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Foreword

The fifth International Conference “Computer algebra”

http://www.ccas.ru/ca/conference

is organized in Moscow from 26 to 28 June 2023 jointly by the Dorodnicyn Computing Centre
(Federal Research Center “Computer Science and Control”) of Russian Academy of Science,
the Russian University of Peoples’ Friendship named after Patrice Lumumba and Keldysh
Institute of Applied Mathematics of Russian Academy of Sciences.

The first, second, third and fourth conferences were held in Moscow in 2016, 2017, 2019
and 2021:

http://www.ccas.ru/ca/conference2016,
http://www.ccas.ru/ca/conference2017,
http://www.ccas.ru/ca/conference2019,
http://www.ccas.ru/ca/conference2021.

Computer algebra algorithms are focused on the exact solutions of mathematical and
applied problems using a computer. The participants of this conference present new results
obtained in this field.

During the Conference a special session in memory of Marko Petkovšek is held.

Marko Petkovšek
9.4.1955 – 24.3.2023

Program and Organizing Committees of the conference
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Abramov S.A., Petkovšek M., Ryabenko A.A. On Incomplete Rank Matrices 29
Aranson A.B. Power Algebra for Power Geometry . . . . . . . . . . . . . . . . . 33
Azimov A.A., Bruno A.D. On Computation of Power Transformations . . . . 37
Batkhin A.B., Khaydarov Z.Kh. Structure of Resonant Variety in Hamiltonian

Systems With Three Degrees of Freedom . . . . . . . . . . . . . . . . . . . . 41
Blinkov Y. A. The First Differential Approximation on the Example of the Van

der Pol Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chuluunbaatar G. , Gusev A.A., Chuluunbaatar O., Vinitsky S.I. Hermite

Interpolation Polynomials on Parallelepipeds and FEM Applications . . . . . 49
Danik Yu.E., Dmitriev M.G. Asymptotic Approximations and Symbolic Rep-

resentation of Parametric Families of Feedback Controls in Nonlinear Systems 53
Demidova A.V., Druzhinina O.V., Masina O.N., Petrov A.A. Modeling of

One-Step Processes Using Computer Algebra Tools . . . . . . . . . . . . . . 57
Divakov D.V., Tiutiunnik A.A. Symbolic-Numerical Investigation of Asymp-

totic Method for Studying Waveguide Propagation Problems . . . . . . . . . 61
Edneral V.F. Integrable Cases of the Resonant Bautin System . . . . . . . . . . 64
Galatenko A.V., Pankratiev A.E., Zhigliaev R.A. An Optimized Procedure

for Deciding Affinity of Finite Quasigroups . . . . . . . . . . . . . . . . . . . 67
Gevorkyan M.N., Korolkova A.V., Kulyabov D.S. Analytical Geometry of

the Projective Space RP3 in Terms of Plücker Coordinates and Geometric
Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Gontsov R.R., Goryuchkina I.V. Generalized Power Series Solutions of q-
Difference Equations and the Small Divisors Phenomenon . . . . . . . . . . . 75

Gorchakov A.Yu., Zubov V.I. Automatic Differentiation. Practical Aspects . 79
Gutnik S.A. Symbolic Investigation of the Plane Equilibria of the System of Two

Connected Bodies on a Circular Orbit . . . . . . . . . . . . . . . . . . . . . . 83
Ilyukhin D.O., Parusnikova A.V. Regularity Criterion for a Linear Differential

System with Meromorphic Coefficients . . . . . . . . . . . . . . . . . . . . . 87
Iusup-Akhunov B.B., Kamenev I.G., Zhukova A.A., Pilnik N.P. Symbolic

Calculus for Optimal Control in Multi-Agent Economic Model . . . . . . . . 88
Khmelnov D.E., Ryabenko A.A. Algorithm EG as a Tool for Finding Laurent

Solutions of Linear Differential Systems with Truncated Series Coefficients . 92
Khvedelidze A., Torosyan A. On the States of N-Level Quantum System With

Positive Wigner Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Kornyak V.V. A Constructive Approach to Problems of Quantum Mechanics . . 101

6



Kuleshov A.S., Vidov N.M. Nonlinear Effects of Motion Near the Equilibrium
Manifold of Nonholonomic Systems . . . . . . . . . . . . . . . . . . . . . . . 103

Maisuradze M.V., Mikhalev A.A. Primitive Elements of Free Non-Associative
Algebras Over Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Mikhailov F. Computing of Tropical Sequences Associated with Somos Sequences
in Gfan Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Mukhina Y.S. Bounding the Support in the Differential Elimination Problem . . 115
Nemytykh A.P. A Note on Application of Program Specialization

to Computer Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Salnikov V.N. Learning Port-Hamiltonian Systems . . . . . . . . . . . . . . . . 122
Seliverstov A.V. On a Simple Lower Bound for the Matrix Rank . . . . . . . . 126
Shirokov I.E. Calculations of Quantum Corrections in Supersymmetric Theories

Using Computer Algebra Methods . . . . . . . . . . . . . . . . . . . . . . . . 129
Wu M. On Tight and Efficient Bound Propagation For Neural Networks Based on

Bernstein Polynomial Approximations . . . . . . . . . . . . . . . . . . . . . 133
Yakovleva T.V. Optimisation of Computer Algebra Techniques Application for

Rician Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Author index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7





Invited talks





Asymptotic Nonlinear Analysis as a Calculus and
Applications

A.D. Bruno

Keldysh Institute of Applied Mathematics of RAS, Russia

e-mail: abruno@keldysh.ru

Abstract

In the last 60 years, there was formed an universal asymptotic nonlinear analysis,
whose unified methods allow to find asymptotic forms and asymptotic expansions to
solutions of nonlinear equations and systems of different types: algebraic, ordinary
differential (ODE), partial differential (PDE) and systems of mixed-type equations.
This are in two methods: (1) Reducing equations to the normal form and (2) Separat-
ing truncated equations. Two kinds of transformations of coordinate can be used to
simplify the obtained equations: (A) Power and (B) Logarithmic.

In this lecture, the basic ideas of this calculus are explained for the simplest cases:
a single algebraic equation in Section 1, Section 2 considers the autonomous ODE
system. A single partial differential equation is considered in Section 3. An overview
of applications are given in Section 4. Enlarged review was published in [1].

Keywords: nonlinear analysis, power geometry, asymptotic form, asymptotic ex-
pansion

1. Calculus

There are two universal methods for local study of nonlinear equations and systems
of different kinds (algebraic, ordinary and partial differential): (a) normal form and (b)
truncated equations.

(a) Equations with a linear part can be reduced to its normal form by a local change of
coordinates. For algebraic equation, it is Implicit Function Theorem. For systems of
ordinary differential equations (ODE), I completed the theory of normal forms, began
by Poincaré (1879) and Dulac (1912) for general systems [2, 3] and began by Birkhoff
(1929) for Hamiltonian systems [4].

(b) Equations without linear part: I proposed to study properties of solutions to equations
(algebraic, ordinary differential and partial differential) by studying sets of vector power
exponents of terms of these equations. Namely to select more simple (“truncated”)
equations [5, 6, 7] by means of generalization to polyhedrons the Newton (1678) and the
Hadamard (1893) polygons. By means of power transformations [5, 6, 8] the truncated
equations can be strongly simplified and often solved. Solutions of the truncated equa-
tions are asymptotically the first approximations of the solutions to the full equations.
Continuing that process, we can obtain approximations of any precision to solutions of
initial equations. Basing on the developed Asymptotic Nonlinear Analysis, I proposed
algorithms for solutions of a wide set of singular problems. In particular, for compu-
tation of six different types of asymptotic expansions of solutions to ODE [9, 10, 11],
including expansions into trans-series [12].
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2. Applications in complicated problems of (c) Mathematics, (d)
Mechanics, (e) Celestial Mechanics and (f) Hydromechanics

(c) In Mathematics: together with my students I found all asymptotic expansions of five
types of solutions to the Painlevé equations (1906) [10, 13] and also gave very effective
method of determination of integrability of ODE system [14, 15].

(d) In Mechanics: I computed with high precision influence of small mutation oscillations
on velocity of precession of a gyroscope [6] and also studied values of parameters of a
centrifuge, ensuring stability of its rotation [16].

(e) In Celestial Mechanics: together with my students I studied periodic solutions of the
Beletsky equation (1956) [17, 18], describing motion of satellite around its mass center,
moving along an elliptic orbit. I found new families of periodic solutions, which are
important for passive orientation of the satellite [6], including cases with big values
of the eccentricity of the orbit, inducing a singularity. Besides, simultaneously with
Hénon (1997), I found all regular and singular generating families of periodic solutions
of the restricted three-body problem and studied bifurcations of generated families. It
allowed to explain some singularities of motions of small bodies of the Solar System [19].
In particular, I found orbits of periodic flies round planets with close approach to the
Earth [20].

(f) In Hydromechanics: I studied small surface waves on a water [7], a boundary layer on
a needle [21], where equations of a flow have a singularity, and a model of a turbulent
flow [22, 23].

References

[1] Bruno A. D. Nonlinear Analysis as a Calculus // London Journal of Research in Science:
Natural and Formal. 2023. Vol. 23, no. 5. P. 1–31.

[2] Bruno A. D. Analytical form of differential equations (I) // Trans. Moscow Math. Soc.
1971. Vol. 25. P. 131–288.

[3] Bruno A. D. Analytical form of differential equations (II) // Trans. Moscow Math. Soc.
1972. Vol. 26. P. 199–239.

[4] Bruno A. D. The Restricted 3–body Problem: Plane Periodic Orbits. Berlin : Walter
de Gruyter, 1994. = Nauka, Moscow, 1990. 296 p. (in Russian).

[5] Bruno A. D. The asymptotic behavior of solutions of nonlinear systems of differential
equations // Soviet Math. Dokl. 1962. Vol. 3. P. 464–467.

[6] Bruno A. D. Local Methods in Nonlinear Differential Equations. Berlin – Heidelberg –
New York – London – Paris – Tokyo : Springer–Verlag, 1989.

[7] Bruno A. D. Power Geometry in Algebraic and Differential Equations. Amsterdam :
Elsevier Science, 2000.

[8] Bruno A. D. On the generalized normal form of ODE systems // Qual. Theory Dyn.
Syst. 2022. Vol. 21, no. 1. doi: 10.1007/s12346-021-00531-4.

12



[9] Bruno A. D. Asymptotics and expansions of solutions to an ordinary differential equa-
tion // Russian Mathem. Surveys. 2004. Vol. 59, no. 3. P. 429–480.

[10] Bruno A. D., Goruchkina I. V. Asymptotic expansions of solutions of the sixth Painlevé
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tions / ed. by Filipuk Galina, Lastra Alberto, Michalik S lawomir. Springer Proceedings
in Mathematics & Statistics. Springer Cham, 2018. P. 103–145.

[12] Bruno A. D. Power-exponential transseries as solutions to ODE // Journal of Mathe-
matical Sciences: Advances and Applications. 2019. Vol. 59. P. 33–60.

[13] Bruno A. D. Power geometry and expansions of solutions to the Painlevé equations //
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Hermite Reduction for D-finite Functions1

Shaoshi Chen1,2, Lixin Du3, Manuel Kauers3

1KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, China

2School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing
100049, China

3Institute for Algebra, Johannes Kepler University, Linz, A4040, Austria

e-mail: schen@amss.ac.cn, lixin.du@jku.at, manuel.kauers@jku.at

Abstract

Trager’s Hermite reduction solves the integration problem for algebraic functions
via integral bases. A generalization of this algorithm to D-finite functions has so far
been limited to the Fuchsian case. In the present paper, we remove this restriction and
propose a reduction algorithm based on integral bases that is applicable to arbitrary
D-finite functions.

Keywords: additive decomposition, creative telescoping, symbolic integration

Let R be a certain class of functions in one variable x with the derivation Dx. For
example, R can be the field of rational functions or algebraic functions. In the context of
symbolic integration, the integrability problem consists in deciding whether a given element
f ∈ R is of the form f = Dx(g) for some g ∈ R. If such a g exists, we say that f is
integrable in R. A relaxed form of the integrability problem is the decomposition problem,
which consists in constructing for a given f ∈ R elements g, r ∈ R such that f = Dx(g) + r
and r is minimal in a certain sense. Ideally the “certain sense” should be such that r = 0
whenever f is integrable. If f ∈ R depends on a second variable t, one can also consider the
creative telescoping problem: given an element f ∈ R, the task is to construct c0, . . . , cr ∈ R,
not all zero, such that ci is free of x for all i ∈ {0, . . . , r} and

crD
r
t (f) + · · ·+ c0f = Dx(g) for some g ∈ R.

The operator L = crD
r
t + · · · + c0, if it exists, is called a telescoper for f , and g is called a

certificate for L.
Zeilberger first showed the existence of telescopers for D-finite functions [1]. Almkvist and

Zeilberger [2] solved the integrability problem and the creative telscoping problem for hyper-
exponential functions. Using the adjoint Ore algebra, Abramov and van Hoeij [3] solved the
accurate integration problem for D-finite functions. Chyzak [4] extended the method of cre-
ative telescoping from hyperexponential functions to general D-finite functions. During the
past ten years, a reduction-based telescoping approach has become popular, which can find a
telescoper without computing the corresponding certificate. This approach was first formu-
lated for rational functions [5] and later extended to hyperexponential functions [6], algebraic
functions [7], Fuchsian D-finite functions [8] and D-finite functions [9, 10]. The reduction-
based telescoping algorithms for algebraic functions and for Fuchsian D-finite functions em-
ploy the notion of integral bases, while the known reduction-based telescoping algorithms
applicable to arbitrary D-finite functions work differently.

The notion of integrality proposed by Kauers and Koutschan [11] for Fuchsian D-finite
functions has recently been generalized by Aldossari [12] to arbitrary D-finite functions, so
that the question arises whether there is also a reduction-based telescoping algorithm for

1This extended abstract is based on our recent paper submitted to the conference ISSAC’23.
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arbitrary D-finite functions based on integral bases. The purpose of this work is to answer
this question affirmatively, which is based on the results of Chapter 6 of the second author’s
Ph.D. thesis [13].

Let C be a field of characteristic zero and C̄ be the algebraic closure of C. Let C(x)[D] be
an Ore algebra, where D is the differentiation with respect to x and satisfies the commutation
rule Dx = xD + 1. For an operator L = ℓ0 + ℓ1D + · · · + ℓnD

n ∈ C(x)[D] with ℓn ̸= 0,
we consider the left C(x)[D]-module A = C(x)[D]/⟨L⟩, where ⟨L⟩ = C(x)[D]L. We call the
elements of A “functions”, even though they are not functions in the usual sense. This is
fair because A is isomorphic to a C(x)[D]-module containing actual functions. When there
is no ambiguity, an equivalence class f + ⟨L⟩ in A is also denoted by f . Every element of
A can be uniquely represented by f = f0 + f1D + · · · + fn−1D

n−1 with fi ∈ C(x). Let
W = (ω1, . . . , ωn) ∈ An be an integral basis of A that is normal at infinity (for the precise
definition of integral bases for arbitrary linear differential operators, see [11, 14, 15, 12]).
There exists T = diag

(
xτ1 , . . . , xτn

)
∈ C(x)n×n with τi ∈ Z such that V := TW is a local

integral basis at infinity. (Theoretically, we can also start with W being a local integral basis
at C̄ \ {α} ∪ {∞} that is normal at α.) Let e, a ∈ C[x] and M,B ∈ C[x]n×n be such that
eW ′ = MW and aV ′ = BV . Since the derivative of V is V ′ = (TW )′ = (T ′ + 1

e
TM)T−1V,

we may assume that a = xλe for some λ ∈ N. For µ, δ ∈ Z with µ ≤ δ, we define a subspace
of Laurent polynomials in C[x, x−1] as C[x]µ,δ := {∑δ

i=µ aix
i | ai ∈ C}. The main result of

this work is the following additive decomposition for a general D-finite function.

Theorem 1. Let W,V ∈ An be as described above. Then any element f ∈ A can be
decomposed into

f = g′ +
1

d
RW +

1

xλe
QV, (1)

where g ∈ A, d ∈ C[x] is squarefree and gcd(d, e) = 1, R ∈ C[x]n, Q ∈ C[x]nµ,δ with
degx(R) < degx(d), µ = min{−τ1, . . . ,−τn, 0} and δ = max{λ + degx(e), degx(B)} − 1.
Moreover, f is integrable in A if and only if R = 0 and

1

xλe
QV ∈ U ′ with U =

{
1

u
cV

∣∣∣∣ c ∈ C[x]nµ′,δ′

}
,

where u = gcd(e, e′), µ′ = min{−τ1, . . . ,−τn, ν0(u)} and

δ′ = max{degx(u), degx(B)− λ− degx(e) + degx(u)}.
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Abstract

We decompose the generating function
∑∞

n=0

(
2n
n

)
Pn(y)

2zn of the squares of Legen-
dre polynomials as a product of periods of hyperelliptic curves. These periods satisfy
second order differential equations which is highly unusual since four is the expected
order for genus 2. These second order equations are arithmetic and yet their mon-
odromy group is dense in SL2(R). This implies that they cannot be solved in terms
of hypergeometric functions, which is novel for an arithmetic equation that occurred
naturally. This is joint work with Duco van Straten and Wadim Zudilin.
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Abstract

Two generic methods to compute multiplicative inverses are presented. These meth-
ods apply to integers, polynomials and matrices and are asymptotically faster than
classical algorithms. The first method is to use a modified Newton iteration to com-
pute quotients via shifted inverses in a not-necessarily commutative Euclidean domain.
The second method is to use the Moore-Penrose inverse to avoid pivots and whole-row
operations in block matrix inversion.

1. Introduction

In computer algebra it is desirable to find algorithms that can be expressed over abstract
algebraic domains and to implement these generically. For example, programs to multiply
polynomials in R[x] or perform Gaussian elimination on matrices in F n×n can be expressed
as programs that use the ring and field operations from R and F . This avoids multiple
implementations of the same algorithms and allows flexible composition of domains. Systems
such as Axiom are built around this principle, and others can support it through mechanisms
such as the Maple Domains package. Most modern programming languages, such as C++,
C#, Go, Java, Rust and Typescript, support generic programming in one form or another.

In mathematical computing it is required to find quotients or inverses of various types
of objects, including integers, polynomials and matrices. In this paper we summarize some
earlier results showing how to compute these quotients and inverses efficiently and gener-
ically. Section 2 shows a generic algorithm to compute integer and polynomial quotients.
This algorithm is both useful in practice and can be asymptotically fast (depending on the
multiplication method) and performs all operations without leaving the original domain.
Section 3 shows how matrix inverses may be computed on a block representation without
breaking the block abstraction.

