1φ
(2)2φ(2)

η + φ(2) − φ(1) − σφ(2) = 0.
(1)

We use Gröbner bases of the difference ideal to construct a Crank–Nicolson-type scheme,
following the works [7, 4]. Represent the system of equations (1) in integral form:

∮

∂Ω

(

−3σ0φ
(1)2 − 2σ1φ

(1)3 − φ(1)
ηη

)

dt+ φ(1) dη +

∫∫

Ω

(

φ(1) − φ(2)
)

dt dη = 0,

∮

∂Ω

(

−3σ0φ
(2)2 − 2σ1φ

(2)3 − φ(2)
ηη

)

dt+ φ(2) dη +

∫∫

Ω

(

φ(2) − φ(1) − σφ(2)
)

dt dη = 0.

(2)

To transition to a discrete formulation, let u(i)
n

j = φ(i)(tn, ηj) and choose the basic contour
shown in Figure 1.

Supplement the system (2) with integral relations connecting discrete functions and their
discrete derivatives, written in integral form:

∫ ηj+1

ηj

u(i)η dη = u(i)(t, ηj+1)− u(i)(t, ηj),

∫ ηj+2

ηj

u(i)ηη dη = u(i)η(t, ηj+2)− u(i)η(t, ηj). (3)
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j j + 1 j + 2

n

n+ 1

Figure 1: Basic diȂerence stencil with integration direction along the contour

Using the trapezoidal rule for time integration and the first derivative with respect to η, and
the mean value formula for the second derivative with respect to η, and setting tn+1 − tn = τ ,
ηj+1 − ηj = h, rewrite the relations (2), (3) as:

(

−3σ0

(

u(1)
2n

j + u(1)
2n+1

j − u(1)
2n

j+2 − u(1)
2n+1

j+2

)

−

−2σ1

(

u(1)
3n

j + u(1)
3n+1

j − u(1)
3n

j+2 − u(1)
3n+1

j+2

)

−

−

(

u
(1)
ηη

n

j + u
(1)
ηη

n+1

j − u
(1)
ηη

n

j+2 − u
(1)
ηη

n+1

j+2

))

·
τ

2
+
(

u(1)
n+1
j+1 − u(1)

n

j+1

)

· 2h+

+
((

u(1)
n+1
j+1 + u(1)

n

j+1

)

−
(

u(2)
n+1
j+1 + u(2)

n

j+1

))

· hτ = 0,
(

−3σ0

(

u(2)
2n

j + u(2)
2n+1

j − u(2)
2n

j+2 − u(2)
2n+1

j+2

)

−

−2σ1

(

u(2)
3n

j + u(2)
3n+1

j − u(2)
3n

j+2 − u(2)
3n+1

j+2

)

−

−

(

u
(2)
ηη

n

j + u
(2)
ηη

n+1

j − u
(2)
ηη

n

j+2 − u
(2)
ηη

n+1

j+2

))

·
τ

2
+
(

u(2)
n+1
j+1 − u(2)

n

j+1

)

· 2h+

+
((

u(2)
n+1
j+1 + u(2)

n

j+1

)

−
(

u(1)
n+1
j+1 + u(1)

n

j+1

)

− σ
(

u(2)
n+1
j+1 + u(2)

n

j+1

))

· hτ = 0,

(u
(i)
η

n

j+1 + u
(i)
η

n

j ) ·
h
2 = u(i)

n

j+1 − u(i)
n

j , u
(i)
ηη

n

j+1 · 2h = u
(i)
η

n

j+2 − u
(i)
η

n

j .

(4)

Since the PyGInv package for working with difference ideals operates only in the case of linear
difference ideals, and the original differential equation (1) is nonlinear, we replace the nonlinear

part by introducing an additional function F (i) = 3σ0u
(i)2+2σ1u

(i)3. By choosing an admissible
ordering such that u(1) ≻ u(2) ≻ . . . ≻ F (1) ≻ F (1), and then by variables n, j, the nonlinear part
will not enter the leading monomials of the system when constructing the Gröbner basis, and
the structure of the basis will allow checking the membership of the desired difference scheme.

As a result, we obtain the following difference scheme for the system of equations (1), analogous
to the Crank–Nicolson scheme for the heat equation:

u(1)
n+1
j − u(1)

n

j

τ
+ 3σ0

(u(1)
2n+1

j+1 − u(1)
2n+1

j−1 ) + (u(1)
2n

j+1 − u(1)
2n

j−1)

4h
+

+2σ1
(u(1)

3n+1

j+1 − u(1)
3n+1

j−1 ) + (u(1)
3n

j+1 − u(1)
3n

j−1)

4h
+((u(1)

n+1

j+2 −2u(1)
n+1

j+1 +2u(1)
n+1

j−1 −u(1)
n+1

j−2 )+

+ (u(1)
n

j+2 − 2u(1)
n

j+1 + 2u(1)
n

j−1 − u(1)
n

j−2))/4h
3 +

u(1)
n+1
j + u(1)

n

j

2
−

u(2)
n+1
j + u(2)

n

j

2
= 0,

u(2)
n+1
j − u(2)

n

j

τ
+ 3σ0

(u(2)
2n+1

j+1 − u(2)
2n+1

j−1 ) + (u(2)
2n

j+1 − u(2)
2n

j−1)

4h
+

+2σ1
(u(2)

3n+1

j+1 − u(2)
3n+1

j−1 ) + (u(2)
3n

j+1 − u(2)
3n

j−1)

4h
+((u(2)

n+1

j+2 −2u(2)
n+1

j+1 +2u(2)
n+1

j−1 −u(2)
n+1

j−2 )+

+ (u(2)
n

j+2 − 2u(2)
n

j+1 + 2u(2)
n

j−1 − u(2)
n

j−2))/4h
3 +

u(2)
n+1
j + u(2)

n

j

2
−

u(1)
n+1
j + u(1)

n

j

2
−
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− σ
u(2)

n+1
j + u(2)

n

j

2
= 0. (5)

The work [9] formulates the method of differential approximations of a difference scheme.
Technically, it was applied only to evolutionary-type equations by constructing a Gröbner basis
by replacing time derivatives with spatial derivatives in the series terms.

For the first difference scheme (5), this yields 6 terms for h2 and 133 terms for τ2:

6σ0φ1φ1x +6σ1φ1
2φ1x + φ1 + φ1t + φ1xxx − φ2 + h2

(

σ0φ1φ1xxx +3σ0φ1xxφ1x + σ1φ1
2φ1xxx +

+ 6σ1φ1φ1xxφ1x + 2σ1φ1
3
x +

φ1xxxxx

4

)

+ τ2
(

−
σ2φ2

12
−

σσ0φ1φ2x

2
− . . .

. . .+
φ1xxxxxxxxx

12
+

φ1xxxxxx

4
+

φ1xxx

2
−

φ2

3
−

φ2xxxxxx

4
−

φ2xxx

2

)

+ . . . = 0. (6)

Similarly, for the second scheme, there are 6 terms for h2 and 155 terms for τ2:

σφ2+6σ0φ2φ2x+6σ1φ2
2φ2x−φ1+φ2+φ2t+φ2xxx+h2

(

σ0φ2φ2xxx+3σ0φ2xxφ2x+σ1φ2
2φ2xxx+

+ 6σ1φ2φ2xxφ2x + 2σ1φ2
3
x +

φ2xxxxx

4

)

+ τ2
(σ3φ2

12
+

7σ2σ0φ2φ2x

2
+ . . .