2. Modified Newton Iteration for Euclidean Domains

On a Euclidean domain D with valuation N : D → R≥0, we define the quotient and
remainder of u by v as the unique values q and r such that u = q × v + r, N(r) < N(v)
and write q = u quo v and r = u rem v. For both integers and polynomials it is well known
how to compute quotients efficiently using a Newton iteration. For u, v ∈ Z, the quotient
of u by v may be found by first computing v−1 in R to sufficient precision with a Newton
iteration solving f(x) = 1/x − v = 0. For u, v ∈ F [x], F a field, the quotient may be
computed in F [x]/⟨xm+1⟩ using Newton iteration to find the inverse of the reverse polynomial
revkv = xkv(1/x), where k and k +m are the degrees of v and u respectively. In both cases,
the computation leaves the original domain, which can complicate library structure. In
earlier work [8], we have shown how to compute these quotients using only ring operations
and shifts with values remaining in the original domain. We summarize those results here.
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We define the operations “prec”, “shift” and “shinv” on base-B integers and polynomials
in x as follows:

Number of coefficients: precB(w) = ⌊logB |w|⌋+ 1 precx(p) = degreexp + 1

Whole shift: shiftn,B(w) = ⌊wBn⌋ shiftn,x(p) =
∑

i+n≥0

pix
i+n

Whole shifted inverse: shinvn(w) = ⌊Bn/w⌋ shinvn,x(p) = xn quo p

where p =
∑h

i=0 pix
i, n ∈ Z and B ∈ Z≥2. When the base B or variable x are clear from

context, they may be omitted and we simply write shiftn and shinvn. Depending on the
implementation, the shift operation can be performed in time O(1) or O(n). With these
definitions, efficient quotients may be computed generically by the following theorems.

Theorem 1. Let D be Z or F [x], F a field. Given u, v ∈ D, and precu ≤ h + 1,

u quo v = shift−h(u · shinvh v) + δ, (1)

where δ = 0 when D = F [x] and δ ∈ {0, 1} when D = Z.

Theorem 2. Let D be Z or F [x], F a field. Given v ∈ D, prec v = k + 1 < h + 1 and
suitable starting value w(0), the sequence of iterates

w(i+1) = w(i) + shift−h

(
w(i)(shifth 1− vw(i))

)

converges to shinvh v + δ in ⌈log2(h− k)⌉ steps.

The δ = 1 integer case causes no problems, as it is easy to first check whether u < v + v.
After dispensing with special cases, the shifted inverse of the first two places for integer v
may be computed as

V := vkB
2 + vk−1B + vk−2 w0 := (B4 − V ) quoV + 1,

assuming B ≥ 16 and prec v − 1 = k ≥ 2. The quotient to produce w0 is obtained by
dividing a 4-place quantity by a 2-place quantity. If the base B is less than 16, then digits
may be grouped to give a sufficiently large base. For polynomials, the shifted inverse of the
first two places of v will be

w0 := x/vk − vk−1/v
2
k.

In both cases, the h-shifted inverse of v may then be computed generically as
Shinv(v, h, k, w0, 2), as shown in Algorithm 1. Note that for polynomials a 1-place ini-
tial value would be sufficient to start the iteration, but the generic algorithm takes a simpler
form when two places are given. The function HasCarries indicates whether addition can
cause carries from one coefficient place to another in the arithmetic of the domain. It gives
“true” for integers and “false” for polynomials. The details of this algorithm are justified by
the following theorems in the integer case. They relate to iterates of the function SZ, defined
as

SZ(h, v, w) := w +
⌊
w(Bh − vw)B−h

⌋
, (2)

which has fixed points at 0, 1, ⌊Bh/v⌋− 1 and ⌊Bh/v⌋. Together they show how to compute
intermediate iterates with shorter quantities using two guard digits. For polynomials the
situation is simpler and these shorter intermediate results may be used without guard digits.
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Algorithm 1 Generic iteration to compute shinvh(v) in D given initial approximation w0

1: function Shinv (v, h, k, w0, ℓ)
2: ▷ w is the current approximation. ℓ is the number of leading correct places of w.
3: ▷ g is the number of guard places. d is the precision doubling shortfall.
4: if HasCarries(D) then g ← 2; d← 1 else g ← 0; d← 0
5: w ← shift(w, g)
6: while h− k + 1− d > ℓ do
7: m← min(h− k + 1− ℓ, ℓ); s← max(0, k − 2ℓ + 1− g)
8: w ← shift−d

(
Step

(
k + ℓ + m− s− 1 + d + g, shift−s v, w, m, ℓ− g

))

9: ℓ← ℓ + m− d
10: return shift−g(w)

11: function Step (h, v, w,m, ℓ) = shiftm w + shift2m−h

(
w ×PowDiff(v, w, h−m, ℓ)

)

12: function PowDiff (v, w, h, ℓ) ▷ Compute shifth 1− v × w efficiently.
13: c← if HasCarries(D) then 1 else 0
14: L← prec v + prec w − ℓ + c ▷ c for coeff to peek
15: if v = 0 ∨ w = 0 ∨ L ≥ h then return shifth 1− v × w
16: else
17: P ← multmod(v, w, L) ▷ Lower L places of product vw.
18: if HasCarries(D) ∧ coeff(P,L− 1) ̸= 0 then return shiftL 1− P
19: else return −P

Theorem 3 (Shift Extension). Let w = shinvh v, Bk ≤ v < Bk+1 ≤ Bh and let w[n] =
shiftnℓ−h+k(w) be the leading nℓ digits of w, with nℓ ≤ h− k. Then

0 ≤ w[2] − SZ(k + 2ℓ, v, shiftℓw[1]) ≤ B.

Theorem 4 (Divisor Sensitivity). Let w[n] be as in Theorem 3 and let ∆ be the change
obtained by perturbing the divisor v by δ in SZ(k + 2ℓ, v, shiftℓ w[1]), i.e.

∆ = SZ(k + 2ℓ, v − δ, shiftℓ w[1])− SZ(k + 2ℓ, v, shiftℓ w[1]).

Then
B2ℓ−k−2δ − 1 < ∆ < B2ℓ−kδ + 1.

In particular, if δ ≤ Bk−2ℓ+1, then 0 ≤ ∆ ≤ B.

Theorem 5 (Close Differences). When
∣∣Bh − vw

∣∣ ≤ Be, e < h, only the lower e digits
of the product vw need be computed since the upper h − e digits will be determined. The
quantity e satisfies

e ≤ k + t− ℓ + g,

where prec v = k + 1 and prec w = t + 1, ℓ is the number of known correct places in w and
g is the required number of guard digits.

Theorems 3 and 4 together show two guard digits are required when the domain is Z.
None are required for polynomials since there cannot be carries. Theorem 5 shows how to
compute the difference shifth 1 − vw, using only a suffix of vw. This will give a savings for
some multiplication algorithms, but not for the asymptotically fastest ones.
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These results can be extended to non-commutative polynomials with left and right quo-
tients [9]. Define “lquo” and “rquo” by u = v × (u lquo v) + rL = (u rquo v) × v + rR,
where each of rL and rR either zero or with degree less than v. For R[x], where R
is not necessarily commutative, shinv is remains well-defined, that is it can be shown
shinvn,x(v) = xn lquo v = xn rquo v. It remains the case that shinv may be computed in
a logarithmic number of steps and quotients may be computed according to the following:

Theorem 6 (Left and right quotients from the whole shifted inverse in R[x]). Let u, v ∈ R[x],
R a ring, with degree v = k and vk invertible in R. Then for h ≥ degreeu,

u lquo v = shift−h(shinvh(v)× u) u rquo v = shift−h(u× shinvh(v)). (3)

To have a well-defined notion of degree for polynomials where the variable does not
commute with the coefficients, we are led to skew polynomials as Ore extensions [2, 4]. In
this case, we may define the left (right) whole shift by multiplying on the left (right) by
xn and left (right) whole shifted inverse as the left (right) quotient of xn and we have the
following theorem, though the computation is no longer asymptotically fast.

Theorem 7 (Right quotient from the whole shifted inverse in R[x;σ, δ]). Let u, v ∈ R[x, δ],
R a ring, k = degree v, and vk invertible in R. Then, for h ≥ degreeu,

u rquo v = rshift−h(u× lshinvhv). (4)

3. Inversion without Pivots for Block Matrices over Division Rings

As has been noted by Abdali and Wise [1], a useful computational representation of
matrices over a ring R is with a recursive 2× 2 block structure. This representation allows
efficient implementation of sub-n3 multiplication and related operations [6]. It supports
row-based and column-based traversal equally well, it is reasonably efficient in representing
dense, sparse and structured matrices, and it can provide good locality of reference for block
algorithms. Most algebraic operations can be expressed naturally in terms of a recursive
abstract data type represented as quadtrees with leaves in R and, if desired, these may be
stored densely without using pointers [5].

Most ring operations on block matrices may be performed in a straightforward manner

using only block operations. That is, for a block matrix M =

[
A B
C D

]
, only ring operations

involving A, B, C and D are required. Computing the matrix inverse is less obvious, however.
If all of the blocks of M are invertible, the inverse of M may be computed as

M−1 =

[
(A−BD−1C)−1 (C −DB−1A)−1

(B −AC−1D)−1 (D − CA−1B)−1

]
.

In practice, the usual approach is to compute only two inverses—that of A and that of its
Schur complement, SA = D − CA−1B,

M−1 =

[
I −A−1B
0 I

] [
A−1 0
0 S−1

A

] [
I 0

−CA−1 I

]
=

[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]
. (5)

If A is not invertible, then a similar formula involving the inverse of another block and
its Schur complement may be used, perhaps after a permutation of rows or columns. The
problem with this approach is that M may be invertible even when all of A, B, C and D are
singular. In this situation, permuting the blocks is of no help. One approach is to break the
block abstraction and use operations on whole rows of M viewed as a flat 2k× 2k matrix [3].
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In earlier work [7], we have shown how to compute inverses using only block operations,
without pivots and without breaking the block abstraction. The technique is to use the
Moore-Penrose inverse so that the principal minors are guaranteed to be invertible and
equation (5) may be used. We summarize those results here. We use the notation R(2×2)k to
mean the ring of 2k × 2k matrices with elements in R, structured in recursive 2× 2 blocks.
Any n× n matrix may be easily be embedded in such a ring.

Theorem 8. If R is a formally real division ring and M ∈ Rn×n is invertible, then it is
possible to compute M−1 as (MTM)−1MT using only block operations. By block operations,
we mean ring operations in R(2×2)k .

Examples of formally real rings are Q, R, Q[
√

2] and R[x, ∂] for formally real R.

Theorem 9. Let C be a division ring with a formally real sub-ring R and involution “∗”,
such that for all c ∈ C, c∗× c is a sum of squares in R. If M ∈ Cn×n is invertible, then it is
possible to compute M−1 as (M∗M)−1M∗ using only block operations. Here, block operations
are ring operations in C(2×2)k .

Examples of such rings are the complexification of a formally real ring R as R[i]/⟨i2 + 1⟩ or
quaternions over R with the involution (a + bi + cj + dk)∗ = a− bi− cj − dk.

Theorem 10. Let K be a field. If M ∈ Kn×n is invertible, then it is possible to compute
M−1 as (M◦M)−1M◦ using only block operations, that is ring operations in K(t)(2×2)k .

Here M◦ = Q−1
n MTQn is a group conjugate of MT , with Qn = diag(1, t, . . . , tn−1).

4. Conclusion

We have shown two generic techniques to compute multiplicative inverses efficiently in
algebraic domains of importance to computer algebra. These methods are supported by
theorems stated here and proven in earlier work.
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Abstract

Several methods of selection of moduli in modular arithmetic are discussed. With
the proposed choice of moduli both modular reduction of an integer and reconstruction
from modular images are accelerated. Special attention is paid to the moduli of the
forms 2n± 1 and 2n± 2k ± 1. Different schemes of choice of these types of moduli and
accelerated conversion of arbitrary precision integers into the modular representation
and back are considered. Results of experimental implementation of different modular
schemes confirm practicality of proposed methods.

Keywords: residue number system, modular reduction, modular reconstruction

1. Intorduction

Conversion to a modular representation is a popular technique to accelerate arithmetic
of computer algebra systems. Modular algorithms are successfully used for calculation of the
greatest common divisors of polynomials, polynomial factorization, in problems of symbolic
linear algebra, for symbolic integration and summation. Modular approach to symbolic com-
putations has several advantageous features. One of them is the possibility to control the size
of intermediate results, which is often impossible in the case of computations with arbitrary
precision integer or rational numbers. This implies faster and more efficient implementations
of symbolic algorithms.

The idea of modular arithmetic is to select positive integers m0,m1, . . . ,mk, referred
to as moduli; replace the initial integer data by residues modulo mi, i = 0, . . . , k; and
perform a series of identical calculations modulo mi (for every i = 0, . . . , k) instead of
required calculations with long integer numbers. On the final stage, the result needs to be
reconstructed from the set of residues modulo mi. The possibility of reconstruction is based
on the Chinese remainder theorem [6, 8] if, for example, all the moduli are pairwise co-prime
and the final result does not exceed m0m1 . . .mk.

The choice of specific values of mi can influence significantly the time complexity of both
calculations modulo mi and reconstruction of the result. For example, after multiplication
of numbers less then mi, in the general case, division by mi may be needed to obtain the
residue value. When the divisor (the modulus in this case) has a special form, more effi-
cient algorithms for modular reduction may be available. One popular approach is to choose
many moduli that fit machine word and use hardware arithmetic for the simultaneous reduc-
tion/reconstruction [4]. The simultaneous reduction and reconstruction without requirement
of moduli to be small was also explored in [3] and [2].

Another approach is related to the choice of moduli with special shape (bit pattern) that
accelerates reduction modulo mi. One of the oldest examples of such approach is described
in [10, 8]: several relatively prime moduli of the form 2n − 1 are selected. This replaces
division with remainder in the residue computation by shift and addition operations that
are much simpler (using that 2n ≡ 1 mod (2n−1), the remainder from division of x by 2n−1
can be obtained by splitting x into several numbers of bit-length n from right to left and
adding them modulo 2n− 1). However, this choice does not offer significant improvement to
the bit-complexity of the reconstruction phase of the computations. In the following section
we will discuss alternative choices of moduli with certain bit-pattern.
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2. Choosing moduli with a bit-pattern

Consider pairwise co-prime natural numbers m0,m1, . . . ,mk and assume we work with
non-negative representatives in each class of residues modulo mi. Modular reconstruction
problem is: given non-negative x0, x1, . . . , xk (xi < mi), find non-negative X < m0m1 . . .mk

such that X = xi mod mi for i = 0, 1, . . . , k. Standard modular reconstruction algorithms
[5, 6] (pre-)compute products of moduli – Mi =

∏i−1
j=0mj and inverses M−1

i mod mi, i =
0, 1, . . . , k− 1. The process of reconstruction involves several multiplications by these quan-
tities which provide significant contribution to the total complexity of the reconstruction.
When deciding a particular approach to the choice of moduli mi one can try to satisfy the
following natural requirements:

1. gcd(mi,mj) = 1 for i ̸= j;

2. reduction modulo mi is “simpler” than division with remainder;

3. products of moduli and their inverses mentioned above have bit-pattern (preferably
scalable) that allows to accelerate multiplication by those quantities;

4. bit-length of moduli mi is balanced.

■ It is easy to select moduli of the form 2n−1 that satisfy requirement 1 (as gcd(2n−1, 2m−
1) = 1 if and only if gcd(n,m) = 1), requirement 2 (as discussed in the Introduction), and
requirement 4 (by choosing relatively prime exponents of close values).
■ Different strategies of selecting the moduli of the form 2n + 1 were considered in [12].
Relative primality of such moduli guaranteed by the proper choice of exponents driven by
the following fact:

gcd(2m + 1, 2n + 1) = 1 ⇐⇒ v2(m) ̸= v2(n),

where v2(x) is the binary valuation of x (the number of trailing zeros in the binary represen-
tation of x). This choice of moduli also satisfies condition 2 (using 2n ≡ −1 mod (2n + 1),
the remainder from division of x by 2n + 1 can be obtained by splitting x into several
numbers of bit-length n from right to left and subtracting/adding them modulo 2n + 1
(see [12] for details)). It is also easy to satisfy condition 3. Consider moduli of the form
mi = 2a2i + 1, i = 0, 2, . . . , k, where a is an arbitrary positive integer, and products

Mi =
∏i−1

j=0mj =
∏i−1

j=0

(
2a2j + 1

)
, i = 0, 1, . . . , k − 1. Then

M−1
i mod mi = 2a2i−1 − 2a−1 + 1, i = 1, 2, ..., k. (1)

With this choice of moduli there is no need to (pre-)compute and to store inverses. Inverse
is defined by the value of a (which is the same for all moduli) and the index i. This allows
reconstruction to become essentially multiplication-free: multiplication by the sparse inverse
is just 2 shifts, 1 addition, and 1 subtraction. When a = 1 (i.e., the moduli are consecutive
Fermat numbers), M−1

i mod mi = 22i−1, i = 1, 2, ... and multiplication by the inverse
requires shift only. However, such choice of moduli does not satisfy requirement 4. In fact,
the bit length of mi is larger than the bit-length of product m0m1 . . .mi−1.
■ An attempt to “repair” the imbalance of moduli size while preserving sparsity and scala-
bility of inverses as in (1), naturally leads to the sets of moduli of the form 2n± 2k ± 1 with
fixed value of n. Note, that such a “three-term” moduli were already considered and used in
applications [11, 9, 7], but not in the context of modular reconstruction (these applications
are mainly concerned with a single modulus of this form being prime number, and use the
bit-pattern of modulus for fast operations in the corresponding finite filed).

Consider moduli m1 = 2n − 2ℓ + 1,m2 = 2n − 2k + 1, n > k > ℓ. To satisfy requirement
1 one can use very simple sufficient condition of co-primality of m1,m2: if n mod (k −
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ℓ) = k mod (k − ℓ) or k mod (k − ℓ) = 0 then gcd(m1,m2) = 1. This follows from the
inspection of remainder sequence for m1,m2 while applying combined steps of binary and
regular Euclidean algorithm: 2n − 2ℓ + 1, 2n − 2k + 1, 2ℓ(2k−ℓ − 1), . . . and the equality

(2n − 2k + 1) mod (2k−ℓ − 1) = 2n mod (k−ℓ) − 2k mod (k−ℓ) + 1.

Similar conditions hold for different choice of +/− signs between terms of moduli.

Requirement 2 is easy to satisfy. Consider m = 2n−2k +1 and a 2n-bit number x. Using
2n ≡ 2k − 1 mod m one can compute (in division/multiplication-free manner (see also [9]))
r = rem(x, 2n), q = quo(x, 2n), y = r + q · (2k − 1), obtaining number y of length about
n + k bits with x mod m = y mod m. This process can be continued until we get residue of
x. If k ≤ cn for fixed constant c: 0 < c < 1, then the number of iterations in this process is
bounded by ⌈ 1

1−c
⌉, i.e., effectively bounded by constant and does not depend on n.