. . .+
φ2xxxxxxxxx

12
+

φ2xxxxxx

4
+

φ2xxx

2

)

+ . . . = 0. (7)

The works [2] propose transitioning from lexicographic ordering to total degree reverse lexico-
graphic ordering. This reduces computational volume in the case of nonlinear equations. In our
case, for the first scheme, there are 15 terms for h2 and one term for τ2:

6σ0φ1φ1x + 6σ1φ1
2φ1x + φ1 + φ1t + φ1xxx − φ2 + h2

(

3σ2
0φ1

2φ1x + 6σ0σ1φ1
3φ1x +

+
σ0φ1

2

2
+

σ0φ1φ1t

2
−

σ0φ1φ2

2
−

3σ0φ1xxφ1x

2
+ 3σ2

1φ1
4φ1x +

σ1φ1
3

2
+

σ1φ1
2φ1t

2
−

σ1φ1
2φ2

2
−

− 3σ1φ1φ1xxφ1x − σ1φ1
3
x −

φ1txx

4
−

φ1xx

4
+

φ2xx

4

)

+ τ2
(

−
φ1ttt

12

)

+ . . . = 0. (8)

Similarly, for the second scheme, there are 18 terms for h2 and one term for τ2:

σφ2 + 6σ0φ2φ2x + 6σ1φ2
2φ2x − φ1 + φ2 + φ2t + φ2xxx + h2

(σσ0φ2
2

2
+

σσ1φ2
3

2
−

−
σφ2xx

4
+3σ2

0φ2
2φ2x+6σ0σ1φ2

3φ2x−
σ0φ1φ2

2
+

σ0φ2
2

2
+

σ0φ2φ2t

2
−

3σ0φ2xxφ2x

2
+3σ2

1φ2
4φ2x−

−
σ1φ1φ2

2

2
+

σ1φ2
3

2
+

σ1φ2
2φ2t

2
− 3σ1φ2φ2xxφ2x − σ1φ2

3
x +

φ1xx

4
−

φ2txx

4
−

φ2xx

4

)

+

+ τ2
(

−
φ2ttt

12

)

+ . . . = 0 (9)

The works [6] develop a method for verifying the quality of difference schemes using exact
solutions.

The equations of the system (1) coincide when σ = 0. This corresponds to the absence of fluid
in the inner shell. Consider the exact solution in the form of a soliton with a pedestal, which
generalizes the Slyunyayev–Pelinovski solution [8] for D = 0:

φ(1) = φ(2) = D +
k2

F +
√
F 2 ∓ k2σ1 cosh (ξ)

. (10)

Here, ξ = k
(

η − (6D(∓Dσ1 + σ0) + k2)t
)

, F = ∓2Dσ1 + σ0.
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Substituting into the first differential approximation yields the following expression for the
term at h2:

− k3
(

−2
√
AB3Cs0

(

BD + k2
)

+
√
AB2

(

BD + k2
)2 (

−2Cs1 + 12s20
)

+

+ 4
√
As1

(

−Ak6 sinh2 (ξ) + 3k4
(

BD + k2
)

(√
AB cosh (ξ)− 2A sinh2 (ξ)

)

+

+ 3s1
(

BD + k2
)4
)

+B
(

6
√
Ak4s0

(√
AB cosh (ξ)− 2A sinh2 (ξ)

)

+

+ 24
√
As0s1

(

BD + k2
)3

−BCk2
(

−
√
AB2 + 2

√
A
(√

AB cosh (ξ)− 3A sinh2 (ξ)
)

+

+ 4AB cosh (ξ)))) sinh (ξ)/(4B6) (11)

Here, A = ∓k2σ1+(∓2Dσ1+σ0)
2, B = ∓2Dσ1+σ0+

√
A cosh(ξ), and C = 6D(∓Dσ1+σ0)+k2.

The term at τ2 takes the following form:

−C3k5 ·
(

6A
3

2 sinh2 (ξ) +
√
AB2 − 6AB cosh (ξ)

)

sinh (ξ)/(12B4). (12)

All constructions of the difference scheme itself and the first differential approximation used
PyGInv (a version of GInv [1] written in pure Python using SymPy. For the abbreviated
notation (11) and (12), SymPy and Python’s text replacement capabilities were used.

Numerical experiments using numerical differentiation compared with the exact formulas (11)
and (12) showed good agreement. Thus, a symbolic-numerical verification of the obtained
scheme (5) was performed algorithmically, as in the works [6].
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Combinatorics of Lyndon-ShirshovWords and Algorithms of

Symbolic Computation in Lie Superalgebras
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Russian Federation

Abstract
We consider main combinatorial properties of Lyndon-Shirshov words and their applications in algo-
rithms of symbolic computation in free Lie (p-)superalgebras and in Lie (p-)superalgebras given by
generators and deƞning relations.
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FEM Calculations of Coulomb Two Center Problem
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4RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Abstract
An algorithm for solving of the boundary value problem for the discrete spectrum of a two-center
Coulomb system is presented. The energy and separation constant eigenvalues and the corresponding
eigenfunctions are calculated by the secant method on a suitable grid of the parameter, the distance
between two Coulomb charges. The eigensolutions at each step of the secant method are calculated
using KANTBP 5M program, which implements the ƞnite element method in Maple.

Keywords
Coulomb two center problem, discrete spectrum, ƞnite element method

1. Introduction

The boundary value problem (BVP) of two Coulomb centers (discrete spectrum) allows sep-
aration of variables in a prolate spheroidal coordinate system and is characterized by two
eigenvalues, the energyE(R) and the separation constant λ(R), depending on a real parameter,
the distance R between the centers of Coulomb charges Z1 and Z2. Discretization of the prob-
lem is traditionally carried out using expansions of eigenfunctions in functional series with
constant coeƢcients, depending on R. This approach is applied in programs implemented in
FORTRAN, see, e.g., [2] or inWolframMathematica [3]. Of interest is an alternative discretiza-
tion of this problem by the ƞnite element method (FEM), in which polynomials of a lower
degree of the order of 10 are used, in contrast to 100–200 in traditional Galerkin-type expansions.
Using lower-order polynomials ensures greater resistance of the FEM computational scheme
to rounding errors, i.e. it does not require the use high bit depth for arithmetic operations with
Ɵoating point with an increase in the numbers of the sought eigenvalues.
The aim of the work is to develop a method and algorithm for solving the problem of two

Coulomb centers with real eigenvalues of the discrete energy spectrum and the separation
constant on the grid of the values of the real parameter R, the distance between the centers
of Coulomb charges, using the secant method and the ƞnite element method implemented in
Maple by means of the KANTBP 5M program [1].
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Figure 1: Potentials Vξ(ξ, λ) and Vη(η, λ) at 0: λ=0; 1: λ=20; 2: λ=40; 3: λ=60; 4: λ=80; 5: λ=100.

2. Algorithm for solving the boundary value problem by the secant

method and the KANTBP 5M program

In the input data ƞle of KANTBP 5M program for solving BVPs, the ordinary second-order
diơerential equation with variable coeƢcients is speciƞed in the form [1]:

[

−
1

fB(z)

d

dz
fA(z)

d

dz
+V (z)−E

]

Φ(z)=0. (1)

Therefore, we represent the equations of the two-center Coulomb problem in prolate
spheroidal coordinates for the eigenfunctions Fnξm(ξ;R) and Φnηm(η;R) in the required form

[

−
1

ξ2−1

d

dξ
(ξ2−1)

d

dξ
−ϵnξ

(R)+Vξ(ξ, λ(R))

]

Fnξm(ξ;R)=0, (2)

[

−
1

1−η2
d

dη
(1−η2)

d

dη
−ϵnη(R)+Vη(η, λ(R))

]

Φnηm(η;R)=0. (3)

Here ϵnξ
(R)=−p2(R) and ϵnη(R)=−p2(R) are the eigenvalues, Vξ(ξ, λnξ

(R)) and Vη(η, λnη(R))
are the potentials with parameters a=(Z1+Z2)R and b=(Z2−Z1)R, Z2 ≥ Z1:

Vξ(ξ, λ(R))=+
λ(R)−aξ

ξ2−1
+

m2

(ξ2−1)2
, Vη(η, λ(R))=−

λ(R)+bη

1−η2
+

m2

(1−η2)2
, (4)

depending on the separation constant λnξ
(R)=λ(R) and λnη(R)=λ(R) as a parameter (see Fig.