Now, to satisfy requirement 3 one needs to search for moduli in advance using careful
inspection of application of binary and regular extended Euclidean algorithm to m1,m2 with
fixed n and variable k, ℓ. This search is to be performed only once, and produces moduli
and inverses that can be re-scaled and reused for different sizes of input. The scalability
follows from simple properties of remainder sequences: if gcd(2n − 2ℓ + 1, 2n − 2k + 1) = 1
then for any natural a also gcd(2an− 2aℓ + 1, 2an− 2ak + 1) = 1 (the remainder sequence for
scaled moduli will be the same as original with all exponents scaled by the factor a). Also,
if for k > ℓ + 1 the inverse m−1

2 mod m1 has sparse bit pattern, then scaling moduli the by
same factor a preserves the bit pattern (again, remainder sequence in binary and regular
extended Euclidean algorithm remains the same with all exponents scaled). For example,
(2100 − 260 + 1)−1 mod (2100 − 250 + 1) = 240 + 230 + 220 + 210 + 1 and scaling by arbitrary
natural a gives (2100a − 260a + 1)−1 mod (2100a − 250a + 1) = 240a + 230a + 220a + 210a + 1.

As for requirement 4, it is obviously satisfied, as all moduli of the form 2n− 2k + 1, n > k
have the same bit-length.

Note, that after three-terms moduli satisfying requirements 1–4 are selected, one can add
2n and 2n + 1 to the set of moduli, as these new moduli are relatively prime to previously
selected, and also (2n− 2k + 1)−1 mod 2n = 2k + 1, (2n− 2k + 1)−1 mod (2n + 1) = 2n−k and
(2n + 1)−1 mod 2n = 1, i.e., inverses are sparse and scalable.

3. Two-layer modular arithmetic

In [4] an algorithm for simultaneous conversions between a given set of integers and their
modular representations based on linear algebra is described. Authors provide a highly opti-
mized implementation of the algorithm that exploits the computational features of modern
processors. This implementation performance on the standard benchmark of matrix multi-
plication starts to deteriorate when the size of entries of randomly selected integer matrices
becomes very large (218 or more bits). To improve this two layer experimental modular ap-
proach was implemented by Yu Li and Benjamin Chen (University of Waterloo). The idea is
to select large moduli discussed in previous section on the first layer, and reduce the problem
to several problems with entries bit-size amenable for FFLAS-FFPACK. On the second layer
simultaneous conversion [4] is used. Result from multiple calls to FFLAS-FFPACK are used
to reconstruct the final answer using accelerated reconstruction with specially selected mod-
uli. This approach has shown improvement of the running time of the standard benchmark
by the factor between 2 and 3 for the matrices with entries having bit-size greater than 218.
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4. Conclusion

Careful selection of moduli with fixed bit-pattern provides practical improvement to
the standard modular algorithms. This selection (satisfying requirements 1–4) uses search
with back-tracking and is based on inspection of remainder sequences in combined binary
and regular extended Euclidean algorithm. There is a similarity between few-terms moduli
discussed here and polynomials with few terms (such as trinomials or pentanomials) over
the integers. For example, given natural n > k > ℓ, if n mod (k − ℓ) = k mod (k − ℓ)
or k mod (k − ℓ) = 0 then polynomials xn − xℓ + 1 and xn − xk + 1 are relatively prime.
It is anticipated that the inspection of the structure of polynomial remainder sequences
for fewnomials with unit coefficients over integers can help in the search of balanced moduli
with three, five, or generally “few” terms, satisfying requirements 1–4. Note, that fewnomials
over finite fields were studied extensively (see, for example [1]). However, it seems that the
structure of polynomial remainder sequences of fewnomials over the ring of integers deserves
additional study.
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Abstract

Consider a matrix A of size m × n over a field K with r = rankA and d =
min{m,n} − r > 0, which implies that the rank of A is not full. We demonstrate that
in such cases, it is possible to choose d elements from A such that, upon replacement
of their values with other values from K, yield a matrix Ã of full rank (when m = n,
Ã is nonsingular). We discuss as well the implications of this result for matrices with
truncated formal series as their elements.

Keywords: matrices over fields, full and incomplete rank matrices, formal power
series, formal Laurent series, truncated series

1. Introduction

Matrices are used in all areas of mathematics. The rank serves as an essential characteris-
tic of a matrix. If K is a field and m×n-matrix A over K (i.e. A ∈ Km×n), r = rankA then
the situation of incomplete rank is possible, i.e. the situation in which d = min{m,n}−r > 0.
This is an obstacle to carrying out some transformations of the matrix A and performing
calculations related to A. The case of matrices with elements in the form of truncated series
is considered especially. The series themselves and matrices, whose elements are series, can
be given in a truncated form, when instead of each infinite series one of its initial segments
is specified. This can be viewed as an approximation of the data, or more generally, as
incomplete information about the original data.

2. Rank regulation

To prove Lemma 1 below, the notion of a basic minor of a matrix A will be important.
In [1] this notion is defined as follows: “The determinant of a submatrix C of order k is
a basic minor if and only if it is nonzero and all submatrices of order k + 1 which contain
C have zero determinant. The system of rows (columns) of a basic minor form a maximal
linearly independent subsystem of the system of all rows (columns) of the matrix.” (See
also [2].)

Lemma 1. Let K be a field, let m,n be positive integers, and let A ∈ Km×n be a matrix
with rankA < min{m,n}. Then

(i) replacing any one element of the matrix A by some other element belonging to K
cannot increase rankA by more than 1;

(ii) the matrix A contains at least one element such that its replacement by any element
belonging to the field K that is not equal to it increases rankA by 1.

Proof. (i) Assertion (i) is almost trivial. Nevertheless, we give for completeness its proof:
Let A = [aij] and assume that replacement of some aij by ãij ∈ K increases the rank

of A by ρ > 1. Denote by Ã the matrix resulting from this substitution, and choose some

∗Our friend and co-author Marko Petkovšek passed away on March 24, 2023 (S.Abramov, A.Ryabenko).
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basic minor of Ã includes the element ãij. The Laplace expansion of this minor along the
row containing ãij, is a sum of products, one of the factors in each of which is equal to
zero (up to the sign, that factor is equal to the determinant of a submatrix of A of order
rankA+ ρ− 1 > rankA). Hence for ρ > 1, the minor under consideration cannot be a basic
one; thus ρ ≤ 1.

(ii) Let B be a basic minor of the matrix A. Since rankA < n, the matrix A contains
a row and a column that are not related to the minor B; let them be the i-th row and the
j-th column of A. In A, replace the element aij with some ãij ̸= aij, and append the i-th
row and the j-th column of the modified matrix Ã to the set of rows and columns related to
the minor B. The modified minor B̃ is non-zero: up to a sign, its determinant equals

(ãij − aij) detB,

which follows from the Laplace expansion of det B̃ along the row containing ãij. Thus this
minor, whose order equals rankA + 1, is nonzero. By virtue of (i), this minor is basic
for Ã.

A matrix element, whose replacement increases the rank of the matrix, will be called a
rank-regulating element.

The following example shows that not every element is rank-regulating.

Example 1.

A =




1 2 3
2 4 6
0 1 1


 .

It can be seen that, for example, the element a33 does not affect the rank, unlike, say, a13.

Proposition 1. Let K be a field, n > 1 and A ∈ Kn×n. Let rankA = r < n. Then in the
matrix A one can choose n− r such elements that their replacement by any elements of the
field K unequal to them will give a full rank matrix.

Proof. Consider some basic minor B of the matrix A and write out the numbers i1, . . . , in−r

of the rows and the numbers j1, . . . , jn−r of the columns not related to the minor B. By
using Lemma 1(ii) repeatedly, we see that the elements in the list

(ai1,j1 , . . . , ain−r,jn−r) (1)

have the desired property.

Of course, for n−r > 1 such a list will not be unique. For example, for any mapping φ of
the set {1, . . . , n− r} onto itself, the elements of (ai1,jφ(1)

, . . . , ain−r,jφ(n−r)
) have the desired

property, too.

Example 2. Consider the following 5× 5-matrix over the field of rational numbers:

A =




1 −1 2 3 4
2 1 −1 2 0
−1 2 1 1 3
1 5 −8 −5 −12
3 −7 8 9 13



. (2)

Its rank is 3, and a basic minor can be obtained, for example, by selecting rows and columns
with numbers 1, 3, 5. It is not hard to see that a22 and a44 are rank-regulating elements of

30



A. Replacing them by zeros, we obtain a matrix Ã with det Ã = 55; if instead we add 1 to

each of the initial a22, a44, then for the resulting matrix ˜̃A we have det ˜̃A = −11 (obviously,

rank Ã = rank ˜̃A = 5).

Example 3. Consider a non-square matrix. Let A be the following 6 × 4-matrix over the
field of rational numbers:

A =




2 1 1 1
1 3 1 1
1 1 4 1
4 5 6 3
1 −2 0 0
1 1 4 1



. (3)

Its rank is 3, and a basic minor can be obtained, for example, by selecting rows and
columns with numbers 1, 2, 3.

Thus any of a4,4, a5,4, a6,4 is a rank-regulating element of A. For example, replacing a5,4
by 1 we obtain Ã of full rank: rank Ã = 4 = min{6, 4}. A basic minor of Ã can be obtained,
for example, by selecting rows 1, 2, 3, 5 and all the matrix columns.

3. Matrices over truncated formal series

In this section, we consider the field K as the formal Laurent series field F ((x)) over a
field F . The field F ((x)) is the quotient field of the formal power series ring F [[x]]. Let the
elements of the matrix A be polynomials, which are considered as truncated power series.
If detA = 0 then A has obviously a prolongation which is a singular matrix belonging to
F [[x]]n×n: such a prolongation can be obtained by adding to each element of A an infinite
sequence of zero terms. On the other hand, using the recipe from Lemma 1 and Proposition 1,
we can construct a prolongation which gives a nonsingular matrix Ã. To do this, we can, for
example, add to each of the rank-regulating elements some terms that have degrees higher
(say, by 1) than the degrees of the elements of the matrix A.

Thus, the following proposition is valid:

Proposition 2. For an incomplete rank polynomial matrix A = [aij] ∈ F [x]m×n, there
exists and can be constructed a polynomial full rank matrix Ã = [ãij] ∈ F [x]m×n which is
a prolongation of A; wherein, if aij = 0 then ãij = 0 or deg ãij = 0, otherwise deg ãij ≤
deg aij + 1, i = 1, . . . ,m, j = 1, . . . , n.

Example 4. A simple example is given by the following polynomial matrix over the field of
rational numbers:

A =

[
1 x
x x2

]
.

Its rank is 1, and all its first-order minors are basic. Thus, the prolongation of any one of
its elements by a non-zero term of degree 1 for a11, of degree 2 for a12 or a21, and of degree
3 for a22 results in a matrix of rank 2. Take, for example, the element a12 and add −x2 to
it. This gives

Ã =

[
1 x− x2

x x2

]

with det Ã = x3.
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Example 5. Consider the matrix (2) as truncated. Adding x to a22 and −2x to a44 we get

Ã =




1 −1 2 3 4
2 1 + x −1 2 0
−1 2 1 1 3
1 5 −8 −5− 2x −12
3 −7 8 9 13




with det Ã = 22x2, rank Ã = 5.
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Abstract

We suggest effective computation procedures for calculations by power geometry
algorithms connected with Newton polyhedrons. These polyhedrons are suitable for
visual explanations and graphical computations by hand in small dimension cases. But
computer implementation of Newton polyhedron algorithms directly by A.D. Bruno
definitions is too complicated and convoluted. Instead of geometrical definitions we
use power substitution, linear inequalities and method similar to Cayley trick. We
describe our methods in detail on example of calculating Puiseus expansions of solutions
for Lotka-Volterra equations and then apply our methods for Euler-Poisson equations.

Keywords: power substitution, linear inequalities, Puiseux expansion, expand-
ability

1. Introduction

We suggest effective computation procedures for calculations by power geometry algo-
rithms connected with using of Newton polyhedrons [1] for calculating power expansions of
solutions for systems of ODEs. These polyhedrons are suitable for visual explanations and
graphical computations by hand in small dimension cases. But computer implementation
of Newton polyhedron algorithms directly by A.D. Bruno definitions is too complicated and
convoluted. Instead of geometrical definitions we use power substitution, linear inequalities
and method similar to Cayley trick [2]. To calculate a vector exponent of a term directly by
definitions we have to analyze every multiplier in the term that is not supported by builtin
functions of CAS. Power substitution allows easy to calculate vector exponent by builtin
functions of CAS and allows substitute power exponent of substituted variable in form of
expression in several variables. Computer calculations of polyhedral objects (faces, normal
cones, their intersections and etc) are solving of linear inequality systems but calculation
of minimal and maximal power exponents after power substitution allows immediately to
write linear inequality system and to avoid introducing redundant geometrical objects. We
describe our methods in detail on example of calculating Puiseus expansions of solutions for
Lotka-Volterra equations. Then we apply our methods for Euler-Poisson equations .

2. Lotka-Volterra system

We consider ODEs of Lotka-Volterra system [3]

dx/dt = kx− axy, dy/dt = −ly + bxy, (1)

where t - independent variable, x, y — dependent variables, k, a, l, b > 0 — parameters.
We find solutions of the system (1) in form of Puiseux series with finite nonzero principal

part

x(t) = tα1(x0 +
∞∑

j=1

xjt
j∆), y(t) = tα2(y0 +

∞∑

j=1

yjt
j∆), (2)
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where coefficients x0, y0 ̸= 0, power exponents α1, α2 < 0 — rational, the step of the arith-
metical progression of power exponents ∆ > 0 — rational. We move derivations in system (1)
to right side and substitute into one the expansion (2) to obtain the expansion of the sys-
tem (1)

tβ1(c1,0 +
∞∑

j=0

c1,jt
j∆) = 0, tβ2(c2,0 +

∞∑

j=0

c2,jt
j∆) = 0, (3)

where power exponents β1, β2 — rational, coefficients x0, xj, y0, yj are solutions of equations
c1,0(x0, y0) = 0, c2,0(x0, y0) = 0, c1,j(xj, yj) = 0, c2,j(xj, yj) = 0.

To calculate power exponents β1, β2 we substitute leading terms of (2) x0t
α1 , y0t

α2 to
the system (1) and source differential equations transform to one-dimensional polynomials
in variable t

−α1x0t
α1−1 + kx0t

α1 − ax0y0t
α1+α2 , −α2y0t

α2−1 − ly0t
α2 + bx0y0t

α1+α2 , (4)

and power exponents β1 = min(α1−1, α1, α1+α2), β2 = min(α2−1, α2, α1+α2). Conditions
for variables αi, βi, i = 1, 2 we can write in form of weak and strict inequalities

1) −1 + α1 ≥ β1

2) α1 ≥ β1

3) α1 + α2 ≥ β1

4) −1 + α2 ≥ β2

5) α2 ≥ β2

6) α1 + α2 ≥ β2

7) α1 < 0
8) α1 < 0

(5)

and assign a unique number for each inequality in (5). To find solutions for these inequalities
we introduce a vector of projective coordinates V = (α̂0, α̂1, α̂2, β̂1, β̂2), where α̂1 = α1α̂0,
α̂2 = α2α̂0, β̂1 = β1α̂0, β̂2 = β2α̂0 and vector 0 = (0, 0, 0, 0, 0). Then we introduce matrix Q
of coefficients of homogeneous weak inequalities and write inequalities (5) in matrix form

V Q ≤ 0, where Q =




−1 0 0
1 1 1
0 0 1
−1 −1 −1

0 0 0

−1 0 0
0 0 1
1 1 1
0 0 0
−1 −1 −1

0 0 1
−1 0 0

0 −1 0
0 0 0
0 0 0



. (6)

Columns of matrix Q coincide with inequalities (5). Appended column is condition α̂0 < 0
for reverse inequality sign. First row of Q is constants in left side of inequalities (5). Next
two rows are coefficients of α1, α2 in (5). Next two rows are coefficients of β1, β2 in (5) with
opposite signes because we carry β to left side of inequalities. Turning inequality sign for
expressions 7), 8) in in (5) because α̂0 < 0 is compensated by opposite signs in 7-th and 8-th
columns of matrix Q.

Method of supplementary dimension for each system of inequalities in tuple of systems is
similar to Cayley trick [2]. I modified this method by appending columns to matrix Q with
conditions for variables.

System (6) is solved by author computer program [4] by Motzkin-Burger algorithm. This
program dismisses solution if one is strict only inequality for all inequalities with some βi.

System‘(6) has 9 solutions. One of them is vector V = (2µ−2, 2−µ+η1, 2−µ+η2, 4−2µ+
η1+η2, 4−2µ+η1+η2), where 0 < µ < 1, η1, η2 > 0. Then α1 = (2−µ+η1)/(2µ−2) = −1−η̂1,
where η̂1 > 0, because α1 → −∞ when µ→ 1 and α1 → −1− η1/2 when µ→ 0. Similarly
α2 = −1 − η̂2, where η̂2 > 0. Accordingly β1 = β2 = −2 − η̂1 − η̂2. For these values αi, βi

inequalities 3), 6) of system (5) are equalities. Accordingly with (4) ax0y0t
−2−η̂1−η̂2 = 0,

bx0y0t
−2−η̂1−η̂2 = 0. But its contradict to conditions a, b, x0, y0 ̸= 0. Verification of such

conditions was automated by author scripts for CAS Maxima [5]. Contradiction to these
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conditions was exposed for other 7 solutions V = (−1, 1 − µ1, 1 − µ2, 2 − µ1, 2 − µ2), V =
(−1, 1+η, 1−µ, 2+η, 2+η−µ), V = (−1, 1−µ, 1+η, 2+η−µ, 2+η), V = (−1, 1−µ, 1, 2−µ, 2),
V = (−1, 1, 1− µ, 2, 2− µ), V = (−1, 1 + η, 1, 2 + η, 2 + η), V = (−1, 1, 1 + η, 2 + η, 2 + η),
where 0 < µ, µ1, µ2 < 1, η > 0.

If solution V = (−1, 1, 1, 2, 2), then α1 = α2 = 1/− 1 = −1 and β1 = β2 = 2/− 1 = −2.
For these values αi, βi inequalities 1), 3), 4), 6) of system (5) are equalities. Accordingly
with (4)

−(−1)x0t
−1−1 − ax0y0t

−1+(−1) = x0(1− ay0)t
−2 = 0, y0 = 1/a,

−(−1)y0t
−1−1 + bx0y0t

−1+(−1) = y0(1 + bx0)t
−2 = 0, x0 = −1/b

(7)

Then we substitute to system (1) first two terms of the expansion (2) with already calculated
powers exponents and coefficients x = −t−1/b + x1t

−1+∆, y = t−1/a + y1t
−1+∆ and reduce

similar terms. In result

(ay1/b− x1∆)t−2+∆ − kt−1/b + kx1t
−1+∆ − ax1y1t

−2+2∆,

(bx1/a− y1∆)t−2+∆ − lt−1/a− ly1t
−1+∆ + bx1y1t

−2+2∆.
(8)

Power exponents −2 + ∆ < −2 + 2∆ and −1 < −1 + ∆, so we consider terms with power
exponents −2 + ∆ and −1 only. If step 0 < ∆ < 1 then coefficients x1, y1 are solutions of
the homogenious linear algebraic equations system −∆x1 + (a/b)y1 = 0, (b/a)x1 −∆y1 = 0,
but this system doesn’t have solutions if ∆ ̸= ±1. If step ∆ = 1 then coefficients x1, y1 are
solutions of the linear algebraic equations system −x1 + (a/b)y1 = k/b, (b/a)x1 − y1 = l/a.
This system has solution y1 = (bx1 − l)/a, where x1 is arbitrary coefficient, if k = −l only
that contradict to condition k, l > 0. Condition k = −l we call expandability condition into
Puiseux series.