1). Note that problem (2) always has both a Coulomb discrete (p2 > 0) and a continuous (p2 < 0)
spectrum, whereas problem (3) has only a discrete spectrum. Here the sign of λ is opposite to
that of λ̄ accepted in the ARSENYprogram [2], i.e., λ(0) ≥ 0 and λ=−λ̄. The asymptotic behavior
of the solution is Fnξm(ξ;R) ∼ (ξ2−1)m/2 and Φnηm(η;R) ∼ (1−η2)m/2. For zero azimuthal
quantum numberm=0, the eigenfunctions obey the Neumann condition:

lim
ξ→1

(ξ2−1)
dFnξm(ξ;R)

dξ
=0, lim

ξ→ξmax

(ξ2−1)
dFnξm(ξ;R)

dξ
=0, lim

η→∓1±0
(1−η2)

dΦnηm(η;R)

dη
=0,

while form ̸= 0 the eigenfunctions obey the following Dirichlet and Neumann conditions:

Fnξm(ξ=1;R)=0, lim
ξ→ξmax

(ξ2−1)
dFnξm(ξ;R)

dξ
=0, lim

η→∓1±0
(1−η2)Φnηm(η;R)=0.
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and the orthogonality and normalization conditions

∫ ξmax

0
Fnξm(ξ;R)Fn′

ξ
m(ξ;R)(ξ2−1)dξ=δnξn

′

ξ
,

∫ 1

−1
Φnηm(η;R)Φnηm(η;R)(1−η2)dη=δnηn′

η
.

Note that the energy eigenvalues corresponding to ϵnξ
(R)=−p2(R) or ϵnη(R)=−p2(R)monoton-

ically increase with increasing separation constant λ(R) for Eq. (2) andmonotonically decrease
for Eq. (3), i.e., the diơerences ϵnξ

(R)−ϵnη(R)monotonically increase with increasing λ(R).
This follows from Eq. (4) and is illustrated in Fig. 1. The BVP potentials have Coulomb asymp-
totic behavior Vξ(ξ→∞, λ)→−1/ξ, Vξ(ξ→1+0, λ) ∼ −1/(ξ−1), Vη(η→1−0, λ) ∼ −1/(1−η),
Vη(η→−1+0, λ) ∼ −1/(1+η). This circumstance allows us to classify the solutions of the
original problem by the number of zeros nξ and nη in the variables ξ and η, respectively.
Note that the discrete spectrum ϵnξ

(R)=−p2(R) of Eq. (2) is countable and lies in the inter-
val ϵnξ

(R) ∈ (ϵmin, 0). This allows solving the problem for a given set of quantum numbers
(nξ, nη,m) or (N=nξ+nη+m+1, l=nη−m,m) for a ƞxedm ≥ 0 using the initial approximation
Enξ,nη ,m(0)=−(Z1+Z2)

2/N2 and λnξ,nη ,m(0)=l(l+1) by means of the following algorithm that
implements the secant method for solving equation f(x)=0:

x(s+1)=[f(x(s))x(s−1)−f(x(s−1))x(s−1)]/[f(x(s))−f(x(s−1))], s=1, 2, ...

with initial values x(1) and x(0) at f(x)=ϵnξ
(λ;R)−ϵnη(λ;R), x=λ.

Algorithm SECANT for calculating eigenvalues and eigenfunctions of two Coulomb centers by
the secant method and the KANTBP 5M program for solving BVP for Eqs. (2) and (3)
Input: Z1, Z2 are the problem parameters
N is the maximum number,
Ωξ and Ωη are the grids for BVPs for Eq. (2) and for Eq. (3)
Output: λ(R),−p2(R), Fnξm(ξ;R), and Φnηm(η;R) are the solutions of BVPs for Eqs. (2) and (3)
Cycle over nξ=0, ..., Nmax and nη=0, ..., Nmax−nξ−m−1
Step 1 Initial approximation of interval boundaries λ ∈ [λ0, λ1] for the ƞrst program run
Step 2 Loop by parameter R={Rmin(δR)Rmax} with step δR

Step 2.1 Reevaluation a=(Z1+Z2)R and b=(Z2−Z1)R

Step 2.2 Calculation of the eigenvalue ϵ
(0)
nξ

≡ ϵnξ
of the BVP for Eq. (2) at λ=λ0

Step 2.3 Calculation of the eigenvalue ϵ
(1)
nξ

≡ ϵnξ
of the BVP for Eq. (2) at λ=λ1

Step 2.4 Calculation of the eigenvalue ϵ
(0)
nη ≡ ϵnη of the BVP for Eq. (3) at λ=λ0

Step 2.5 Calculation of the eigenvalue ϵ
(1)
nη ≡ ϵnη of the BVP for Eq. (3) at λ=λ1

Step 2.6 Calculate the energy diơerences for the ƞrst two approximations

ϵ0 : =ϵ
(0)
nξ

−ϵ
(0)
nη and ϵ1 : =ϵ

(1)
nξ

−ϵ
(1)
nη

Step 2.7 New approximation for λ and energy diơerence using the formula
of the secant method λ=(ϵ1λ0−ϵ0λ1)/(ϵ1−ϵ0) and δϵ=ϵ1−ϵ0

Step 2.8 secant method: loop is executed until |δϵ| > δ

Step 2.8.1 Calculation of the eigenvalue ϵnξ
of the BVP for Eq. (2) at given λ

Step 2.8.2 Calculation of the eigenvalue ϵnη of the BVP for Eq. (3) at given λ

Step 2.8.3 Calculating the energy diơerence ϵ : =ϵnξ
−ϵnη

Step 2.8.4 Selecting the initial approximations (ϵ0, λ0)=(ϵ, λ) or (ϵ1, λ1)=(ϵ, λ)
(they will also be used when moving to the new R)

Step 2.8.5 New approximation for λ and energy diơerence using the formula
of the secant method λ=(ϵ1λ0−ϵ0λ1)/(ϵ1−ϵ0) and δϵ=ϵ1−ϵ0

Step 2.8 End of loop of secant method
Step 2. End of loop by R
Step 3. Write OUTPUT: R, λ, ϵnξ

≈ −p2(R), ϵnη ≈ −p2(R), Fnξm(ξ;R), and Φnηm(η;R)
End of cycle over nξ and nη
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Figure 2: EȂective quantum numberN ≡ Nnξ,nη,m(λnξ,nη,m(R)) versus the parameter λ ≡ λnξ,nη,m(R),

andN ≡ Nnξ,nη,m(R)=(Z1+Z2)/
√

−2Enξ,nη,m(R) versus the parameterR forZ1=1,Z2=2, andm=0.

As an example, we present results of theAlgorithm SECANT calculations of a set of eigenvalues
of energy Enξ,nη ,m(R) and parameter λnξ,nη ,m(R) for Z1=1, Z2=2,m=0, andNmax=10 on grids
Ωξ={ξ0=1, ..., ξi=ξi−1+0.08/ξi−1, ..., ξn−1=187.4197583, ξn=202.4133390} and Ωη={−1(0.1)1}
by means of program KANTBP 5M with 5-th order Hermite interpolation polynomials, which
agree within 6-7 digits with those calculated by means of program ARSENY [2]. Figure 2 plots
the eơective quantum number Nnξ,nη ,m(λnξ,nη ,m(R)) as a function of the parameter λ, and

Nnξ,nη ,m(R)=(Z1+Z2)/
√

−2Enξ,nη ,m(R) as a function of the parameter R for Z1=1, Z2=2, and

m=0. Note that Nnξ,nη ,m(0)=(Z1+Z2)/
√

−2Enξ,nη ,m(0) at R=0, is equal to the value of the

principal quantum numberN(0)=N=nξ+nη+1 of the united atom with the Coulomb charge
Z=Z1+Z2, for the asymptotic energy eigenvalues ENlm(R=0), and the asymptotic separation
constant values λ̄lm(R=0)=l(l+1), l=nη atm=0, which canbe seen in theƞgures. Moreover, due
to the separation of variables, the number of zeros nξ and nη of the eigenfunctions Fm,nξ

(ξ;R)
and Φm,nη(η;R) is preserved for all values of the parameter R.
Note, for solving a continuous spectrum problem at a ƞxed value E > 0, it is suƢcient to

solve eigenvalue problem for Eq. (3) and substitute a calculated eigenvalue λnξm to Eq. (2) and
to solve the corresponding BVP with the mixed Neumann (or Dirichlet) and Robin boundary
conditions. The algorithm SECANT can be also applied to calculate the series of branching
points Rc sought for in the complex plane of distance R and the hidden crossings of complex
energy curves Enξ,nη ,m(R) following the corresponding algorithms of ARSENY program [2].
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Abstract
The results of developing a toolkit that enables symbolic computations in the process of solving problems
of constructing controlled compartmental models of dynamic systems are presented. A controlled
compartmental of epidemiologymodel SIRHUwhich is a generalization of the SIRHmodel to a controlled
case is constructed and studied. Control actions are speciƞed in the form of rules, the transition intensity
in which is a changing parameter. When constructing this controlled model the implementation of
a domain-speciƞc language is used to construct models based on the interaction scheme between
compartments and on the developed algorithm for the simulation implementation of models taking into
account control. Computational experiments are conducted to simulate a controlled system of epidemic
spread related to the SIRHU type. The analysis of the trajectory dynamics of the simulation model and
the corresponding diơerential model is performed. The obtained results can be used to solve problems
of modeling dynamic processes based on one-step interactions.

Keywords
compartmental model, one-step processes, scheme of interactions, computer algebra, dynamic systems,
controlled models

1. Introduction

Modern research in the ƞeld of computer algebra is aimed at solving current problems of
symbolic representation of dynamic systems models [9, 2]. However, key problems related to
the development of eơective algorithms and specialized soƠware for the analysis of suchmodels
remain unresolved. In particular, an open problem is the automation of the construction and
parameterization of controlled compartmental models including epidemiological systems.
The Julia programming language [1] provides powerful tools for symbolic computations,

numerical modeling, and high-performance calculations making it a promising platform for
solving computer algebra problems. In [4], a soƠware package in Julia is proposed that allows
constructing compartmental models based on a description of component interactions. How-
ever, issues of eƢcient symbolic reduction of complex models, automatic derivation of control
equations, and optimization of their structure remain unexplored.
Of theoretical and applied interest are epidemiological models such as SIR, SEIR, SAPHIRE

and SIDARTHE [3, 7, 12, 6, 10, 13] which require expansion by including control parameters and
additional factors inƟuencing the dynamics of infection spread. The signiƞcance of changes in
the dynamics of asymptomatic morbidity taken into account in the SAPHIRE and SIDARTHE
models should be noted.
Despite the active study of controlled models [5, 10] the question of developing universal

symbolic analysis algorithms for such systems remains open including:
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• automatic generation of equations based on structural interaction diagrams;

• parametric identiƞcation under conditions of incomplete data;

• symbolic methods for global optimization of control actions.

Solving these problems requires new approaches at the intersection of computer algebra,
machine learning, and optimization methods. In particular, the following issues remain poorly
understood:

• integration of symbolic and numericalmethods for analyzing controlled dynamic systems;

• development of domain-speciƞc languages (DSL) for compact representation of models;

• application of macros and metaprogramming (for example, in Julia) for automating code
generation.

This paper examines the algorithmic and soƠware aspects of symbolic computations for con-
trolled compartmental models. The basic focus is on:

• formalization of the SIRHUmodel representation using computer algebra methods;

• development of algorithms for symbolic generation of model equations;

• creation of specialized modules in Julia, including DSL and macros for automation of
model construction;

• comparative analysis of trajectory dynamics in controlled systems.

In [11] the results of development of the soƠware package, which implements the functionality
for modeling compartmental systems based on the schemes of interactions between compart-
ments, are presented. Julia language with the use of scientiƞc computing libraries is chosen
as the programming language. In the indicated article some models of epidemic spread are
constructed using the developed algorithmic and soƠware. The purpose of present paper is to
develop and test the approach to construction of compartmental models by means of computer
algebra. Construction and analysis of the controlled SIRHUmodel using symbolic computing
is of both theoretical and applied interest.

2. Model description

The classic epidemic model is the SIR model proposed byW. Kermack and A. McKendrick [8].
This model distinguishes three states of individuals: S – susceptible, I – infected, R – recovered
(or non-susceptible). The most famous modiƞcation of the SIR model is the SEIR model which
takes into account the number of asymptomatic carriers of E.
We consider an extension of the compartmental SIR model, called SIRHU. In addition to

compartments S, I, and R, this model takes into account an additional group of individuals:
unregistered infected (H).
The interaction diagram for the SIRHUmodel has the form shown in Fig. 2. α, β, δ, γ denote

the intensity of interaction between compartments, and u denotes the intensity of the control
action to identify asymptomatic patients.

S I R

H

α β

γ
δ

u

Figure 1: Interaction diagram for the SIRHUmodel
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The interaction scheme for the SIRHUmodel is described by the following rules:

i+ s
α
→ 2i,

i
β
→ r,

h+ s
γ
→ 2h,

h
u
→ i,

h
δ
→ r.

(1)

Rules of the form (1) are used for a meaningful description of the model in a soƠware package
for symbolic computing with an implementation based on DSL.
The soƠware package provides for automatic generation of diơerential equations of the

model. For the SIRHUmodel we have

K̇ =

⎡

⎢

⎢

⎣

−hsγ − isα

hu− iβ + isα

hδ + iβ

−hu− hδ + hsγ

⎤

⎥

⎥

⎦

,K = [s, i, r, h]⊺. (2)

Equations (2) correspond to the continuous form of the SIRHU dynamic model.

3. Results of experiments

Numerical experiments were conducted for the SIRHUmodel using the simulation algorithm
described in [11]. Fig. 3 shows the dynamics of the numbers of SIRHU compartments for the
case that corresponds to a constant intensity of the control action.

Figure 2: Dynamics of the SIRHU compartment numbers for α, β, γ, δ = (0.01, 0.5, 0.1, 0.1) and u = 0.1

The results of the experiments showed the consistency of the simulationmodeling for SIRHU
with the results of the numerical solution of diơerential equations (2). In the framework of
this paper, calculations are also carried out taking into account the dynamic change of the
parameter u.

4. Conclusion

In this paper, an approach to creating algorithmic support for symbolic analysis of controlled
compartmental models of dynamic systems is developed. The results demonstrate the capabili-
ties of symbolic methods in epidemic modeling problems and highlight promising areas for
further research in computer algebra. Among the promising areas for the development of the
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paper we can note the modiƞcation of DSL taking into account the composite coeƢcients of
interaction between compartments, as well as additional variables describing the quantitative
composition of population groups.
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Abstract
We discuss symbolic calculations in studying the classical two-body problem with variable masses.
The Gyldén equation describing relative motion of the bodies is not integrable, in general, and so
the problem is solved in the framework of the perturbation theory. Two approaches to reduce the
Gyldén equation to the form appropriate for application of the perturbation methods are discussed. It
is shown that although diơerential equations of the perturbed motion are diơerent the both models
demonstrate similar behavior of the secular perturbations of the orbital elements. All the relevant
symbolic calculations are performed with the computer algebra systemWolframMathematica.