Solution of Lotka-Volterra system is expandable to Puiseux series with not allowed con-
ditions for parameters.

3. Euler-Poisson equations

Motion of a rigid body with a fixed point is described by Euler-Poisson equations [6]

Adp/dt = (B − C)qr −Mg(z0γ2 − y0γ3),

Bdq/dt = (C − A)rp−Mg(x0γ3 − z0γ1),

Cdr/dt = (A−B)pq −Mg(y0γ1 − x0γ2),

dγ1/dt = rγ2 − qγ3,

dγ2/dt = pγ3 − rγ1,

dγ3/dt = qγ1 − pγ2,

(9)

where t - time, A,B,C - principal moments of inertia, which satisfy triangle inequalities
A > 0, B > 0, C > 0, A+B ≥ C,A+C ≥ B,B +C ≥ A, Mg - the body weight, x0, y0, z0 -
coordinates of the center of gravity of the rigid body in the body frame, p, q, r - projections
of the angular velocity vector onto the body frame axes, γ1, γ2, γ3 - direction cosines of the
vertical in the body frame. System (7) has three general first integrals

Ap2 + Bq2 + Cr2 − 2Mg(x0γ1 + y0γ2 + z0γ3) = h = const,

Apγ1 + Bqγ2 + Crγ3 = l = const, γ2
1 + γ2

2 + γ2
3 = 1.

(10)

These are energy, momentum and geometry integrals.

We find solutions of systems (9)(10) in form of Puiseux series with finite nonzero principal
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part

p(t) =tα1(p0 +
∞∑

j=1

pjt
j∆), q(t) =tα2(q0 +

∞∑

j=1

qjt
j∆), r(t) =tα3(r0 +

∞∑

j=1

rjt
j∆),

γ1(t) =tα4(γ1,0 +
∞∑

j=1

γ1,jt
j∆), γ2(t) =tα5(γ2,0 +

∞∑

j=1

γ2,jt
j∆), γ3(t) =tα6(γ3,0 +

∞∑

j=1

γ3,jt
j∆),

(11)
where coefficients p0, q0, r0, γ1,0, γ2,0, γ3,0 ̸= 0, power exponents α1, α2, α3, α4, α5, α6 < 0 —
rational, the step of the arithmetical progression of power exponents ∆ > 0 — rational.

We apply algorithms and programs described and demonstrated above for Lotka-Volterra
system. Matrix Q of coefficients of inequalities has dimension 16× 43 (7 variables + 6 equa-
tions + 3 integrals) × (21 terms of equations (9) + 15 terms of integrals (10) + 6 conditions
α̂1, . . . , α̂6 > 0 + condition α̂0 < 0). Solvability conditions of equations for expansion
coefficients are conditions for parameters of system (9) (expandability conditions). Our cal-
culations show that all known today integrability conditions for Euler-Poisson system [7] are
expandability conditions. Grioly solution is entire functions and is not expanded to consid-
ered Puiseux series and our calculations are not correct in this case, but Grioly condition
appeares. Also, we calculated new cases of expandability for Euler-Poisson system.

4. Conclusion

We calculated all known integrability conditions for Euler-Poisson system that confirm
correctness described here algorithms and computer programs. We believe calculations of
expansions for Euler-Poisson system may be good task for testing and benchmarking of
computer implementations of power geometry algorithms.
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Abstract

An algorithm for solving the following problem is described. Let m < n integer vec-
tors in the n-dimensional real space be given. Their linear span forms a linear subspace
L in Rn. It is required to find a unimodular matrix such that the linear transformation
defined by it takes the subspace L into a coordinate subspace. Computer programs
implementing the proposed algorithms and the power transforms for which they are
designed are described.

Keywords: continued fraction, unimodular matrix, Euler algorithm, power trans-
formation

1. Introduction

Recall that a square matrix is said to be unimodular if all its elements are integers and
its determinant equals ±1. Its inverse is also unimodular.

We will write vectors as row vectors A = (a1, . . . , an), and [a] is the integer part of the
real number a.

Problem 1. Let m, (m < n) integer vectors A1, . . . , Am be given in the n-dimensional real
space Rn. Their linear span

L =

{
X =

m∑

j=1

λjAj, λj ∈ R, j = 1, . . . ,m

}
(1)

forms a linear subspace in Rn. It is required to find a unimodular matrix α such that the
transformation Xα = Y takes L to the coordinate subspace

M = {Y : yn−l+1 = · · · = yn = 0} ,

where l = dimL.

In this talk, we give an algorithm for solving this problem and provide its implementations
in computer algebra systems [1]. If n = 2 and m = 1, then Problem 1 is solved by Eucledean
algorithm or by continued fraction [2]. In Section 2, we describe the Euler algorithm [3],
which generalizes the Euclidean algorithm (i.e., the continued fraction algorithm) to the n-
dimensional integer vector. In Section 3 we describe a solution of Problem 1. In Section 4
we consider power transformations, for the calculation of the unimodular matrices of which,
all these algorithms are developed.

2. Euler’s algorithm and a generalization of continued fraction

Problem 2. Let an n-dimensional integer vector A = (a1, a2, . . . , an) be given. Find an
n-dimensional unimodular matrix α such that the vector Aα = C = (c1, . . . , cn) contains
only one nonzero component cn.
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Euler proposed the following algorithm for solving this problem [3]. Suppose for the
time being that all components of vector A are nonzero. Using the permutation Aα0 =
(ã1, ã2, . . . , ãn) arrange its components in nondecreasing order ãj ≤ ãj+1, j = 1, . . . , n − 1.
Hereα0 is the unimodular matrix of the permutation. Let ãk be the least number among ãj
that is distinct from zero.

Let bj = [ãj/ãk], j = 1, . . . , n. Here b1 = · · · = bk−1 = 0, bk = 1. Make the transformation

dj = ãj − bj ãk, 1 ≤ j ≤ n, j ̸= k, dk = α̃k. (2)

It is associated with the unimodular matrix α1 the diagonal of which consists of ones, and
the k-th row is

0, 0, . . . , 0, 1,−bk+1, . . . ,−bn, i.e. Ãα1 = D = (d1, . . . , dn).

Now arrange the components of the vector D in non-decreasing order using the unimodular

permutation matrix β0 so that Dβ0 = D̃ =
(

0, . . . , 0, d̃k, . . . , d̃n

)
,where d̃j ≤ d̃j+1.

Let d̃l be the least of d̃j, distinct from zero, and let ej =
[
d̃j/d̃l

]
, j = 1, . . . , l. Make the

transformation
fj = d̃j − ej d̃l, 1 ≤ j ≤ n, j ̸= l, fl = d̃l,

and soon. At each step, the maximum of the components of the vector decreases and it
is the n-th component. Therefore, in a finite number of steps we obtain a vector with the
only (last) nonzero component. This component equals the GCD of all original components
a1, . . . , an. Each step involves a permutation matrix and a triangular matrix with the unit
diagonal:

Aα0α1β0β1γ0γ1 . . . ω0ω1 = Aα = C = (0, . . . , 0, cn).

The matrix
α = α0α1β0β1γ0γ1 · · ·ω0ω1 (3)

is a solution of Problem 2.
If not all components aj of the original vector A have the same sign, then we

first arrange them in non-decreasing order of their moduli |ãj| ≤ |ãj+1| and set bj =
[|ãj| / |ãk|] sign ãj sign ãk.

Let the given vector A be perpendicular to a linear variety. Then, after the transformation
using the matrix α, we obtain the vector in which all first n − 1 components are zero.
Therefore, the last component of all vectors of the original variety will be zero after this
transformation.

Euler’s algorithm generalizes the continued fraction algorithm only for integer vectors.
Such a generalization for arbitrary real vectors was sought by all major mathematicians
of the 19th century, but without success. Such a generalization of the continued fraction
algorithm for the n-dimensional vector was proposed in [4]. It gives a sequence of best
approximations, and it is periodic if all the components of the original vector are roots of a
polynomial of degree n with integer coefficients.

3. Solution to Problem 1

Let integer vectors
A1 = (a11, a12, . . . , a1n) ,

A2 = (a21, a22, . . . , a2n) ,

. . .

Am = (am1, am2, . . . , amn)

(4)
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(m < n) and a linear space (1) be given.
First, we check if there are identical vectors among them. If there are any, we discard

duplicates and leave only one of them. Now, we are sure that all vectors (4) are different.
Apply Euler’s algorithm to the vector A, i.e., calculate the matrix α such that A1α0 = C1 =
cnEn, where cn is an integer and Ek is the k-th unit vector.

Let Ajα0 = Cj = (cj1, . . . , cjn), j = 2, . . . ,m. Set A1
j = (cj1, . . . , cjn−1), j = 2, . . . ,m.

Apply Euler’s algorithm to the (n − 1)-dimensional vector A1
2 to obtain A1

2α1 = C1
2 =

(0, 0, . . . , c1n−1), where α1 is an (n− 1)-dimensional square matrix. Let

A1
jα1 = C1

j = (c1j1, . . . , c
1
jn−1), j = 3, . . . ,m.

Apply Euler’s algorithm to the (n− 2)-dimensional vector C1
3 , and so on. Finally, we obtain

the sequence of matrices α0, α1, . . . , αm−1 of decreasing size n, n − 1, . . . , n −m + 1. Form
the block matrices

βj =

(
αj 0
0 Ij+1

)
, j = 0, . . . , n−m,

of size n, where Ij+1 are the identity matrices of size j + 1. Set γ = β0β1 · · · βm−1. Then

Ajγ = (0, 0, . . . , 0, wj,n−j+1, . . . , wj,n) = Wj, j = 1, . . . ,m.

The matrix γ is a solution to Problem 1.

4. Power transformations

Let the polynomial

f(X) =
∑

fQX
Q, Q ∈ S, (5)

where X = (x1, . . . , xn) ∈ Rn or Cn, Q = (q1, . . . , qn) ∈ Zn, Q ≥ 0, fQ are constant coeffi-
cients from R or C, S = S(f) is the support of f , be given. Let F be the algebraic variety
f(X) = 0 and the point X = X0 ∈ F .

If X0 is a simple point, i.e., if at least one derivative ∂f/∂xj is nonzero at X0 then the
implicit function theorem implies that the variety F in the neighborhood of X0 is described
by the equation

∆xj = φ(∆x1, . . . ,∆xj−1,∆xj+1, . . . ,∆xn), (6)

where ∆xk = xk − x0
k and φ is a convergent series of its arguments.

If X0 is not a simple point, then, according to [5, 6] we can seek the branches of the
variety F , passing through X0 in the form of parametric expansions

∆xj = φj(ξ1, . . . , ξn−1), i = 1, . . . , n, (7)

where ξk are small parameters and φj — are converging power series. To this end the convex
hull Γ of the support S in the space is constructed. Then, Γ is the polyhedron the boundary
∂Γ of which consists of (generalized) faces Γ

(d)
j of dimension d, 0 ≤ d < n. Here j is the

face index. Since all vertices Γ
(0)
j of Γ are integer, each face Γ

(d)
j has n − d integer linearly

independent normals N
(d)
j1 , . . . , N

(d)
jn−d ∈ Rn

∗ i.e., normals belonging to the space Rn
∗ , which is

dual of the space Rn.
In addition, each face Γ

(d)
j is associated with the boundary set

D
(d)
j =

{
Q ∈ S ∩ Γ

(d)
j

}
,

and the truncated sum is

f̂
(d)
j (X) =

∑
fQX

Q over Q ∈ D
(d)
j . (8)
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Theorem 1 ([5, Corollary in Chapter II, § 3], [6, Theorem 3.1]). For the face Γ
(d)
j there

exists a power transformation
lnY = lnX · α,

where lnY = (ln y1, . . . , ln yn) and lnX = (lnx1, . . . , lnxn) with a unimodular matrix α, that
takes the truncated sum (8) to a polynomial g of d variables, i.e.,

f̂
(d)
j (X) = Y Tg(y1, . . . , yd), (9)

where T = (t1, . . . , tn) ∈ Zn.

However in [5, 6], it was not pointed out how the unimodular matrix α can be calculated.
This is done in the current paper. In [7, Part I, Ch. I, Section 1.9] it was made for n = 2.
In [1, 8] we describe software of these algorithms. It will be considered in our talk.
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Abstract

For elementary singular point of a multiparameter Hamiltonian system we discuss
a method of computing the condition of existence of a resonance of arbitrary order
and multiplicity. For a certain resonant vector this condition defines a resonant variety
as a variety in the space of coefficients of the characteristic polynomial of the linear
part of the Hamiltonian system. By means of computer algebra and power geometry
techniques polynomial parametrization of the resonant variety is proven. The obtained
results can be used to investigate the formal stability regions of the equilibrium of a
Hamiltonian multiparameter system as well as for the asymptotic integration of its
normal form.

Keywords: Hamiltonian system, resonance, polynomial parametrization, formal
stability

1. Problem setting

In the generic case, an analytic time-independent Hamiltonian function H(z) in the
vicinity of the stationary point (SP), coinciding with the origin, is expanded into a convergent
series of homogeneous polynomials Hk of degree k of its phase variables z = (x,y)

H(z;P) =
∞∑

k=2

Hk(z;P), (1)

where P is a vector of parameters.
In common case the series (1) starts with the quadratic Hamiltonian H2(z;P) defining

the local dynamics near the SP. The behavior of the phase flow in the first approximation is
described by a linear Hamiltonian system

ż(t) = B(P)z, B(P) =
1

2
J
∂2H2(P)

∂z∂z
.

All eigenvalues λj, j = 1, . . . , 2n, of the matrix B can be reordered in such a way that
λj+n = −λj, j = 1, . . . , n. Denote by vector λ = (λ1, . . . , λn) the set of basic eigenvalues.
The characteristic polynomial f̌(λ) of the matrix B contains only even powers of λ, so it is
a polynomial in µ = λ2. The following polynomial is called semi-characteristic

f(µ) =
n∑

k=0

an−k(P)µk, a0 ≡ 1. (2)

∗This extended abstract is based on our papers [1, 2].
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The normal form (NF) of a system of ordinary differential equations (ODE) computed
in the vicinity of an invariant set (stationary point, periodic solution, or invariant torus) is a
powerful tool for analyzing the local dynamics of phase flow in the neighborhood of such an
invariant structure. Even though the NF is a formal object, it can be used for finding first
integrals of the system, families of periodic solutions, for investigating integrability, stability,
and bifurcations (for details see [3, 4]).

Theorem 1 ([5, § 12]). There exists a canonical formal transformation in the form of power
series, which reduces the initial system (1) into its normal form

u̇ = ∂h/∂v, v̇ = −∂h/∂u
defined by the normalized Hamiltonian h(u,v) =

∑n
j=1 λjujvj +

∑
hpqu

pvq containing only
resonant terms hpqu

pvq with
⟨p− q,λ⟩ = 0. (3)

Here 0 ⩽ p,q ∈ Zn, |p|+ |q| ⩾ 2 and hpq are constant coefficients.

The terms hpqu
pvq that have p = q are called secular, all others are called strong

resonant.

Definition 1. Resonance multiplicity k is the number of linearly independent solutions
p ∈ Zn of the resonance equation ⟨p,λ⟩ = 0. Resonance order is q = min |p| by p ∈ Zn,
p ̸= 0, ⟨p,λ⟩ = 0. If the solution of the resonance equation contains only two eigenvalues,
then such resonance is called two-frequency resonance, if more than two, then it is called
multifrequency resonance. Resonances with orders 2, 3 or 4 are called strong resonances

Definition 2. A variety Rp
n in the space K of the coefficients a1, . . . , an of the semi-

characteristic polynomial fn(µ) of degree n is called resonant variety, where the vector
of basic eigenvalues λ of the corresponding characteristic polynomial f̌(λ) is a nontrivial
solution of the resonance equation ⟨L,λ⟩ = 0 for a fixed integer vector p. The analytic
representation of the variety Rp

n in implicit or parametric forms is denoted below by Rp
n.

For a multiparameter Hamiltonian system with 3 degrees of freedom, give a description
of regions in the system parameter space, in which there are no strong resonances:

order 2: of order q = 2: p = (1, 1, 0) is the case of multiple roots, which is described by the

discriminant set R
(1,1,0)
3 ≡ D(f) = 0;

order 3: of order q = 3: for the 2-frequency case p = (2, 1, 0), described by the q-

discriminant R
(2,1,0)
3 ≡ D4(f) = 0; for 3-frequency case: described by the condition

R
(1,1,1)
3 = 0;

order 4: of order q = 4: for the 2-frequency case p = (3, 1, 0), described by the q-

discriminant R
(3,1,0)
3 ≡ D9(f) = 0; for 3-frequency case: described by the condition

R
(2,1,1)
3 = 0.

To solve this problem, we should obtain a description of boundaries of the regions, which
are free of strong resonances. These boundaries consist of parts of algebraic varieties on
which the resonance equation (3) has a nontrivial solution.

Let us decompose the main problem into several auxiliary problems.

1. Obtain an analytic representation in the coefficient space K = (a1, a2, a3) of the cubic
polynomial of resonant varieties Rp

3 for all vectors p orders 2, 3 and 4.

2. Find the mutual location of all resonant varieties found above.
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2. Condition on resonance existence

We considered two ways of computing condition of resonance existence for a given reso-
nant vector p∗.

• The first method allows us to obtain an implicit representation of the variety Rp
3 .

• The second method allows to obtain a parametric representation of the variety Rp
3 .

In each of these methods one should first find the resonant relation between the roots µj

of the polynomial f(µ) for a given vector p∗.
A general description of the procedure for obtaining condition on the existence of two

and multi-frequency resonances is as follows:

1. for a certain vector p∗ = (r, q, 1), where r, q ∈ Q, r, q ̸= 0, satisfying the resonance equa-
tion ⟨p,λ⟩ = 0, a polynomial ideal is composed J =

{
⟨p∗,λ⟩, λ2

j − µj, j = 1, . . . , n
}

;

2. Gröbner basis G of this ideal with the elimination monomial order of variables
λj, µj, j = 1, . . . , n is computed. The first polynomial g1 of G is a quasi-homogeneous
polynomial in the variables µj, j = 1, . . . , n. Its zeroes determine the condition of
existence of resonance for a given vector p∗.