Keywords
two-body problem, variable mass, Gyldén equation, perturbation methods, evolutionary equations,
computer algebra

1. Introduction

The classical two-body problem describes motion of two particles P0, P1 of constant masses
m0,m1, respectively, attracting each other according to Newton’s law of universal gravitation.
Its general solution is well known and is used as a ƞrst approximation in a wide variety of
orbital motion problems (see [8]). In practice, attraction of other bodies disturbs this motion
and enforces its orbital parameters to change. However, application of the perturbation theory
enables to investigate the systemmotion accurately (see, for example, [5]).
Dependence of the masses on time complicates the two-body problem substantially and

its general solution cannot be written in symbolic form, in general. In the simplest case, the
bodies can lose their masses isotropically and the only eơect of the loss of mass is the decrease
in the attraction between the two bodies. Then, the relative motion of one body around the
other may be described by the following diơerential equation:

d2r⃗

dt2
+Gm(t)

r⃗

r3
= 0, (1)

whereG is the gravitational constant, r⃗ is the radius-vector of the body P1 relative to P0, and
m(t) = m0(t)+m1(t) is the total mass of the system, which is a given function of time. Equation
(1) was proposed ƞrst by Gyldén [1] and is known now as Gyldén’s problem.
In the case of constant masses a general solution to Equation (1) is known and describes

motion of the bodies on conic sections the orbital elements of which depend on the total mass
m(t) = const (see [8]). Therefore, it appears reasonable that variability of masses may disturb
this motion and enforce the orbital elements to change with time.
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The main purpose of this talk is to present two models which are used most oƠen to reduce
(1) to the form being appropriate for application of the perturbation theory and to derive
the diơerential equations determining evolution of the orbital elements. Derivation of such
equations involves quite cumbersome symbolic calculationswhichmay be performed eƢciently
with the aid of the computer algebra systemWolframMathematica [9].

2. Models description

Onemodel was proposed in [2, 6], where the isotropic loss of mass was interpreted as additional
force given by

F⃗ =
γ̇(t)

2γ(t)

dr⃗

dt
. (2)

Here the dot means derivation with respect to time and the function γ(t) is assumed to be
diơerentiable and given by

γ(t) =
m00 +m10

m0(t) +m1(t)
, (3)

where m00 = m0(t0), m10 = m1(t0) are the masses of the bodies P0, P1, respectively, at the
initial instant of time t0.
Adding to the both sides of (1) the same term F⃗ , we rewrite it in the form

d2r⃗

dt2
+Gm(t)

r⃗

r3
+

γ̇(t)

2γ(t)

dr⃗

dt
= F⃗ . (4)

Note that (4) becomes integrable in the case of F⃗ = 0 and its exact solution describes aperiodic
motion of the body P1 on a conic section (see [7]). The nonzero perturbing force (2) disturbs
this motion and its orbital elements must necessarily vary with the time. Derivation of the
diơerential equations determining evolution of the orbital elements is given in [3], where the
corresponding symbolic calculations are described in detail. Finally, we obtain the following
system of diơerential equations determining the dependence of the orbital elements on time:

da

dt
=

a(1 + e cosE)

1− e cosE

γ̇(t)

γ(t)
,

de

dt
=

(1− e2) cosE

1− e cosE

γ̇(t)

γ(t)
, (5)

dω

dt
=

√

1− e2 sinE

e(1− e cosE)

γ̇(t)

γ(t)
,

di

dt
= 0,

dΩ

dt
= 0, (6)

dE

dt
=

√

κ

a3/2(1− e cosE)
√

γ(t)
−

sinE

e(1− e cosE)

γ̇(t)

γ(t)
, (7)

where κ = G(m00 +m10) and a, e, i,Ω, ω, E are the analogues of the Keplerian orbital elements
(see [8, 4]).

The Gyldén equation (1) may be also rewritten in the form

d2r⃗

dt2
+Gm(t)

r⃗

r3
−

γ̈(t)

γ(t)
r⃗ = F⃗ , (8)

where the function γ(t) is deƞned by (3) and the perturbing force F⃗ is given by

F⃗ = −

γ̈(t)

γ(t)
r⃗. (9)

This approach was exploited in [4] in studying the three-body problem with variable masses.
Equation (8) also becomes integrable in the case of F⃗ = 0 and its exact solution describes
aperiodic motion of the body P1 on a quasi-conic section. In the framework of this model the

Prokopenya, A. et al. 95



diơerential equations of the perturbed motion are obtained in terms of the osculating elements
of the aperiodic motion on quasi-conic section (see [4, 3, 7]) and are given by

da

dt
= −

2a5/2e sinE
√

κ
γ(t)γ̈(t),

de

dt
= −

a3/2(1− e2) sinE
√

κ
γ(t)γ̈(t), (10)

dω

dt
=

a3/2(cosE − e)
√

1− e2

e
√

κ
γ(t)γ̈(t),

di

dt
= 0,

dΩ

dt
= 0, (11)

dE

dt
=

√

κ

a3/2(1− e cosE)γ2(t)
+

a3/2

e
√

κ

(

2e− (1 + e2) cosE
)

γ(t)γ̈(t). (12)

Note that the masses of the bodies vary quite slowly and the time derivatives γ̇(t), γ̈(t) in the
right-hand sides of equations (5)–(7), (10)–(12) are small. Therefore, the perturbing forces (2),
(9) are also small and results in slow variation of the orbital parameters. As the forces (2), (9)
act in the orbital plane, the inclination i of the orbital plane and the longitude of the ascending
node Ω remain constant (see (6), (11)).

It should be emphasized that in the case of constant masses (γ(t) = 1) the right-hand sides of
equations (5)–(6), (10)–(11) are equal to zero while equations (7), (12) determining the eccen-
tric anomaly E as function of time in two models coincide. Therefore, the orbital elements
a, e, i,Ω, ω become constants and coincide with the corresponding results in the two-body
problem of constant mass (see [8]).
Choosing some realistic laws of the massesm0(t),m1(t) variation, one can solve equations

(5)–(7), (10)–(12) numerically and investigate the dynamics of the two-body system with variable
masses. From the other side, averaging these equations over the eccentric anomaly, one can
derive the evolutionary equations determining the secular perturbations of the orbital elements
(see [7]). Note that the obtained results may be generalized to the case of three and more
interacting bodies of variable masses. The calculations become much more complicated but
application of the modern computer algebra system likeWolframMathematica enables to solve
such problems successfully.
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The Generic-Case Complexity of Finding a Binary Solution to

a System of Linear Equations
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Abstract
Using the Schwartz–Zippel lemma, we estimate the generic-case complexity of ƞnding a binary solution
to a system of linear equations over an inƞnite ƞeld. Compared to previous works, the new algorithm
is applicable to systems with a smaller number of linear equations, but it requires more running time.
The algorithm works over a ƞeld of any characteristic. If the system has many binary solutions, then
our algorithm is not applicable. So, in the worst case, there is no polynomial upper bound on the
computational complexity.

Keywords
boolean programming, knapsack, matrix rank, polynomial, heuristics, computational complexity

1. Introduction

Let us consider the recognition problem whether there is a {0, 1}-solution to a system of linear
equations. The problem is NP-complete not only over the ring of integers, but also over the ƞeld
of residues modulo any odd prime. Over the ring of integers, under a constraint on the size of
the coeƢcients, a heuristic polynomial-time algorithm is known based on ƞnding the shortest
nonzero vector in an integer lattice [5]. The problem is also related to some optimization
problems known as the multidimensional knapsack problem and Boolean programming, refer
to the review [3] and recent article [1]. Constraints for dimensionality reducing of the problem
by means of projection onto a coordinate hyperplane are known [2]. On the other hand, some
systems of quadratic equations have been considered recently [4].

Over an arbitrary ƞeldK of characteristic char(K) ̸= 2, for almost all systems having at least
n −

√

2n− o(n) linear equations in n variables, a heuristic polynomial-time algorithm had
been proposed several years ago [9]. In this work, the restriction on the number of equations is
signiƞcantly relaxed, although the computational complexity increases. We consider systems
over an arbitrary computable ƞeld. The computational complexity is estimated by the number
of algebraic operations over the ƞeld.
For a recognition problem, let us assume three possible answers: the input may not only be

accepted or rejected, but also an explicit notiƞcation of uncertainty of the choice is possible.
In any case, the answer must be obtained in a ƞnite time and without errors, and if an easily
veriƞable condition is met, then the notiƞcation of uncertainty can be issued only for a small
fraction of inputs among all inputs of a given length. Such algorithms are called generic [6] or
errorless heuristics. It is known that an NP-complete problem can be split into several subprob-
lems that are also NP-complete [8]. Generic algorithms for an NP-complete problem can be
considered for determining NP-complete subproblems for which the generic algorithm gives
an uncertain answer.
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To estimate the number of inputs of a given size on which the algorithm quickly makes the
correct decision, we use the Schwartz–Zippel lemma [7].

Lemma 1. Given a non-constant polynomial f(x1, . . . , xn) of degree d over a Ùeld K. If random
variables ξ1, …, ξn are independent and uniformly distributed on a Ùnite set S ⊆ K of cardinality |S|,
then the inequality

Prob [f(ξ1, . . . , ξn) = 0] ≤
d

|S|

holds, where Prob[·] denotes the probability of the condition indicated in square brackets.

2. Results

Let us consider a system ofm linear equations in n > m variables:

⎧

⎨

⎩

α11x1 + · · ·+ α1nxn + 1 = 0
· · ·

αm1x1 + · · ·+ αmnxn + 1 = 0
.

Multiplying each linear equation by each of the variables and taking into account the equalities
x2k = xk, which are satisƞed with {0, 1}-solutions, we obtainmn new equations of the second
degree. Discarding the terms depending only on one variable, we obtain a set ofmn bilinear
forms, the coeƢcients of which form a matrixW . The rows correspond to the bilinear forms,
and the columns correspond to monomials of the form xjxk for j < k.

Lemma 2. Let the matrix W be computed for m linear equations in n variables over a purely
transcendental extension of the Ùeld K, where all coeácients αij are algebraically independent of each
other. The rank of the matrix satisÙes the inequality

rank(W ) ≥ mn−
m(m+ 1)

2
.

Example 1. For n = 3 andm = 1, the 3× 3matrix

W =

⎛

⎝

α12 α13 0
α11 0 α13

0 α11 α12

⎞

⎠

is degenerate over a ƞeld of characteristic char(K) = 2 because det(W ) = −2α11α12α13. Next,
forn = 5 andm = 2, the 10×10matrixW is degenerate over anyƞeld because rank(W ) ≤ 9. For
n = 7 andm = 3, the 21× 21matrixW is also degenerate over any ƞeld because rank(W ) ≤ 18.
(The rank is computed with SymPy.)

Let the number of equationsm be such thatmn ≥ rank(W )+n−m. This inequality holds for
m > n/2. But a smaller numberm is suƢcient because the rank ofW is small. In the general
case, n linearly independent linear equations can be derived from resulting quadratic equations
as well as the initial linear equations. In particular, there are new linear equations. Next, using
these n linearly independent linear equations, one can ƞnd a solution and check whether it
consists of zeros and ones. Of course, the method is not applicable when the system has many
{0, 1}-solutions. Thus, we have a polynomial upper bound on the generic-case complexity, but
we have nothing in the worst case.

Example 2. Let us consider a linear equation in two variables αx1 + βx2 +1 = 0. Multiplying
this equation by each of the variables and taking into account the equalities x2k = xk, which are
satisƞed with {0, 1}-solutions, we obtain two equations:

{

βx1x2 + (1 + α)x1 = 0
αx1x2 + (1 + β)x2 = 0

.
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This yields the linear equation α(1 + α)x1 = β(1 + β)x2. For α = β = −1, this equation
turns into the identity. But in the general case, it is a new linear equation, which is linearly
independent of original one. So, one can either ƞnd the {0, 1}-solution or prove its absence.

The probability of success is equal to the probability that the determinant of an n× nmatrix
does not vanish. A bound can be obtained using the Schwartz–Zippel lemma, i. e., Lemma 1.
LetK denote a ƞeld and ε denote a positive real parameter.

Theorem. For our algorithm, there is an univariate function f(n) so that if n is even, m ≥ n/2,
and the coeácients αij are uniformly and independently distributed on the set S ⊂ K of cardinality
⌈f(n)/ε⌉, then the upper bound on the probability of the uncertain answer equals ε. The generic-case
complexity is equal to the complexity of Ùnding the rank of W .

Proof. Let us consider the special system of exactly n/2 linear equations, where the k-th
equation depends on two variables x2k−1 and x2k:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

β1x1 +β2x2 + 1 = 0
· · · · · ·

β2k−1x2k−1 +β2kx2k + 1 = 0
· · ·

βn−1xn−1 +βnxn + 1 = 0

.

As in Example 2, new linear equations are

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

β1(1 + β1)x1 −β2(1 + β2)x2 = 0
· · · · · ·

β2k−1(1 + β2k−1)x2k−1 −β2k(1 + β2k)x2k = 0
· · · · · ·

βn−1(1 + βn−1)xn−1 −βn(1 + βn)xn = 0

.

They together compose a system of n linear equations in n variables. Let us denote byM the
n× nmatrix of linear term coeƢcients. The determinant is a polynomial in coeƢcients β1, …,
βn of the initial system:

det(M) = ±

n/2
∏

k=1

β2k−1β2k(2 + β2k−1 + β2k),

where the sign depends on the order of equations. If all coeƢcients of the initial system are
nonzero and inequalities β2k−1 + β2k ̸= −2 holds, then det(M) does not vanish.
In fact, the matrixM is not unique. Its entries are rational functions in β1, …, βn. But one

can computeM so that all entries are polynomials.
In the general case, using the ƞrst n/2 linear equations, our algorithm produces a nondegen-

erate system of n linear equations in n variables. It has unique solution. Let us consider the
n× nmatrixM of linear term coeƢcients. Its entries are rational functions in coeƢcients αij

of the initial system. Without loss of generality, let the entries be polynomials. Thus, det(M) is
a polynomial too. Moreover, the polynomial does not vanish identically. Let the degree upper
bound be the desired function f(n). In accordance with Lemma 1, the determinant does not
vanish for almost all coeƢcients, i. e., our algorithm fails with probability at most ε.