This condition takes the form

R
(r,q,1)
3 (µj) ≡ q4µ2

2 − 2q2r2µ1µ2 + r4µ2
1 − 2q2µ2µ3 − 2r2µ1µ3 + µ2

3 = 0. (4)

To obtain the corresponding resonant condition in the implicit form as zeroes of a poly-
nomial with coefficients aj, j = 1, . . . , 3 of the polynomial f(µ), a new Gröbner basis F of
the ideal is constructed. This method turns out to be very time-consuming for resonances of
the general form, it leads to very cumbersome expressions. Its generalization for cases with
degrees of freedom greater than 3 is not possible.

For condition (4) a power transformation µ1 = s2s3, µ2 = s1s3, µ3 = s3 is done. It

reduces R
(r,q,1)
3 (µj) into a polynomial of two variables

R̃
(r,q,1)
3 ≡ q4s21 − 2q2r2s1s2 + r4s22 − 2q2s1 − 2r2s2 + 1 = 0,

which has the parametric representation of the roots

µ1 =
(
r2u(q + 1) + q − 1

)2
v, µ2 =

(
r2u− 1

)2
vr2, µ3 =

(
r2u + 2q − 1

)2
vr2.

This parametric representation using elementary symmetric polynomials gives a polyno-
mial parametrization of the coefficients

a1 = −v
[
r4(2 + (q + 1)2)u2 + 2(q − 1)r2(2r2 + q + 1)u + 2r2(2q2 − 2q + 1) + (q + 1)2

]
,

a2 = v2r2[r8
(
r2 + (q + 1)2

)
u4 + 4(q − 1)r6

(
r2 + q2 + 3q + 2

)
u3+

+ r4{
(
4q2 − 12q + 6

)
r2 + 4q4 + 12q3 − 8q2 − 12q + 12}u2+

− 4(q − 1)r2
(
(2q − 1)r2 − 2q3 − q2 + 3q − 2

)
u + (2q − 1)2r2 + 2(2q2 − 2q + 1)(q − 1)2],

a3 = −r4
(
r2u(q + 1) + q − 1

)2
v3
(
r2u− 1

)2 (
r2u + 2q − 1

)2
.

Excluding the parameters u, v we can obtain an implicit representation of Rp∗
3 of the

condition for the existence of resonance via the coefficients aj of the polynomial. This
expression is not given here due to its cumbersomeness: it is a quasi-homogeneous polynomial
consisting of 19 monomials.

For each strong resonance of orders 2, 3 and 4 parametric representation of the corre-
sponding variety was obtained. Their mutual location is shown in Fig. 1.
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Figure 1: Resonant varieties in parametric variables.
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Abstract

Systems of ordinary differential equations depending on parameters is considered,
using the Van der Pol oscillator as an example. Advantages of the first differential
approximation method and its implementation in the computer algebra systems are
discussed. It is shown that, the presented method allows to estimate the stiffness of
the Van der Pol oscillator and error of numerical methods and to propose simple criteria
for choosing a step in calculations. The presented implementation of the method use
a standard tools of computer algebra and can be applied systems with a polynomial
right-had side.
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1. Introduction

In the 60s of the last century, N.N. Yanenko [1] formulated the differential approximations
method to investigate difference schemes. The main idea of this method is to replace the
investigation of the properties of a difference scheme by the investigation of some problem
with differential equations occupying an intermediate position between the original differen-
tial problem and the difference scheme approximating it.

First Differential Approximation (FDA) for PDEs of evolutionary type and in particular
the Korteweg-de Vries equation using computer algebra systems is discussed in [2].

In [3] FDA is reviewed for difference schemes describing ordinary differential equations.
The connection between the singular perturbation of the original system and the concept
of FDA is discussed. For this simple case, a relationship is shown between the method
for estimating the approximation error of the solution based on the FDA analysis and the
Richardson-Kalitkin method. It should be noted, that a consistent system of PDEs can be
approximate by inconsistent difference systems of equations. Examples are given in [3]. As a
way to check the consistency of a system of difference equations, it is proposed to check the
consistency of the FDA for a difference system. The issues of FDA calculation in computer
algebra systems, Sage and SymPy are considered.

This paper considers systems of ordinary differential equations (ODE) depending on
parameters, using the Van der Pol oscillator as an example.

There are many numerical methods for solving ODE. The usage of the FDA allows to
get information about the quality of the selected numerical method for a particular system
using only symbolic calculations. In this paper, Runge-Kutta methods and some multi-step
methods will be considered.

2. FDA for Van der Pol oscillator

Let’s write Van der Pol oscillator[4]

utt − µ(1− u2)ut + u = 0 (1)
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as a system of two equations

{
ut − u1 = 0,
u1t − µ(1− u2)u1 + u = 0.

(2)

Applying the fourth-order Runge-Kutta method [5] to (2) we get





u1 + h

(
−µu1 (u− 1) (u + 1)

2
− u

2

)
+ . . . = 0,

−µu1 (u− 1) (u + 1)− u + h

(
µ2u1 (u− 1)2 (u + 1)2

2
+

+
µu (u2 − 2u2

1 − 1)

2
− u1

2

)
+ . . . = 0.

(3)

Taylor expansion for t = 0 for (3) gives





ut − u1 + h

(
µu1 (u− 1) (u + 1)

2
+

u + utt

2

)
+O(h2) = 0,

u1t − µu1 (1− u2) + u + h

(
−µ2u1 (u− 1)2 (u + 1)2

2
−

− µu (u2 − 2u2
1 − 1)

2
+

u1 + u1tt

2

)
+O(h2) = 0.

(4)

Using algorithms for constructing Gröbner bases for series in a computer algebra system
SymPy, we build FDA for (4)





ut − u1 + h4

(
µ4u1 (u− 1)4 (u + 1)4

120
+ . . . +

u1

120

)
+O(h5) = 0,

u1t − µu1 (1− u2) + u + h4

(
−µ5u1 (u− 1)5 (u + 1)5

120
−

− µ4u (u− 1)3 (u + 1)3 (u2 − 2u2
1 − 1)

120
+

+
µ3u1 (u− 1) (u + 1) (15u2u2

1 − 8u2 − 7u2
1 + 8)

240
−

− µ2u (2u4 − 25u2u2
1 + 4u2 + 10u4

1 + 5u2
1 − 6)

240
+

+
µu1 (7u2 − 6u2

1 + 6)

240
− u

120

)
+O(h5) = 0.

(5)

The construction of the FDA, which is independent of the Taylor expansion point, made it
possible to correctly determine the order of the numerical method and its remainder term.
We built the FDA for various explicit and implicit Runge-Kutta methods, Adams–Bashforth
and Adams–Moulton multi-step methods. All results are shown that the remainder terms
of the second equation of the system (2) have a form hp(Cµp+1(u2− 1)p+1) + . . .), where p is
the order of the method, C is some constant. The remainder term shows the stiffness of the
[6] system with respect to the µ parameter. As a result, it is necessary to choose the step h
in such a way as to ensure the smallness of the remainder term.
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3. Numerical experiments

Calculations were made for the Runge-Kutta method (3) with initial conditions u =
0, ut = 1 for t = 0. The calculations were interrupted when abs(u) >= 5. The designation
max shows the maximum value |u| and is chosen for accuracy control.

As shown on Fig. 1 calculations at constant step h = 0.05. As a result, it can be seen
that when the value of h4µ5 is large, it is necessary to decrease the step h.
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h=5.0e-02, =0.0, h4 5=0.0e+00, max=1.000 h=5.0e-02, =1.0, h4 5=6.3e-06, max=2.009

2

0

2
h=5.0e-02, =5.0, h4 5=2.0e-02, max=2.021 h=5.0e-02, =10.0, h4 5=6.3e-01, max=2.014
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h=5.0e-02, =50.0, h4 5=2.0e+03, max=1.845

Figure 1: Calculations with a constant step

As shown on Fig. 2 calculations with variable step h using the control of the remainder
term in the second equation of (5).

2

0

2
steps=1602, =0.0, max=1.000 steps=1602, =1.0, max=2.009

2

0

2
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2

0

2
steps=1897, =20.0, max=2.008

0 10 20 30 40 50 60 70 80

steps=2945, =50.0, max=2.003

Figure 2: Calculations with variable step

On Fig. 3 the value of the FDA remainder term is shown when calculating with a variable
step. It can be seen that the error remains within the specified value 0.001.

The performed calculations show that usage of the FDA allows to estimate the discrep-
ancy of the numerical methods with respect to the parameters of the problem, to detect and
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Figure 3: Accuracy in calculations with a variable step

to evaluate the stiffness of the ODE system. Furthermore, we can use residual FDA member
for selection of variable step. The source texts of the programs and the presented calcula-
tions are given at github.com/blinkovua/sharing-blinkov/tree/master/FDA ODE. The
presented method use a standard tools of computer algebra and can be applied systems with
a polynomial right-had side.

References

[1] Yanenko N.N., Shokin Yu.I. The first differential approximation of difference schemes
for hyperbolic systems of equations. Siberian Mathematical Journal. 1969. Vol. 10, N. 5.
P. 868–880. DOI: 10.1007/BF00971662

[2] Blinkov Y.A., Gerdt V.P., Marinov K.B. Discretization of quasilinear evolution equations
by computer algebra methods. Programming and Computer Software. 2017. Vol. 43, N. 2.
P. 84–89. DOI: 10.1134/S0361768817020049

[3] Blinkov Y.A., Malykh M.D., Sevastianov L.A. On differential approximations of dif-
ference schemes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics.
2021. Vol. 21, N. 4. P. 472–488. DOI: 10.18500/1816-9791-2021-21-4-472-488

[4] Van der Pol B. On “Relaxation-Oscillations”. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science. 1926. N. 2. P. 978–89992. DOI:
10.1080/14786442608564127
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Abstract

An algorithm for the analytical construction of multidimensional Hermite inter-
polation polynomials in a multidimensional hypercube is presented. In the case of
a d-dimensional cube, the basis functions are determined by the products of d Her-
mite interpolation polynomials depending on each of the d variables given explicitly
in analytic form. The efficiency of finite element schemes, algorithms and programs
implemented in the MAPLE system is demonstrated by reference calculations of the
Harmonic oscillator problem.

Keywords: Hermite interpolation polynomials, multidimensional boundary-value
problem, finite element method

1. Introduction

The definition and properties of Hermitian interpolation polynomials (HIPs) or Birkhoff
interpolants and their application in the finite element method (FEM) are discussed in a
number of papers, for example [1, 2]. Piecewise polynomial FEM functions constructed
by matching HIPs have continuous derivatives up to a given order at the finite element
boundaries, in contrast to Lagrange interpolation polynomials (LIPs). Therefore, FEM
with HIPs is used in problems where continuity is required not only for the approximate
solution, but also for its derivatives [3]. A constructive approach to the determination of
multidimensional HIPs inside a d-dimensional hypercube in the form of a polynomial of d
variables of degree p′ with a set of (p′+1)d unknown coefficients, which are calculated in
integer arithmetic by solving a system of (p′ + 1)d inhomogeneous algebraic equations, was
implemented as a program for d = 3 and p′ = 3 in [3]. With an increase in d and p′ and the
dimension of the system, its solution in integer arithmetic becomes too difficult, therefore,
in the general case, it is necessary to develop new algorithms free of this drawback.

In this work, we implement in Maple and Mathematica an algorithm for constructing
multidimensional HIPs inside a d-dimensional hypercube as a product of d pieces of one-
dimensional HIPs of degree p′ in each variable, in which there is no need to solve the above-
mentioned system of equations [4]. One-dimensional HIPs are calculated analytically using
the authors’ recurrent relations [5]. As a result, multidimensional HIPs are also calculated
in an analytical form and satisfy all the conditions for their definition and properties. In the
particular case d = 3, p′ = 3, as shown in [6], they coincide with the 3D HIPs in [3].

The efficiency of our finite element schemes, algorithms and program GCMFEM imple-
mented in Maple and Mathematica is demonstrated by reference calculations of the BVP
for multidimensional harmonic and anharmonic oscillator used in the Geometric Collective
Model (GCM) of atomic nuclei [8].
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2. Algorithm

The HIPs φκp′
rq (x) depending on d variables in an element of a d-dimensional parallelepiped

x = (x1, . . . , xd) ∈ [x1;min, x1;max]⊗ · · · ⊗ [xd;min, xd;max] = ∆q ⊂ Rd (1)

at nodes xr = (x1r1 , . . . , xdrd), xiri = ((p − ri)xi;min + rixi;max)/p; ri = 0, . . . , p, i = 1, . . . , d
are determined by the relations [1, 2]

φκp′
rq (xr′) = δr1r′1 · · · δrdr′dδκ10 · · · δκd0, κ = κ1 · · ·κd, r = r1 · · · rd, (2)

∂|κ′|

∂xκ′φ
κp′
rq (x)

∣∣∣∣
x=xr′

= δr1r′1 · · · δrdr′dδκ1κ′
1
· · · δκdκ

′
d
,

∂|κ′|

∂xκ′ =
∂κ1

∂xκ1
1

· · · ∂
κd

∂xκd
d

.

These HIPs are calculated as a product of 1D HIPs φκsp′
rsq (xs),

φκp′
rq (x)=

d∏

s=1

φκsp′
rsq (xs). (3)

The values of the functions φκp′
rq (x) with their derivatives up to the order (κmax

r − 1),
i.e. κ = 0, . . . , κmax

r − 1, where κ = κs, r = rs and x = xs and κmax
r is referred to as the

multiplicity of the node xr, are determined by the expressions [1]

φκp′
rq (xr′) = δrr′δκ0,

dκ
′
φκp′
rq (x)

dxκ′

∣∣∣∣
x=x

r′

= δrr′δκκ′ . (4)

In particular case κmax
r = 1, the shape functions are determined only their values called by

Lagrange interpolation polynomials (LIPs). To calculate the 1D HIPs the auxiliary weight
function

wrq(x) =

p∏

r′=0,r′ ̸=r

(
x− xr′q

xrq − xr′q

)κmax
r′

, wrq(xrq) = 1 (5)

is used. The weight function derivatives can be presented as a product

dκwrq(x)

dxκ
= wrq(x)gκrq(x), (6)

where the factor gκrq(x) is calculated by means of the recurrence relations

gκrq(x) =
dgκ−1

rq (x)

dx
+ g1rq(x)gκ−1

rq (x), g0rq(x) = 1, g1rq(x) =

p∑

r′=0,r′ ̸=r

κmax
r′q

x− xr′q
. (7)

We will seek for the HIPs φκ
rq(x) in the following form:

φκp′
rq (x) = wrq(x)

κmax
r −1∑

κ′=0

aκ,κ
′

rq (x− xrq)
κ′
. (8)

Differentiating the function (8) by x at the point of xrq and using Eqs. (5) ,and (4) we arrive

at the recurrence relations for the coefficients aκ,κ
′

r

aκ,κ
′

rq =

{
0, κ′ < κ;

1

κ′!
, κ′ = κ;−

κ′−1∑

κ′′=κ

1

(κ′ − κ′′)!
gκ

′−κ′′
rq (xrq)a

κ,κ′′
rq , κ′ > κ. (9)
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Figure 1: The discrepancy δEm=Eh
m−Em, m=0, 1, ... of the computed eigenvalue Eh

m oscil-
lator problem from their exact values of Em (at R+): Em=21, 62, 103, ... for d=2 (left panel)
and Em=31, 73, 116, ... for d=3 (right panel), where the degeneracy multiplicity is indicated
by subscript. The results of the FEM for cubic elements are noted — a product of one-
dimensional LIPs (p=3, κmax=1) and HIPs (p=1, κmax=2) of the third order, while the
square or cube was divided into nd equal squares or cubes. The dimension of the matrix of
the algebraic problem is L×L.

3. Examples

As an example of the application of the algorithms described above, we present the results
of solving the BVP in x = (x1, ..., xd) ∈ Rd

(H−Em) Φm(x)≡
(
− 1

g0(x)

d∑

i,j=1

∂

∂xi

gij(x)
∂

∂xj

+V (x)−Em

)
Φm(x)=0. (10)

Assumed that g0(x) > 0, gji(x) = gij(x) and V (x) are real-valued functions, continuous
together with their generalized derivatives up to a given order in the domain x ∈ Ω̄ =
Ω∪ ∂Ω ∈ Rd with the piecewise continuous boundary S = ∂Ω, which provides the existence
of nontrivial solutions Φ(x) obeying the Neumann or Dirichlet boundary conditions [4].

This problem with oscillator potential V (x)=x2
1+...+x2

d has the known degenerate pure
discrete spectrum Em ≡ Ek1...kd and corresponding set of eigenfunctions Φm(x)≡Φk1...kd(x).
The 2D (d=2) and 3D (d=3) oscillator problems were solved in a square or cube [0, 7]d with
Neumann boundary conditions. The discrepancies δEm=Eh

m − Em, m=0, 1, . . . between the
numerical eigenvalues Eh

m of this problem and the exact values Em are shown in Fig. 1.
As is seen from the Fig. 1, the accuracy of the approximate FEM solution of the algebraic
eigenvalue problems with the same dimension L × L, calculated using the HIPs is higher
than the accuracy of the approximate FEM solution calculated using the LIPs.

In paper [8] the GCM FORTRAN program for solving the BVP for 5D nonlinear oscillator
of GCM Model of atomic nuclei with a pure discrete degenerated spectrum of eigenvalues of
energy EL

n =EL
1 <EL

2 , <EL
3 , <... has been created. It was done in irreducible representations

of the rotational group O(3) parameterized by the Euler angles x3, x4, x5 in the intrinsic
frame (IF). They are specify by a set of quantum numbers of the integer angular momentum
L=0, 2, 3, 4, ..., and its projections −L≤M≤L and 0 ≤ K ≤ L on the third axes of laboratory
and intrinsic frames and basis functions ΦL

K(x1, x2), x1=a0=β/
√

2 cos γ, x2=a2=β sin γ in IF.
This problem at any fixed L and M is reduced to a set of L/2+1 for even L, or (L−1)/2 for
odd L, of 2D BVP coupling by a three-diagonal matrix[9]. In Table 1 we compare our FEM
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Table 1: The eigenenergies EL
n (B) and EL

n (F) (in MeV) of nucleus 186Os at the param-
eter P3=0 (see [8]) calculated by expansion over a basis and by FEM with HIPs, p=1,
κmax=2, p′=3 in grid [β=0.08, 0.107, ..., 0.35]⊗[γ=0., π/30, ..., π/3] and potential energy sur-
face V (x1, x2) vs variables a0 and a2 (in fm), and β (in fm) and angle γ.