3. Discussion

In accordance with Lemma 2, in the general case, such bounds based on the Schwartz–Zippel
lemma cannot be signiƞcantly improved without increasing runtime. However, such an im-
provement is possible for sparse systems of equations with a ƞxed arrangement of nonzero
coeƢcients.
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The algorithm can be useful over a ƞnite ƞeld too, although the Schwartz–Zippel lemma
requires suƢciently many elements depending on the number of variables. Of course, ifK is
inƞnite, then a suƢciently large set S ⊂ K exists for all n and ε.
Of course, if the number of variables is suƢciently large, then the worst-case computational

complexity remains high. Nevertheless, in accordance with our result, the Merkle–Hellman
cryptosystem based on the subset sum problem can be broken in almost all cases by means
of a broadcast attack against it, refer to [5]. Many related problems can also be reduced to the
problem under consideration. Our algorithm can also be considered as method to compute the
Gröbner basis of some zero-dimensional ideal in the ring of multivariate polynomial.
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On the Summation of Fourier Series over the Roots

of Transcendental Equations Using Annihilation
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Abstract
Trigonometric series in the roots of transcendental equations are considered. Similar series arise in
problems of mathematical physics in the case of boundary conditions of the third kind. For this class
of series, suƢcient conditions for their representability in the ƞnite form of elementary functions are
indicated. We generalize to this case our previous works based on the use of ƞnite expressions for
divergent Fourier series. In this case, we obtain a simple method for determining the elementarity of
the ζ-function of N.S. Koshlyakov and its generalizations. These considerations are used to create new
functions of symbolic summation in computer algebra systems.

Keywords
series summation, roots of transcendental equations, divergent series, computer algebra

1. Introduction

Solving problems in mathematical physics requires working with series in eigenfunctions of
diơerential operators [9]. The simplest example is trigonometric Fourier series, located along
the sines and cosines of multiple arcs. In this case, the natural number is both the summation
index (harmonic number) and the square root of the eigenvalue of the diơerential operator.
However, a situation oƠen arises when the eigenvalue is not the square of a natural number, but
is determined from some transcendental equation, although the series remains trigonometric
[6], [7]. A. N. Krylov called them as “series similar to Fourier series” [2]. To this class of
series, under certain conditions on the Fourier coeƢcients, one can apply Krylov’s scheme
for accelerating convergence, which requires the ƞnite expressions of some “remarkable”
series. The said “remarkable” series must be summed in a ƞnite form, and this form becomes
dependent on the transcendental equation that determines the eigenvalue. We propose a simple
way to obtain these expressions in computer algebra systems that also allows summation in
ƞnite form of an important class of Fourier series. This requires generalizing our previous work
[5] on ordinary Fourier series.

2. Problem formulation

For simplicity, we consider the Fourier series of the eigenfunctions of the problem with the
Dirichlet condition at the right end and the Robin condition (3-rd kind) at the second end:

y′′ + λ2y = 0, x ∈ (0, 1)

y(0) = 0, y′(1) + hy(1) = 0, h > 0.
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Here h is a ƞxed parameter of the Robin condition. Eigenfunctions of this Sturm–Liouville
problem are:

yλ = sinλx.

The eigenvalues are the positive roots of the transcendental equation:

λ cosλ+ h sinλ = 0.

We consider the inƞnite sums over all positive roots of this equation. The square of the norm of
an eigenfunction has the form

∥yλ∥
2
L2(0,1)

=
1

2

h2 + h+ λ2

h2 + λ2
.

It was for this spectral problem that N.S. Koshliakov constructed a generalization of Bernoulli
polynomials and obtained their generating function in the work [1].
Let us pose the problem of ƞnding the sum of the Fourier series for the speciƞed eigenfunc-

tions, provided that the expansion coeƢcients are rational functions of the eigenvalue (cf. [5],
[3]), i.e. the problem of calculating in ƞnal form a sum

u =
∑

λ

aλ
h2 + λ2

h2 + h+ λ2
sinλx, x ∈ [0, 1], aλ ∈ R(λ).

3. Summation using annihilation

By analogy with work [5], it is not diƢcult to construct a diơerential expression L, the formal
application ofwhich to theFourier series under consideration yield anewserieswith polynomial
coeƢcients. A diơerential equation for u has the form

Lu =
∑

λ

Aλ

h2 + λ2

h2 + h+ λ2
sinλx, x ∈ [0, 1], Aλ ∈ R[λ].

The right side contains a divergent series. It can be shown that if the polynomial A(λ) resulting
from the annihilation is an odd function, then the right side of the resulting equation can
be expressed through derivatives of the Dirac δ-function. Then the desired sum is expressed
through the corresponding Green function. Thus, it is easy to prove analogs of Theorems 7 and
8 from the work [5]. Note that in this way it is possible to obtain expressions for Koshliakov [1]
polynomials of odd degree.
Note that simultaneously with the considered sine series it would be natural to consider

cosine series, however this generalization is not so trivial due to the boundary conditions that
functions cosλx satisfy.
At present, we do not know whether this reasoning can be generalized to the case of an

arbitrary polynomial A(λ) that does not satisfy the oddity condition, thereby obtaining at least
an analogue of Theorem 9 [5] without involving Koshliakov’s transcendental functions. For
example, we do not know the ƞnal expression for the series

∑

λ

h2 + λ2

h2 + h+ λ2
sinλx, x ∈ [0, 1].

At h = 0, this series represents the generalized function [8] ĉot.
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4. Concluding remarks

We present a generalization of our works on the summation of trigonometric series to new
systems of eigenfunctions. A signiƞcant part of the results can be transferred to new classes
of Fourier series. Note that the presented method of summation can be used, for example, in
the summation problems posed in the work [7]. The described considerations can easily be
transformed into new functions for our “Kryloơ for Sage” package [4]. Note that not all previous
results can be transferred even to the simplest case of trigonometric series by the roots of
transcendental equations. Probably, the gaps in the summation that arise can be eliminated by
using other methods. This issue be considered further.
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On the Determination of the Volumetric Heat Capacity and

the Thermal Conductivity of a Substance in the

Three-Dimensional Case

Vladimir Zubov
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Abstract
The problem of simultaneous identiƞcation the temperature-dependent thermal conductivity and vol-
umetric heat capacity of the investigated substance in the three-dimensional case is considered. The
consideration is based on the ƞrst boundary value problem for a three-dimensional unsteady heat
equation. The inverse coeƢcients problem was reduced to a variational problem. The optimization
problem was solved using gradient methods of functional minimization. Based on the fast automatic
diơerentiation technique exact values of the cost functional gradient components were obtained.

Keywords
thermal conductivity, inverse coeƢcient problems, three-dimensional unsteady heat equation, fast
automatic diơerentiation

1. Statement of the problem

When solving optimal control problems of complex dynamic processes, gradient methods of
minimizing the cost function are oƠen used. If the gradient of the functional is calculated
approximately, then it is oƠen impossible to obtain a solution to the optimization problem. In
[2], an approach (fast automatic diơerentiation technique) was proposed that makes it possible
to determine the gradient of a cost function with machine precision. Using this approach has
allowed us to solve a number of theoretically interesting and practically important problems.
One of such problem is the problem of identifying the volumetric heat capacity and thermal

conductivity of a substance based on the results of observing the dynamics of the temperature
ƞeld. The results of the study of this problem in the one-dimensional spatial case are presented
in [1]. The present paper provides a solution to the same problem in the three-dimensional
case.
A sample of the test substance in the form of a straight parallelepiped of length X, width

Y and height Z is considered. The points of the parallelepiped form the domain Q =
{(0, X)× (0, Y )× (0, Z)} with border Γ = ∂Q. The distribution of the temperature ƞeld in
the parallelepiped at each moment of time is determined by solving the following direct prob-
lem:

C(T (s, t))
∂T (s, t)

∂t
= divs(K(T (s, t))∇sT (s, t)), (s, t) ∈ {Q× (0,Θ]}, (1)

T (s, 0) = w0(s), s ∈ Q, (2)

T (s, t) = wΓ(s, t), s ∈ Γ, 0 ≤ t ≤ Θ. (3)

Here s is the point of the parallelepiped with Cartesian coordinates (x, y, z); t is the time; T (s, t)
is the temperature of the substance at the point s at themoment of time t;C(T ) is the volumetric
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heat capacity of the substance,K(T ) is the thermal conductivity;w0(s) is the temperature set of
the parallelepiped at the initial moment of time; wΓ(s, t) is the temperature set at the boundary
of the domain.