L n EL
n (B) EL

n (F)
0 1 −5.491 −5.493
2 1 −5.378 −5.381
2 2 −4.411 −4.414
3 1 −4.221 −4.222
4 1 −5.139 −5.157
4 2 −4.092 −4.109
4 3 −3.439 −3.453
5 1 −3.837 −3.857

results for a low part of the spectrum of energy EL
n of nucleus 186Os calculated by FEM

using HIPs with one calculated by expansion of desired solution over the basis functions
implemented in the GCM FORTRAN code [8]. There is a good agrement results obtained
by GCMFEM with HIPs and the expansion over the basis functions. Moreover, GCMFEM
is applicable to a more wide class of BVP (10).
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Abstract

In this report the possibility of obtaining a symbolic description of a parametric
family of synthesizing controls in nonlinear systems in the classical formulation, without
constraints on the values of control functions, is considered based on the use of the Padé
approximation technique and an approach to the synthesis of controls for nonlinear
systems using the formal application of the Kalman-Letov algorithm.

Keywords: Padé approximation, parametric family of synthesizing controls, small
parameter, asymptotic methods

1. Introduction

In typical applied problems the structure of mathematical models is often fixed and the
specifics of a control object are defined by the values of specific parameters that are deter-
mined in the process of tuning and trial operations. During the development of control laws
for dynamic systems, situations may arise when similar motions are actually the functions
of specific parameters of the model. Due to the emergence of numerous applied autonomous
controlled objects, it is relevant to find control laws in real time, and for this the symbolic
description of the possible solutions can be helpful.

We have proposed an approach based on the introduction of one or several parameters in
the system equations of motion. These parameters change over a certain interval and gener-
ate a family of typical motions. In the vicinity of the ends of the introduced interval small
parameters are introduced and, on their basis, asymptotic approximations are constructed
for the solutions of the corresponding matrix Riccati equations to determine the gains co-
efficients matrix in the closed-loop controls. Then, the technique of Padé approximations
(PA) [1] is used for an approximate symbolic description of the family of regulators based
on the asymptotic approximations. PAs often have good interpolation and extrapolation
properties and can serve as good initial approximations for various optimization algorithms
for nonlinear problems. Here we considers the possibility of obtaining a symbolic description
of a parametric family of synthesizing control laws in nonlinear control systems, without
constraints on control.

For constructing the control laws of the feedback type for nonlinear systems, we use
the SDRE (State Dependent Riccati Equation) approach [2] for the continuous systems
and the D-SDRE approach [3] for discrete systems. In these approaches the Kalman-Letov
algorithms for solving linear-quadratic optimal control problems are formally applied for
nonlinear control problems, where the equations of motion are preliminary transformed to
the form linear in state and control but with matrices that can be functions of state variables.
The criterion is presented in a quadratic form. In this report we continue our previous
works for continuous [4, 5, 6] and discrete [7, 8] control systems on the PA technique for
constructing families of feedback controls in nonlinear systems. In these papers we have
introduced a matrix Padé approximation of the Riccati equation solution for continuous and
discrete problems with a small parameter that varied on the semi-axis. Here we develop
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this approach for a new class of discrete control systems, where the possibility of the Padé
approximation existence on a finite parameter variation interval is emphasized.

2. Approximate symbolic representation of feedback controls

Let the system be

x(t + 1) = εA(x)x(t) + B(x)u(t),
x(0) = x0, x(t) ∈ X ⊂ Rn, u(t) ∈ Rr, t = 0, 1, 2... , α1 ≤ ε ≤ α2,

(1)

where ε is a positive parameter, A(x) ∈ Rn×n, B(x) ∈ Rn×r, X ⊂ Rn is a given bounded
closed state space subset, moreover, the trajectories of the closed-loop system exist and are
unique in X for all admissible t = 0, 1, 2, . . .

Here εA(x), B(x) is a controllable pair ∀x ∈ X, α1 ≤ ε ≤ α2.
The stabilizing control u(x, ε) is found using the auxiliary optimal control problem with

the quality criterion

I(u) =
1

2

∞∑

t=0

(xTQ(x, ε)x + uTR0u)→ min, (2)

where Q(x, ε) ∈ Rn×n, R0 ∈ Rr×r > 0, Q(x, ε) > 0. Criterion matrices (2) are selected during
the regulator construction process to ensure the stabilization of (1). Here εA(x),Q1/2(x, ε)
is an observable pair ∀x ∈ X, α1 ≤ ε ≤ α2.

The control function is founded in the form of nonlinear state feedback as in the D-SDRE
approach [3]

u(x, ε) = −ε
[
R0 + B(x(t))TP (x(t))B(x(t))

]−1
B(x(t))TP (x(t))A(x(t))x(t), (3)

where P (x(t)) matrix is the solution of the corresponding discrete algebraic state-dependent
Riccati equation (D-SDRE).

The proposed algorithm for nonlinear stabilizing regulator construction for (1), (2) is
based on the approximate solution of the D-SDRE

ε2AT (x)PA(x)− P − ε2AT (x, µ)PB(x, µ)R̃−1(x, ε)BT (x)PA(x) + Q(x, ε) = 0,

where R̃(x, ε) = (R0 + BT (x)PB(x)) is invertible ∀x ∈ X, α1 ≤ ε ≤ α2.
Here the asymptotics in the vicinity of two boundary points α1, α2 of the parameter

variation interval are used. In the neighborhood of α1, the asymptotic series expansion by
small parameter η = ε − α1 is constructed, which approximates matrix P (x, ε) for ε in the
right neighborhood of point α1, and a positive parameter µ = α2 − ε > 0 is introduced to
construct the expansion of matrix P (x, ε) = P (x, α2 − µ) in the left neighborhood of the
point ε = α2.

As in [6] under the conditions of the existence of Riccati equation solution and
the terms of the asymptotic approximations PR

2 (x, η),PL
2 (x, µ) and the controllability

and observability of matrix pairs (α2A(x), B(x)), (α2A(x), Q0 + α2Q1(x) + α2
2Q2(x)) and

(α1A(x), B(x)), (α1A(x), Q0 +α1Q1(x) +α2
1Q2(x)) the asymptotic estimates for the remain-

der of the second-order asymptotics can be identified for sufficiently small value of η0 > 0
and µ0 > 0.

These two approximations are combined into one symbolic construction using a two-
point Pade approximation [1] of order [2/2]. For the Pade approximation construction we
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introduce the matrix Pade approximation of [2/2] order of the solution of the equation (3)
in the form

PA[2/2] (x, ε) =
(
M0(x) + εM1(x) + ε2M2(x)

)
×
(
E + εN1(x) + ε2N2(x)

)−1
, (4)

where En×n− identity matrix. The Riccati equation (3) solution is found as in the form

K[2/2] (x, ε) =
(
PAT

[2/2] (x, ε) + PA[2/2] (x, ε)
)
/2.

Algorithm
1. The asymptotic approximation PR

2 (x, η) = PR
0 (x) + ηPR

1 (x) + η2PR
2 (x) for ε in the

right neighborhood of point α1 is constructed, ε = (α1 + η), η → 0.
2. The asymptotic approximation PL

2 (x, µ) = PL
0 (x)+µPL

1 (x)+µ2PL
2 (x) for ε in the left

neighborhood of point α2 is constructed, ε = α2 − µ, µ→ 0.
3. Two-point Pade approximation PA[2/2] (x, ε) of order [2/2] is constructed.

The coefficients of the two-point Pade approximation are found by simultaneously
equating the representation (4) with PR

2 (x, η) and PL
2 (x, µ), that is PA[2/2] (x, ε) =

PR
0 (x) + (ε− α1)P

R
1 (x) + (ε− α1)

2PR
2 (x); PA[2/2] (x, ε) = PL

0 (x) + (α2 − ε)PL
1 (x) + (α2 −

ε)2PL
2 (x), from which we get the following solution




M0

M1

M2

N1

N2




=




E 0 0 0 0
0 E 0 −β1 0
0 E 0 −β2 0
0 0 E −(−PL

1 − 2α2P
L
2 ) −β1

0 0 E −(PR
1 − 2α1P

R
2 ) −β2




−1

×




β2

(−PL
1 − 2α2P

L
2 )

(PR
1 − 2α1P

R
2 )

PL
2

PR
2




,

where β1 = PL
0 + α2P

L
1 + α2

2P
L
2 , β2 = PR

0 − α1P
R
1 + α2

1P
R
2 . As in [8] several additional

correction parameters can be introduced in the Pade matrix as scalar multipliers that are
then selected using the quality criterion (2) optimization.

3. Numerical example

System and criterion matrices are A(x) = ε

(
1 0.1
1 0.5 + x1

)
, B(x) =

(
0

0.5

)
, Q0 =

(
10 1
1 10

)
, Q1(x) = Q2(x) =

(
11 + 0.01x2

1 0
0 11 + 0.01x2

2

)
, x0 = [1.8; 0.1], α1 = 1, α2 =

3. Fig. 1 shows the criterion values (2) along the trajectories of a closed-loop system with
the PA[2/2] (x, ε) for different parameter values.

4. Conclusion

A set of asymptotic expansions with respect to the introduced small parameter can not only
serve as a basis for approximating various functions on parameter variation intervals based
on the PA, but also serve as a kind of conditional basis for constructing efficient numerical
algorithms.

Asymptotic approximations of a certain order and the corrresponding PA, reflect a qual-
itative picture of the exact solution in some areas of parameter variation and can often serve
as initial approximations in multi-extremal nonlinear programming problems that appear
during the solution of complex nonlinear problems. The use of asymptotic approximations
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Figure 1: Criterion values (2) along the trajectories of a closed-loop system for different
parameter values

for feedback controls construction helps to reduce the number of calculations by several or-
ders of magnitude while achieving the same accuracy. This is also due to the fact that the
PA structure suggests directions for its modification with the help of additional optimization
procedures to improve its quality.
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Abstract

The issues of using computer algebra tools for modeling of dynamic systems whose
behavior can be described by one-step processes are considered. An approach based
on the representation of interactions between the elements of the system under study
in the form of a graph is developed. This approach makes it possible, as a result of
transformations, to obtain a symbolic representation of the differential equations of
the model in both the stochastic and deterministic cases. The results can be used in
solving problems of constructing and researching models of natural science.

Keywords: one-step processes, scheme of interactions,computer algebra, dynamic
systems, Python

1. Introduction

The development and application of computer algebra tools for symbolic calcula-
tions in solving modeling problems of nonlinear dynamical systems are relevant scientific
areas [1, 2]. Due to the variety of systems with one-step processes, it is of particular interest
to develop a tool for obtaining a formalized representation of dynamic models based on a
general description of the principles of interaction between the elements of these systems.

A method for constructing stochastic self-consistent models was developed in [3, 4, 5].
The method is based on the combinatorial methodology [6, 7]. This method allows to
make the transition to a stochastic model, an important stage of the study of which is the
assessment of the introduction of stochastics on the qualitative properties of the model.

The results of the development of a software package for modeling dynamic systems
whose behavior can be described by one-stage processes are presented in [8]. Examples of
modeling population dynamics systems are considered. The software package allows you to
obtain the corresponding stochastic model in symbolic form, as well as to conduct a detailed
analysis of the model. An important aspect of software development is the application of
computer algebra methods in problems of model analysis and control synthesis. This article
is a continuation of [8]. Here we analyze the possibilities of a preliminary description of
the system taking into account the modernization and further unification of the software
package.

2. Models construction and symbolic calculations

A large class of systems can be described using multidimensional one-step processes
based on graph representation (Fig. 1). Transitions from one state to another correspond to
pairwise interactions between the elements of the system with the corresponding components.
By λi, µi, δi, γi we denote transition intensities. For a system that can be described in a
similar way, we apply the method of constructing self-consistent stochastic models [3, 4, 5].
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Figure 1: Transition graph of one-step process

This paper presents a software implementation of the algorithm for applying this method
in the n-dimensional case, where n is the dimension of the system. The PopModel class is
used to the model construction. Calling the PopModel(n) constructor creates such a class
object which is a formal model of a system with pairwise interactions.

The main methods of the PopModel class are adder() and display infos(). The
adder(self,type int, id pop 1, id pop 2, coef=0) method is used to add equations
of the interaction scheme. Here type int is interaction type, coef is interaction coefficients,
id pop 1 and id pop 2 corresponds to the indices of elements in the system state vector.
The display infos(self,model,X,coef) method is intended for symbolic display of the
interaction scheme.

The universal module for obtaining the coefficients of the Fokker–Planck equation from
the interaction scheme is described in detail in [9]. The specified module is implemented
using the computer algebra tools of the SymPy library. The transformation is performed as
a sequence of operations on vector and matrix data.

The following are accepted as input data:

a) matrices M and N states of the system before and after interaction;

b) vector X of the system state;

c) vectors K plus and K minus containing the coefficients of interaction in the system.

As a result, we obtain a symbolic form of the coefficients for the Fokker–Planck equation.
The main functions of the module are drift vector() and diffusion matrix(). The first
function is designed to obtain a vector of demolitions. The demolition vector allows to get a
deterministic description of the system. The second function is designed to obtain a diffusion
matrix for assess the effect of stochastics in system behavior.

3. Example of the algorithm implementation for a model
construction

To illustrate the capabilities of the software package, we consider an example with con-
structing a classical three-dimensional epidemic model (SIR model). In this system, there
are three states of individuals: S – susceptible, I – infected, R – recovered (or immune).
The following ODE system describes this model:

dS

dt
= −βSI, dI

dt
= βSI − γI,

dR

dt
= γI. (1)
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where β is infection rate, γ is recovery rate.
At the first stage, the vector of the system states is set in symbolic form:X =

sp.Matrix([’s’, ’i’, ’r’]) and an object of the class is defined: model sir =

PopModel(3). Then interactions are added to the model:

model_sir.adder(4,1,2,"a")

model_sir.adder(7,2,3,"b")

In the above description, the first line describes the infection process, and the second line
describes the recovery process. Using the display infos() method in the Jupiter interactive
shell allows to display the interaction scheme (Fig. 2).

Figure 2: The output of the display infos() method

Figure 3 shows the derivation of the functions for obtaining the coefficients for the Fokker–
Planck equation for the SIR model.

Figure 3: The output of the drift vector() and diffusion matrix() functions

The result is the construction of an epidemiological SIR model in both stochastic and
deterministic cases. After constructing the model, the remaining modules of the software
package can be used to study the system, for example, the module for adding and investi-
gating control, the module for symbolic and numerical obtaining of the system stationary
states, the module for obtaining numerical solutions.

4. Conclusion

Thus, the approach to constructing models based on the description of interactions in the
form of a graph makes it possible to take into account additional factors during modeling,
effectively correct the model and perform comparative analysis based on visualization of
solutions of differential equations.
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It should be noted that the developed software package allows for further expansion and
improvement in the direction of constructing of non-stationary models of one-step processes.
This direction is connected with the need to study time-dependent parameters when solving
problems of population dynamics and other problems of natural science. The considered
approach allows such an extension based on transitions in interaction schemes from constant
parameters to time functions. The software implementation is carried out by means of the
SymPy library and has a number of features in comparison with the modeling of stationary
one-step processes.

A promising direction for the development of the work is the use of the symbolic regres-
sion method to build models of paired interactions taking into account control. This method
allows the construction of a control function in an analytical form. To implement the sym-
bolic regression method, it is supposed to use the PySR library of the Python programming
language.
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Abstract

A symbolic-numerical algorithm for solving the problem of waveguiding propaga-
tion of polarized light in irregular waveguides is considered. Within the framework of
the adiabatic waveguide modes (AWM) model, the system of Maxwell’s equations is
reduced to a system of four ordinary differential equations and two algebraic equations
for six components of the electromagnetic field in the zeroth approximation and the
same number of equations in the first approximation. The paper describes a procedure
for the symbolic reduction of Maxwell’s equations to systems in the zeroth and first
approximations of the AWM model. The steps of the symbolic-numerical method for
solving the waveguide problem are described.

Keywords: smoothly irregular integrated-optical multilayer waveguides, eigen-
value and eigenvector problems, single-mode propagation of adiabatic waveguide modes

1. Introduction

We consider the guided propagation of monochromatic electromagnetic radiation in the
optical range through thin–film integrated optical structures. Such structures are complex
waveguides formed by applying additional guiding layers having various (smoothly irregu-
lar) geometric configurations onto a flat substrate. By a thin–film waveguide we mean a
waveguide whose guiding layer thickness is comparable to the wavelength of the propagating
radiation.

Integral optical structures are called smoothly irregular if the geometry of their additional

guiding layer satisfies the inequalities
∣∣∣∂h∂y
∣∣∣ ,
∣∣∂h
∂z

∣∣≪ 1.

The propagation of monochromatic polarized electromagnetic radiation through inte-
grated optical waveguides is described by Maxwell’s equations.

In the absence of foreign charges and currents, Maxwell’s scalar equations follow from
the vector equations, and the boundary conditions for normal components follow from the
boundary conditions for the tangential components of the electromagnetic field [1]. In Carte-
sian coordinates related to the geometry of the substrate (or the three–layer planar dielectric
waveguide), Maxwell’s equations have the form [1, 2, 3, 4]

∂Hz

∂y
− ∂Hy

∂z
=

ε

c

∂Ex

∂t
,
∂Ez

∂y
− ∂Ey

∂z
= −µ

c

∂Hx

∂t
,

∂Hx

∂z
− ∂Hz

∂x
=

ε

c

∂Ey

∂t
,
∂Ex

∂z
− ∂Ez

∂x
= −µ

c

∂Hy

∂t
,

∂Hy

∂x
− ∂Hx

∂y
=

ε

c

∂Ez

∂t
,
∂Ey

∂x
− ∂Ex

∂y
= −µ

c

∂Hz

∂t
.

(1)
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2. Method

To construct a model of adiabatic waveguide modes (AWMs), we represent the solutions
of Eqs. (1) in the form of locally normal guided modes of a locally planar reference waveguide
(see [5, 6, 7]), which in the asymptotic expansion method take the form:

E⃗ (x; y, z, t) =
∞∑

s=0

E⃗s (x; y, z)

(−iω)γ+s exp {iωt− ik0φ (y, z)} , (2)

H⃗ (x; y, z, t) =
∞∑

s=0

H⃗s (x; y, z)

(−iω)γ+s exp {iωt− ik0φ (y, z)} . (3)

Using the asymptotic expansion (1), (2) in terms of dimensional small parameter ω−1, we
obtain in computer algebra system Maple (CAS Maple) a system of homogeneous equations
in the zeroth approximation [8, 9] and a system of first–order equations:

−ik0
∂φ

∂y

Hz
1

(−iω)
+

∂Hz
0

∂y
+ ik0

∂φ

∂z

Hy
1

(−iω)
− ∂Hy

0

∂z
= ik0ε

Ex
1

(−iω)
, (4)

−ik0
∂φ

∂z

Hx
1

(−iω)
+

∂Hx
0

∂z
− ∂Hz

1

∂x

1

(−iω)
= ik0ε

Ey
1

(−iω)
, (5)

∂Hy
1

∂x

1

(−iω)
+ ik0

∂φ

∂y

Hx
1

(−iω)
− ∂Hx

0

∂y
= ik0ε

Ez
1

(−iω)
, (6)

−ik0
∂φ

∂y

Ez
1

(−iω)
+

∂Ez
0

∂y
+ ik0

∂φ

∂z

Ey
1

(−iω)
− ∂Ey

0

∂z
= −ik0µ

Hx
1

(−iω)
, (7)

−ik0
∂φ

∂z

Ex
1

(−iω)
+

∂Ex
0

∂z
− ∂Ez

1

∂x

1

(−iω)
= −ik0µ

Hy
1

(−iω)
, (8)

∂Ey
1

∂x

1

(−iω)
+ ik0

∂φ

∂y

Ex
1

(−iω)
− ∂Ex

0

∂y
= −ik0µ

Hz
1

(−iω)
. (9)

To construct the system of first–order ODEs, it is first necessary to solve the homoge-
neous system of zero–order ODEs. Then for each zero–order solution we write down an
inhomogeneous system of first–order ODEs.