One of possible formulations of the problem of identifyingmodel parameters is the following:
to ƞnd a dependence of the volumetric heat capacity of a substance and the thermal conductivity
on the temperature at which the temperature ƞeld T (s, t) obtained as a result of solving the
formulated direct problem (1)-(3) diơers little from the ƞeld P (s, t), obtained experimentally. A
measure of the deviation of these functions can be the value

Φ(K(T ), C(T )) =

Θ∫

0

∫

Q

µ(s, t) · [T (s, t)− P (s, t)]2 dsdt, (4)

where µ(s, t) ≥ 0 is the speciƞed weight function. Thus, the optimal control problem consists in
determining the optimal control and the corresponding optimal solution T (s, t) of the problem
(1)-(3), at which the functional (4) reaches the minimum value.

It should be noted that in the presented formulation, the optimal control problem always has a
non-unique solution. Indeed, if the solution {C∗(T ),K∗(T )} to the formulated inverse problem
is found, then for any real number λ, the control {λC∗(T ), λK∗(T )} is also the solution to this
problem. To identify theunique solution to the formulated identiƞcationproblem, it is necessary
to use an additional condition. Such a condition can be, for example, a conditionK(T∗) = K∗

with the speciƞed numbers T∗ andK∗. You can also deƞne a relationship χ(T ) = C(T )
K(T ) when

solving a problem.

2. On the numerical solution to the inverse problem

To solve the problem numerically, we introduce a time grid
{
tj
}J

j=0
, t0 = 0, tJ = Θ, and a

spatial grid {xn}
N
n=0, x0 = 0, xN = X, {yi}

I
i=0, y0 = 0, yI = Y , {zl}

L
l=0, z0 = 0, zL = Z.

The segment [a, b] on which the functionsK(T ) and C(T ) are restored was deƞned as the
set of values of the given functions w0(s) and wΓ(s, t). This segment was divided by the points
T̃0 = a, T̃1, T̃2, . . . , T̃M = b into M parts. The numbers cm = C(T̃m) and km = K(T̃m) were
assigned to each of the points T̃m (m = 0, . . . ,M). The desired functions K(T ) and C(T )
were approximated by continuous piecewise linear functions with support nodes at points{
(T̃m, km)

}M

m=0
and

{
(T̃m, cm)

}M

m=0
.

The algorithm for the numerical solution of the direct problem is based on the use of the heat
balance equation for the computational cell, which consists in the fact that the change in the
heat content of a substance in a volume Vnil over a ƞxed period of time τ j = tj+1 − tj is equal
to the amount of heat passing through the surface Snil of the volume Vnil over the same period
of time. A locally one-dimensional scheme was used to approximate equation (1) in time.
The fast automatic diơerentiation technique made it possible to formally construct a system

of conjugate equations for the used approximation of the optimal control problem. The compo-
nents of cost function gradient with respect to vectors (k0, k1, . . . , kM ) and (c0, c1, . . . , cM ) were
also determined in accordance with the fast automatic diơerentiation technique. Note that
the obtained values of the gradient components are exact for the chosen approximation of the
optimal control problem.
To verify the performance of the proposed algorithm, we solved a large number of test

problems. Some of the results obtained are presented here.
The locally one-dimensional scheme chosen in this work for approximating the heat equation

is stable, so the time step can be fairly large. Nevertheless, research concerning the choice of a
time grid has to be performed for each spatial grid used. In the numerical experiments below
the domainQ× (0,Θ) = (0, 1)× (0, 1)× (0, 1)× (0, 1),N = I = L = 30, J = 100, the segment
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Figure 1: Distribution of the functionW (T ).

[a, b] was divided into 40 intervals, i.e. M = 40. It was assumed that in the cost functional the
weight function is µ(x, y, z, t) ≡ 1, (x, y, z, t) ∈ Q× (0,Θ).

The performed numerical experiments showed that the quality of the recovered thermal con-
ductivity and volumetric heat capacity depend strongly on the distribution of the “experimental”
temperature ƞeld. It may happen that some subintervals of [a, b] contain data insuƢcient to
identify the coeƢcients. Therefore, the distribution of experimental data on subintervals of
the temperature interval of interest has to be analyzed in each particular case.
In the ƞrst series of calculations, numerical experiments were based on the function

Λ(x, y, z, t) = x + y + z + 3t + 0.5. This function is the solution of equation (1) for C(T ) ≡ 1
and K(T ) = T . The traces of function Λ(x, y, z, t) on the parabolic boundary of the domain
under consideration were chosen as the boundary values (see (2)-(3)). The “analytical” ƞeld was
used as the experimental temperature ƞeld: P j

nil = Λ(xn, yi, zl, t
j) = xn + yi + zl + 3tj + 0.5.

The temperature in the closure of the domainQ× (0,Θ) varies from a = 0.5 to b = 6.5.
To obtain a unique solution to the inverse problemwhen performing calculations, at the point

T∗ = a = 0.5 neither the thermal conductivity (K(0.5) = 0.5) nor the volumetric heat capacity
(C(0.5) = 1.0) changed. As a result of the minimization, the cost functional decreased from
3.39× 10−03 at the initial approximation (C(T ) = T for T ̸= a, C(a)=1.0;K(T ) = 4.5 for T ̸= a,
K(a) = a) to 9.35× 10−30, the maximum relative deviation of the obtained temperature ƞeld
from the “experimental” ƞeld changed from 3.46× 10−02 to 2.65× 10−14, the modulus of the
gradient of the cost function decreased by 15 orders of magnitude. The thermal conductivity
and volumetric heat capacity in this case are restored with almost machine precision.
The goal of the ƞrst series of runs was not only to check the performance of the proposed

algorithm, but also to verify the soƠware codes implementing this algorithm.
In the second series of calculations, the “experimental” temperature ƞeld P (x, y, z, t) was

constructed by solving the direct problem (1)-(3) with special input data: the temperature at
the points of the parabolic boundary of the domain was equal to the trace at these points of

the function Λ(x, y, z, t) =
√

x2+y2+z2

9−8t ; the parameters of substance were set by the equalities

C(T ) = T andK(T ) = T 2.
The analysis of the temperature ƞeld P (x, y, z, t) made it possible to determine the range

of temperature variation (a = 0.0,b = 1.732), and to obtain the distribution of experimental
data along the temperature segment [0.0, 1.732] (ƞgure 1). Figure 1 shows that there are too few
experimental data outside the segment [0.05, 1.2]. Therefore, it can be assumed that there will
be diƢculties with restoring the sought parameters C(T ) andK(T ).
When performing calculations, at the point T∗ = a+b

2 neither the thermal conductivity
(K(T∗) = (T∗)

2) nor the volumetric heat capacity (C(T∗) = T ) changed. The initial distributions
of the sought functions are shown in ƞgures 2, 3 by dashed lines. As a result of minimization,
the cost functional decreased from 2.19 × 10−4 at the initial approximation to 4.41 × 10−12,
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Figure 2: Volumetric heat capacityC(T ).

Figure 3: Thermal conductivityK(T ).

the modulus of the cost function gradient decreased by 7 orders of magnitude. The obtained
distributions of the functions C(T ) andK(T ) are marked in ƞgures 2, 3 by the symbol “Opt”.
As expected, the functions C(T ) andK(T ) are not restored where there is too little experi-

mental data, i.e. outside the interval [0.05, 1.2].
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