The system of homogeneous ODEs for the zero–order contributions to the adiabatic
guided modes in a three–layer thin–film waveguide reduces symbolically to a homogeneous
system of linear algebraic equations (SLAE) of the following form [8, 9]

M̂ (β0 (z)) A⃗0 (β0 (z)) = 0⃗. (10)

The solvability condition for SLAE (10) is

detM̂ (β0 (z)) = 0 (11)

at any z. The nonlinear equation (11) is formulated in symbolic form in CAS Maple and
solved numerically by means of numerical methods, implemented in Maple.

The system of inhomogeneous ODEs for the first–order contributions to AWMs, obtained
similar to the approach [8, 9], contains in its right–hand side the analytical expressions

depending on the derivatives ∂
∂z

of A⃗0 (β0 (z)) and β0 (z). Therefore, to write down the
concrete dependence of the right–hand side on the solutions of Eqs. (10) and (11), these
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solutions should be obtained in the class of continuously differentiable functions. A method
to find such zero–order solutions was proposed in Ref. [9].

After using symbolic calculations to get explicit expressions for A⃗0 (β0 (z)) depending on
the numerical solution β0 (z), we can reduce the system of inhomogeneous ODEs for the
first–order contributions to a system of inhomogeneous SLAE

M̂ (β1 (z)) A⃗1 (β1 (z)) = F⃗

(
∂β0

∂z
,
∂A⃗0

∂z

)
(12)

with the same symbolically defined matrix as for zero–order contributions [8], but depending
on the other parameter β1 (z). As before, in this case it is necessary to require the solvability
of the inhomogeneous SLAE (12).

Having obtained the solutions of the zero–order and first–order equations for the AWM
model in the closed form, we finally can use them to express the electromagnetic fields as

E⃗ (x; y, z) = E⃗0 (x; y, z) +
i

ω
E⃗1 (x; y, z) , (13)

H⃗ (x; y, z) = H⃗0 (x; y, z) +
i

ω
H⃗1 (x; y, z) . (14)
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Abstract

Using the example of a polynomial resonance case of the Bautin system with pa-
rameters, we have written out the conditions for local integrability near stationary
points and found restrictions on the parameters under which these conditions are sat-
isfied. The resulting constraint is written as a system of algebraic equations for the
ODE parameters. It is shown that for parameter values that are solutions of such an
algebraic system, the ODE turns out to be integrable.

In this way we have found several cases of integrability. We propose a heuristic
method that allows one to a priory determine the cases of integrability of an au-
tonomous ODE with a polynomial right-hand side. The paper has an experimental
character.

Keywords: resonance normal form, integrability, Bautin system, computer algebra

1. Introduction

We use an approach based on local analysis. It uses the resonant normal form computed
near stationary points [1, 2]. In the paper [3] we proposed a method for searching for
integrable cases based on determining the parameter values for which the dynamical system
is locally integrable at all stationary points simultaneously. Because at regular points, local
integrability always holds, so such a requirement is equivalent to the requirement of local
integrability at every point of the domain under consideration.

Note that the integrability of an autonomous planar system implies the solvability of the
system in quadratures.

Problem

We will check our method on the example of a resonance case of the Bautin system [4]

ẋ = αx + βy + a1x
2 + a2x y + a3y

2,
ẏ = γx− δy + b1x

2 + b2x y + b3y
2,

(1)

here x and y are functions in time and α, β, γ, δ, a1, a2, a3, b1, b2, b3 are parameters. We
consider here the resonance case with a center point at the origin, that is β = 1, α = δ =
0, γ = −1, where M is non-negative integer. Each value of M corresponds to the resonance
M : 1.

The problem is to find integrable cases of system (1).

2. Condition of Local Integrability

We calculated the normal form for resonances [1:1] by the MATHEMATICA program
[5] till the terms of eight order and got the necessary condition of local integrability at the
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origin as three algebraic equations on the parameters. The first couple of these equations are

a1(a2 − 2b1) + a2a3 + 2a3b3 − b1b2 − b2b3 = 0,
4a31(5a2 − 10b1 − 9b3) + a21(a2(40a3 − b2)− 4a3(b1 + 5b3) + 2b2(9b1 + 5b3))+
a1(5a

3
2 − a22(9b1 + 13b3) + a2(40a23 + 18a3b2 − 18b21 − 8b1b3 − b22 − 10b23)+

20a23(b1 + 2b3) + 8a3b2(b1 + b3)− 40b31 − 40b21b3 + 9b1b
2
2 + 20b1b

2
3 + 13b22b3+

36b33) + 5a32a3 + a22(b2(b1 + b3)− a3(5b1 + 9b3)) + a2(20a33 + 19a23b2−
a3(10b21 + 8b1b3 + b22 + 18b23) + b2(−19b21 − 18b1b3 + b23)) + 40a33b3+
10a23b1b2 + 18a23b2b3 − 20a3b

2
1b3 + 5a3b1b

2
2 + 4a3b1b

2
3 + 9a3b

2
2b3 + 40a3b

3
3−

20b31b2 − 40b21b2b3 − 5b1b
3
2 − 40b1b2b

2
3 − 5b32b3 − 20b2b

3
3 = 0.

(2)

There are 7 solutions of that system. These solutions are good candidates for integrabil-
ity cases. We found the corresponding first integrals by the MATHMATICA-11 procedure
DSolve. At all solutions of (2) system (1) is integrable.

Results

We have got the first integrals for these cases. That is these cases are integrable. The
are:

1) ẋ = y + a2xy,
ẏ = −x + b1x

2 + b3y
2,

I(x, y) = (a2x + 1)
− 2b3

a2 (b3x(2(a2 + b1 − b3)− b1(a2 − 2b3)x)+
b3(a2 − b3)(a2 − 2b3)y

2 + a2 + b1 − b3);

2) ẋ = y + a1x
2 + a2xy − a1y

2,
ẏ = −x + b1x

2 − 2a1xy − 1
2
a2y

2,
I(x, y) = −6a1x

2y + 2a1y
3 − 3y2(a2x + 1) + x2(2b1x− 3);

3) ẋ = y + a1x
2 + a2xy − a1y

2,
ẏ = −x + 1

2
a2x

2 − 2a1xy − 1
2
a2y

2,
I(x, y) = x2(2a1y + 1)− 2

3
a1y

3 + a2xy
2 − 1

3
a2x

3 + y2;

4) ẋ = y + a3y
2,

ẏ = −x + 2a3xy,
I(x, y) = 2a3y(a3y + 3) + 3 log(1− 2a3y)− 4a23x

2;

5) ẋ = y + a2xy +
(b22−a22)y

2

2b2
,

ẏ = −x + b2xy +
(b22−a22)y

2

2a2
,

I(x, y) = a2(log(−2a2b2y(a2 + b22x) + 2a2(a2 + b22x)+
b22(a2 − b2)(a2 + b2)y

2) + b2y)− b22x;
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6) ẋ = y + a2xy − b2y
2,

ẏ = −x− a2x
2 + b2xy,

I(x, y) = x2 + y2;

7) ẋ = y + a1x
2 + a2xy − a1y

2,
ẏ = −x + b1x

2 − 2a1xy − b1y
2,

I(x, y) =
∫

x−b1x2+2a1xy+b1y2

R(x,y)
dx, where

R(x, y) = −1− x(−3a21x + a2(−1 + b1x)2 + b1(−2 + x(b1 + 2a21x)))+
a1x(−a2 + 2b1 + 6a21x + 3a2b1x)y + (b1(a2 + b1)(1 + a2x)+
a21(3 + 2(a2 + b1)x))y2 − a1(2a

2
1 + a2b1)y

3.

Conclusions

Based on the hypothesis about the connection between global and local integrability, 7
integrable cases of the resonant case of the Bautin system are algorithmically obtained.

We have shown that for a plane autonomous system of ODEs with polynomial right-hand
sides, one can write down a system of algebraic equations with respect to the parameters of
the system, the solutions of which will correspond to the integrable cases of this system of
ODEs.
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Abstract

Finite quasigroups are becoming a popular platform for the design of cryptographic
primitives. Quasigroup affinity is one of the crucial properties in the framework of
cryptography. In our paper we propose an optimized procedure that decides affinity
with the complexity O

(
n2 log n

)
, where n is the quasigroup order, and present the

results of experiments with the software implementation.

Keywords: finite quasigroup, affinity

1. Introduction

Finite quasigroups are becoming a popular platform for the design of cryptographic prim-
itives (see, e.g., the reviews [1, 2, 3]). The framework of cryptographic applications imposes
a number of restrictions on suitable quasigroups. Non-affinity is one of such restrictions.
Deciding solvability of systems of equations over an affine quasigroup is polynomial, whereas
transition to non-affine quasigroups makes the problem NP-complete [4], thus algebraic at-
tacks against systems based on non-affine quasigroups are much less feasible. In [5] the
authors proposed an algorithm that decides affinity of quasigroups specified by Cayley ta-
bles with time complexity which is cubic in the quasigroup order; efficiency of a practical
implementation of this algorithm was discussed in [6]. We propose an optimization of the
algorithm that allows reducing complexity to O (n2 log n), where n is the quasigroup order,
and present the results of experiments with the software implementation of the optimized
algorithm.

The rest of the paper is organized as follows. In Section 2 we give basic definitions.
Section 3 is devoted to the description of our algorithm. In Section 4 we list the results of
numerical experiments. Section 5 is the conclusion.

2. Basic definitions

Definition 1. A finite quasigroup is a pair (Q, f), where Q is a finite set, f : Q×Q→ Q is
such that for any a, b ∈ Q the equations f(x, a) = b and f(a, y) = b are uniquely solvable.

For the sake of brevity the word “finite” will be omitted.

Without loss of generality we assume that Q = {0, . . . , n − 1} for some n ∈ N. A
quasigroup can be naturally represented by its Cayley table, i.e., an n× n matrix with rows
and columns enumerated starting from 0 and such that the element in the ith row and the
jth column equals f(i, j). If the table is stored in memory, then evaluation of the quasigroup
operation consists in a single memory lookup.

Definition 2. A quasigroup (Q, f) is affine if there exists an Abelian group (Q,+), auto-
morphisms α, β of this group and a constant c ∈ Q such that f(x, y) ≡ α(x) + β(y) + c.
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Assume that (Q, g) is a finite set endowed with a binary operation (i.e., a magma),
Q′ ⊆ Q. Then g(Q′) denotes the set of all elements of Q that can be obtained by iterative
application of the operation g to the elements of Q′. We say that Q′ is a generator with
respect to g if g(Q′) = Q.

In complexity analysis we assume that elementary operations are reading and writing data
from/to a cell in memory (in particular, evaluation of a quasigroup operation is elementary)
and arithmetic operations in Zn. The base of logarithms equals 2.

3. Algorithm description

In [5] the authors proposed the following algorithm for deciding affinity of a quasigroup
(Q, f) specified by the Cayley table L.

1. reorder the rows and columns of L so that the first row

and the first column specify the identical permutation

2. check whether the resulting table L’ is symmetric

(i.e., the operation is commutative)

if not, return ‘‘non-affine’’

3. check whether the operation specified by L’ is associative

if not, return ‘‘non-affine’’

4. set A equal to the column of L starting with 0

5. set B equal to the row of L table starting with 0

6. if A or B are not automorphisms with respect to the operation

specified by L’

return ’’non-affine’’

7. set C equal to the upper left element of L

8. check that the identity f(x,y) = A(x) + B(y) + C holds

if it does then return ‘‘affine’’

else return ‘‘non-affine’’

All steps of this algorithm except associativity test can be straightforwardly implemented
with complexity that is at most quadratic in the quasigroup order. Straightforward asso-
ciativity test used in [5] and slightly optimized in [6] has cubic complexity. In [7] Tarjan
noticed that associativity check for a magma (Q, g) can be reduced to verifying the equality
g(g(x, a), y) = g(x, g(a, y)) for all x, y ∈ Q and all a ∈ Q′, where Q′ is a generator with re-
spect to g. In can be easily shown that if (Q, g) is a quasigroup, then there exists a generator
of the size at most log |Q| + 1 (see, e.g., [8, Lemma 1]) that can be found with quadratic
complexity. Thus replacing step 3 with the block

3.1. find a generator G of the quasigroup

3.2. for all x,y from Q and a from G check that

f (f (x, a), y) = f (x, f (a, y))

if not, return ‘‘non-affine’’

yields the following fact.

Theorem 1. The modified algorithm decides whether a quasigroup is affine with the com-
plexity O (|Q|2 log |Q|).
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Consider a group Zk
2 for some k ∈ N. If we take a block of the Cayley table formed by

rows number 2s, 2s + 1 and columns number 2t, 2t + 1 for some s, t, it will obviously have
the form

2s⊕ 2t 2s⊕ 2t⊕ 1
2s⊕ 2t⊕ 1 2s⊕ 2t

Swapping the rows of this block inside the Cayley table yields the Cayley table of a non-
associative quasigroup operation. The blocks for different values of s, t obviously do not
intersect, so deciding non-affinity requires analysis of all such blocks, thus we obtain a
quadratic lower bound on algorithm complexity.

4. Experimental results

We implemented the original and the optimized algorithm in C++ programming lan-
guage and applied these implementations to two series of quasigroups: random (uniformly
distributed) quasigroups generated using the method proposed by Jacobson and Matthews
in [9] and affine quasigroups obtained from (Zn,+) by imposing automorphisms on x and y
and adding a constant.

All experiments were performed on a workstation with CPU Intel(R) Core(TM) i5-
11400H @2.70GHz and 8Gb of RAM.

Interestingly in the case of random quasigroups the optimization did not give any speedup
(see Fig. 1). It can be explained by the fact that almost all quasigroups are known to be
non-affine (and non-isotopic to affine quasigroups; see, e.g. [10]), and the decision is made
at an early stage: either commutativity test fails or a non-associative triple is found quickly.
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Figure 1: Running time of the original version (left) and the optimized version (right) for
random (uniformly distributed) quasigroups.

In the case of affine quasigroups algorithm optimization lead to an essential speedup (see
Fig. 2; note the difference in the scale of y axes).

5. Conclusion

Non-affinity is a property of finite quasigroups which plays a crucial role in cryptographic
applications. We proposed an optimization that allowed us to reduce affinity decision com-
plexity from O (n3) to O (n2 log n), where n is quasigroup order. Computational experiments
showed that the optimization does not essentially affect running time for random quasigroups
while providing an essential speedup for affine quasigroups.

The authors thank A.V. Vasilev and I.N. Ponomarenko for the idea of the optimization.
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Figure 2: Running time of the original version (left) and the optimized version (right) for
affine quasigroups.
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Abstract

Computer graphics uses a model of projective space to display three-dimensional
scenes. The paper presents the basics of the analytic projective geometry of the space
RP3 in terms of Plücker coordinates. The interpretation of projective space and Plücker
coordinates in terms of geometric algebra is also presented.

Keywords: projective geometry, Plücker coordinates, computer graphics, geomet-
ric algebra

1. Introduction

In this paper, we consider the description of the projective space RP3 in terms of geomet-
ric algebra. The choice of this particular model of projective space is due to its important
practical significance, since it is used in computer graphics, robotics and machine vision.

The main task of computer graphics can be formulated as a plausible simulation of the
three-dimensional world surrounding a person. Therefore, naturally, all the developments
in this field from fine art, architecture and engineering migrated to computer graphics. In
art, the concept of perspective has emerged since ancient times as a means of conveying
the volume of the surrounding world in a flat drawing. The mathematical description of
perspective was formulated within the framework of projective geometry, the beginning of
which was laid by J. Desargues, M. Chasles, K. von Staudt, Y. Plücker, etc [1].

The application of the ideas of projective geometry makes it possible to avoid exceptional
cases in calculations with geometric primitives (points, lines and planes). So, for example,
in a projective space, all planes intersect along some straight line, which can be proper (an
ordinary finite straight line) or improper (an ideal straight line located at infinity). With
the correct organization of data structures in the program code, all exceptional cases can be
efficiently handled.

This paper summarizes the classical approach to analytic projective geometry based on
homogeneous coordinates. Homogeneous coordinates for points, Plücker coordinates for a
straight line and for a plane are introduced. The main emphasis is on the Plücker coordinates
and different approaches to their description. The following is an interpretation of projective
geometry in terms of geometric algebra. Interestingly, there are two approaches to this
description. In conclusion, a brief overview of a number of open libraries for symbolic and
numerical calculations for Python and Julia languages is made.

The report also uses illustrations created programmatically using the Asymptote lan-
guage. These results are valuable because they make possible to visually check the correct-
ness of formulas.
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2. Analytic projective geometry of space RP3

In the course of studying and presenting projective geometry, a synthetic approach is
widely used. This is justified, since there are no metric concepts in projective geometry and
the purity of the presentation of the theory dictates the requirements not to involve them in
theoretical research. However, there is no such restriction in applied problems and the RP3

model of a three-dimensional projective space is used, for modeling which a four-dimensional
Cartesian space is used [2].

The use of homogeneous coordinates and homogeneous equations for planes is well known.
Homogeneous coordinates are described in one way or another in many textbooks on the
mathematical foundations of machine graphics, and the homogeneous equation of the plane
is the general equation of the plane, which is studied in all standard courses of analytical
geometry. However, the homogeneous description of the straight line is much worse known.
To define a straight line in a homogeneous form, the Plücker coordinates are used, within
which the straight line is described by six parameters. In our presentation, this is the
guiding vector of the line v = (vx, vy, vz)

T and the moment of the line m = (mx,my,mz)
T .

The moment of the line is defined as m = p × v, where p is an arbitrary point of the line,
and × is a vector product. Interestingly, the moment of a straight line does not depend on
the choice of a point of a straight line and is the same for any point lying on a straight line.
From the definition of the vector product, the relation (v,m) = 0 naturally arises, which
is called the Plücker relation and imposes on the six parameters (vx, vy, vz,mx,my,mz) a
second-order ratio, limiting the number of degrees of freedom when choosing parameters
from six to four.

It should be noted that such a method of introducing Plücker coordinates was developed
in the theory of screw calculus, and a more classical method consists in introducing param-
eters pij, defined through determinants and written as a skew-symmetric matrix 4× 4. The
approach we use lends itself better to geometric interpretation and makes it easier to draw
analogies with geometric algebra.

Using Plücker coordinates, homogeneous coordinates for points and a homogeneous equa-
tion for a plane, allows you to reduce all problems with points, lines and planes to an an-
alytical form. If you enter notation for points (p | w) = (x : y : z : w), for straight lines
{v | m} and for planes [n | d], then the tasks of finding the mutual position are reduced to
a set of capacious formulas covering all possible cases [3].

3. Projective geometry in terms of geometric algebra

The use of concepts from the Grassmann algebra (outer product, p-vectors) and Clifford
algebra (geometric product, multivectors) allows us to significantly generalize the formulas
of analytic projective geometry and give them a more understandable interpretation. The
principle of duality gets a clearer interpretation, and with the introduction of additional
dual operations, such as the anti-external product ∨, it becomes possible to record geometric
constructions, such as the intersection of a straight line and a plane or drawing through a
straight line and a point of the plane, in the form of algebraic operations.

To do this, consider a vector space with a basis of the following form: ⟨e1, e2, e3, e4⟩, where
the scalar product is (ei, ej) = δij for i, j = 1, 2, 3 and (e4, e4) = 0. Within this framework,
it is possible to construct an external algebra of p-vectors, where p = 1, 2, 3, 4. Vectors
(1-vectors) are naturally interpreted as points and have 4 components, 2-vectors (bivectors)
are interpreted as planes, have 6 components corresponding to Plücker coordinates, and 3-
vectors correspond to planes and their four components exactly correspond to homogeneous
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coordinates nx : ny : ny : d.

Consider the basis of bivectors, which consists of six elements of the following form:

e23 = e2 ∧ e3, e31 = e3 ∧ e1, e12 = e1 ∧ e2,

e43 = e4 ∧ e3, e42 = e4 ∧ e2, e41 = e4 ∧ e1.

Any bivector in this basis takes the following form: L = vxe41 + vye42 + vze43 + mxe23 +
mye31 + mze12, where the components are (vx, vy, vz) correspond to the guiding vector of
the straight line, and (mx,my,mz)— to the moment of the straight line. In order for this
correspondence to be carried out up to the sign, the basis vectors are deliberately taken in
the specified order, and not in ascending order of indices, as is usually customary.

This correspondence is easy to check if we take two points in the form of p = pxe1 +
pye2 + pze3 + pwe4 and q = qxe1 + qye2 + qze3 + qwe4 and then find their outer product:
p∧ q = (qxpw − pxqw)e41 + (qypw − pyqw)e42 + (qzpw − pzqw)e43 + (pyqz − pzqy)e23 + (pzqx −
pxqz)e31 + (pxqy − pyqx)e12.

Similarly, we can check that the outer product of a point and a straight line L ∧ p will
give a plane (trivector). In turn, the inner product of two planes (trivectors) will give a
bivector (a straight line) and is interpreted as a straight line along which these two planes
intersect. Moreover, in the case of parallelism, the components of the bivector with the basic
2-vectors e41, e42, e43 will be zero, which means that the line is not straight.

Having found the inner product of a straight line and a plane, we get an object of rank
1, that is, a vector or a point of intersection of a plane and a straight line.

A full-fledged description of projective geometry within the framework of geometric al-
gebra requires the introduction of additional auxiliary operations, almost all of which can
eventually be expressed through external or geometric multiplication.

It is worth noting an alternative approach in which work is carried out with dual repre-
sentations of objects. Within its framework, a bivector also corresponds to a straight line,
but points and planes represent trivectors and vectors, respectively. This approach allows us
to obtain correct results algebraically, but it seems less intuitive than the direct approach.

4. Software

The authors used a number of packages to work with geometric algebra in its non-
projective version. These are primarily the galgebra package for SymPy, the clifford

module (Python language) for numerical problems and Grassmann.jl for the Julia language.

It should be noted that in galgebra it is impossible to define a metric tensor containing
zeros on the diagonal, which makes it unable to work in projective space. The clifford
package has such a possibility, but it does not implement some necessary operations, such
as right and left additions, which can be circumvented by using geometric multiplication by
e1234 with the correct sign.

To test the formulas in practice, the authors used the Asymptote vector graphics lan-
guage. This language is intended for creating vector illustrations. The language has a C-like
syntax and allows you to add your own data structures. We used this opportunity to define
data structures for a point, a straight line and a plane in a projective form, as well as basic
operations for finding tangent and normal vectors, as well as points and lines of intersection
of lines and planes. The resulting library prototype makes it easier to build three-dimensional
illustrations? for example fig. 1.
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(a) (b)

Figure 1: These images are constructed using the Asymptote language. All elements of the
image are calculated in homogeneous coordinates: normal vectors of planes, guiding vectors
of straight lines, points and straight intersections.

5. Conclusion

Its presentation in the language of geometric algebra can, on the one hand, simplify
the study of the mathematical apparatus by technical specialists, and on the other hand,
generalize it to large dimensions. It is important that not only primitives are generalized:
points, lines and planes, but also their transformations: linear and affine. It becomes possible
to combine complex numbers, quaternions and parabolic biquaternions within one formalism.
All these objects are used in computer graphics, but are introduced for the most part as some
ad-hoc constructions. Within the framework of geometric algebra, they are all generalized by
the concept of a multivector and a geometric product. Currently, the mathematical theory
is sufficiently developed, but there is no accessible presentation of it in textbooks. There
are also no reliable libraries that implement all geometric algebra operations, especially in
symbolic form.
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Abstract

The problem of the convergence of generalized formal power series (with complex
power exponents) solutions of q-difference equations is studied in the situation where
the small divisors phenomenon arises; a sufficient condition of convergence generalizing
corresponding conditions for classical power series solutions is obtained; an illustrating
example is given.
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Our talk is based on the joint work with A. Lastra, see [4]. We consider a q-difference
equation

F (z, y, σy, σ2y, . . . , σny) = 0, z ∈ C, (1)

where F = F (z, y0, y1, . . . , yn) is a polynomial and σ stands for the dilatation operator

σ : y(z) 7→ y(qz),

q ̸= 0, 1 being a fixed complex number. We study the question of the convergence of its
generalized formal power series solutions y = φ of the form

φ =
∞∑

j=0

cjz
λj , cj, λj ∈ C, (2)

where c0 ̸= 0 and the sequence of the exponents λj possesses the following two properties:

(i) Reλj ⩽ Reλj+1 for all j ⩾ 0,

(ii) limj→∞ Reλj = +∞.

We note that the conditions (i), (ii) make the set of all generalized formal power series an
algebra over C. The definition of the dilatation operator extends naturally to this algebra
after fixing the value of ln q by the condition 0 ⩽ arg q < 2π:

σ
( ∞∑

j=0

cjz
λj

)
=

∞∑

j=0

cjq
λjzλj .

Thus the notion of a generalized formal power series solution of (1) is correctly defined in
view of the above remarks: such a series φ is said to be a formal solution of (1) if the
substitution of yi = σiφ, i = 0, 1, . . . , n, into the polynomial F leads to a generalized power
series with zero coefficients.

∗The research is carried out at IITP RAS under support of Russian Science Foundation, grant no. 22-
21-00717, https://rscf.ru/en/project/22-21-00717/.
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Formal solutions (2) generalize classical power series solutions of the form
∑∞

j=0 cjz
j.

The convergence of the latter was widely studied within the last decades: there are two
principally different cases, that of |q| ̸= 1 (see [8], [5]) and that of |q| = 1, q not being a
root of unity, where the small divisors phenomenon may arise (see [1], [2]). Namely, the
coefficients cj of a formal power series solution

∑∞
j=0 cjz

j of (1) are determined recurrently

via relations Q(qj) cj = Pj(c0, c1, . . . , cj−1), with some polynomials Q, {Pj}. Therefore the
sequence qj tends neither to infinity nor to zero if |q| = 1 and may come arbitrarily close to a
root of Q, which may cause a high growth of the coefficients cj obstructing the convergence
of the series.

For the generalized formal power series solution (2) of (1), assume that each
F ′
yi

(z, φ, σφ, . . . , σnφ) is of the form

∂F

∂yi
(z, φ, σφ, . . . , σnφ) = Aiz

γ + Biz
γi + . . . , Re γi > Re γ ⩾ 0,

γ ∈ C being the same for all i = 0, 1, . . . , n, and at least one of the Ai’s being non-zero.
Then under a generic assumption on the power exponents λj of (2) that, starting with some
j0 ∈ Z+, the qλj ’s are not the roots of a non-zero polynomial

L(ξ) = Anξ
n + . . . + A1ξ + A0

of degree ⩽ n, one can assert that all λj−λj0 , j > j0, belong to a finitely generated additive
semi-group Γ ⊂ C whose generators α1, . . . , αs all have a positive real part (see Lemmas 1,
2 in [3]). Thus we may initially consider the formal solution (2) in the form

φ =
∞∑

j=0

cjz
λj =

j0∑

j=0

cjz
λj +

∑

(m1,...,ms)∈Zs
+\{0}

cm1,...,msz
λj0

+m1α1+...+msαs . (3)

For such a formal series solution the small divisors phenomenon does not arise if all the αk’s
lie strictly above or strictly under the line L passing through 0 ∈ C and having the slope
ln |q|/ arg q (or, equivalently, all the qαk ’s lie strictly inside or strictly outside the unit circle).
This condition defines an analogue (and generalization) of the case of |q| ≠ 1 in the classical
situation. The convergence of (3) under such a condition was studied in our previous work
[3]. Contrariwise, the placement of αk’s on both sides of (or on) L may cause the small
divisors phenomenon. The study of this situation is the main subject of our present talk and
we propose the following theorem on the convergence of φ.

Theorem 1. Let the generalized formal power series (3) satisfy (1). If degL = n, L(0) ̸= 0,
and for each root ξ = a of the polynomial (ξ − qλj0 )L(ξ) the following diophantine condition
is fulfilled:

|(λj0 +m1α1 + . . .+msαs) ln q− ln a− 2πmi| > c (m1 + . . .+ms)
−ν for all mi ∈ Z+, m ∈ Z

(4)
(with the exception of m1 = . . . = ms = 0), where c and ν are some positive constants,
then (3) has a non-zero radius of convergence (that is, it converges uniformly in any sector
S ⊂ C of sufficiently small radius with the vertex at the origin and of the opening less than
2π defining there a germ of a holomorphic function).

Remarks 1. The diophantine condition of Theorem 1 is generically fulfilled. As for concrete
examples, one can apply in particular Schmidt’s result [6] from which it follows that (4) holds
for a = qλj0 , if
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1. the real parts of all 1
2πi

α1 ln q, . . . , 1
2πi

αs ln q are algebraic and together with 1 linearly
independent over Z or

2. the imaginary parts of all 1
2πi

α1 ln q, . . . , 1
2πi

αs ln q are algebraic and linearly indepen-
dent over Z.

(If L has roots ξ = a other than qλj0 then the number 1
2πi

ln(qλj0/a) should be added to the
set of numbers in the above conditions 1, 2 for each such a ̸= qλj0 .)

The proof of the theorem is based on Siegel’s ideas [7] of studying a first order equation
σy = f(y) describing the linearization of a diffeomorphism f of (C, 0). This uses the majo-
rant method adapted to our ”multi-index case” for the construction of a convergent series
majorizing (3).

Some particular placements of the αk’s with respect to the line L allow one to weak
assumptions of Theorem 1. Therefore we formulate a separate statement which follows from
Theorem 1 and distinguishes all these particular cases of the placement of the αk’s on the
plane.

Theorem 2. The statement of Theorem 1 holds in the following particular cases:

a) L(0) ̸= 0 and all the αk’s lie strictly above the line L;
b) degL = n and all the αk’s lie strictly under the line L;
c) all the αk’s lie on the line L and the condition (4) is fulfilled for those roots ξ = a of

the polynomial (ξ − qλj0 )L(ξ) that lie on the circle {|ξ| = |qλj0 |};
d) L(0) ̸= 0, all the αk’s lie above or on the line L, and the condition (4) is fulfilled for

those roots ξ = a of the polynomial (ξ−qλj0 )L(ξ) that lie inside the closed disk {|ξ| ⩽ |qλj0 |};
e) degL = n, all the αk’s lie under or on the line L, and the condition (4) is fulfilled for

those roots ξ = a of the polynomial (ξ−qλj0 )L(ξ) that lie outside the open disk {|ξ| < |qλj0 |}.

Note that the small divisors phenomenon for classical power series solutions of (1) arising
in the case of q = e2πiω, ω ∈ R \ Q, and studied in [1], [2], is contained in the case c) of
Theorem 2: the line L coincides with the Ox axis, λj0 = 0, the set of power exponents is
generated by the unique α1 = 1 ∈ L and the condition (4) is reduced to

|jω − (1/2πi) ln a−m| > cj−ν for all j ∈ N, m ∈ Z,

in this case (see Th. 6.1 in [1] and Th. 8 in [2]).

Example 1. Consider a kind of a q-difference analogue of the Painlevé III equation with
a = b = 0, c = d = 1:

y σ2y − (σy)2 − z2y4 − z2 = 0,

where q = e2iπω, ω ∈ R \ Q. This equation possesses a two-parameter family of formal
solutions:

φ =
∑

m1,m2∈Z+

cm1,m2 z
r+m1(2−2r)+m2(2+2r),

where the complex coefficient c0,0 ̸= 0 is arbitrary, −1 < Re r < 1, the other complex
coefficients cm1,m2 are uniquely determined by c0,0 and r. The numbers q2±2r lie on the
opposite sides of the unit circle (if Im r ̸= 0) or on the unit circle (if Im r = 0), whereas the
second degree polynomial L(ξ) = c0,0(ξ − qr)2 does not vanish at 0. Therefore taking r, ω
in such a way that the condition of Theorem 1 holds,

|(m1(2− 2r)ω + m2(2 + 2r)ω −m| > c (m1 + m2)
−ν
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for some positive c and ν, we obtain the convergent φ. For example, it is sufficient for ω
to be algebraic and for r simply to have a non-zero imaginary part. Indeed, then for any
m1 ̸= m2 one has

|(m1(2− 2r)ω + m2(2 + 2r)ω −m| ⩾ 2|ω Im r| · |m2 −m1| > c (m1 + m2)
−ν ,

whereas for m1 = m2 it follows that

|(m1(2− 2r)ω + m2(2 + 2r)ω −m| = |4ωm1 −m| > cm−ν
1 .

References
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Vol. 43. P. 159–176.

[2] Di Vizio L. An ultrametric version of the Maillet–Malgrange theorem for nonlinear q-
difference equations. Proc. Amer. Math. Soc. 2008. Vol. 136, N. 8. P. 2803–2814.

[3] Gontsov R., Goryuchkina I., Lastra A. On the convergence of generalized power series
solutions of q-difference equations. Aequat. Math. 2022. Vol. 96, N. 3. P. 579–597.

[4] Gontsov R., Goryuchkina I., Lastra A. Small divisors in the problem of the convergence
of generalized power series solutions of q-difference equations. 2022. arXiv: 2209.09365,
16pp.

[5] Li X., Zhang C. Existence of analytic solutions to analytic nonlinear q-difference equa-
tions. J. Math. Anal. Appl. 2011. Vol. 375. P. 412–417.

[6] Schmidt W.M. Simultaneous approximation to algebraic numbers by rationals. Acta
Math. 1970. Vol. 125. P. 189–201.

[7] Siegel C.L. Iteration of analytic functions. Ann. of Math. 1942. Vol. 43, N. 4. P. 607–612.
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Abstract

The paper discusses the practical aspects of calculating derivatives in solving opti-
mization and optimal control problems. Direct and inverse methods for calculating the
gradient of scalar and vector functions are described. Methods of obtaining the gra-
dient calculation code and packages implementing automatic differentiation methods
are given.

Keywords: fast automatic differentiation, multi-stage process, standard software
packages

1. Introduction

Currently, numerical methods for solving optimization and optimal control problems are
increasingly being used in various fields of science, technology and production. They occupy
a special place in modern methods of solving real problems. Due to the intensification of
production in recent decades, there has been a growing interest in optimization problems
and optimal control problems of complex dynamic systems.

In practice, when solving optimization and optimal control problems, gradient methods
are used using the first derivatives or gradient (conjugate gradient method, quasi-Newtonian
methods), the first derivatives of the vector function or Jacobian (Levenberg-Marquardt
method), the second derivatives (Newton methods).

The simplest way to calculate the gradient of a relatively complex function is to deter-
mine components of the gradient with the help of the finite difference method. However,
this approach does not allow you to get the exact value of the gradient. The difficulties
encountered when using the finite difference method to calculate the gradient of the cost
function in problems of optimal control of complex systems were described in [1].

Another approach is to use the technique of automatic differentiation (AD). The AD
method is much more effective than analytical differentiation (more precisely, formulas ob-
tained analytically) and finite-difference calculation of derivatives. A general approach to
the differentiation of composite functions was proposed by Yevtushenko in [2, 3, 4]. In par-
ticular, it was shown that the AD methodology allows us to consider various problems in a
unified way. For example, using the general differentiation formulas given in [2, 3, 4], it is
easy to derive AD formulas for determining the gradient of a function of several variables.
The definition of a function is presented as a multi-stage process with the introduction of
new state variables. They are functions of independent variables with respect to which
derivatives of this function are calculated.

The direct application of this methodology gives excellent results both in accuracy and in
the speed of gradient calculation, but in some cases it may be too time-consuming, requiring
a lot of analytical work to derive the necessary formulas. In order to reduce labor costs, it
is possible to use existing rapid automatic differentiation packages, for example, Adept [5]
or CodiPack [6] packages.
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2. Methodology of automatic differentiation

Let z ∈ Rn and u ∈ Rr be vectors. Differentiable functions W (z, u) and Φ(z, u) define
maps W : Rn × Rr → R1, Φ : Rn × Rr → Rn. The Vectors z and u satisfy the following
system of n nonlinear scalar equations Φ(z, u) = 0. If the matrix ΦT

z (z, u) is non-degenerate,
then the complex function Ω(u) = W (z(u), u) is differentiable and its gradient with respect
to variables is calculated using formulas (1)-(2) for the forward differentiation method.

dΩ

du
= Wu(z(u), u) + N(u)W T

z (z(u), u), (1)

where the rectangular r × n matrix N(u) is from the solution of a linear algebraic system:

W T
z (z, u) + N(u)ΦT

z (z, u) = 0 (2)

and (3)-(4) for reverse differentiation method:

dΩ

du
= Wz(z(u), u) + ΦT

z (z(u), u) · p(u), (3)

where the vector p ∈ Rn is from the solution of a linear algebraic system:

Wz(z, u) + ΦT
z (z, u) · p. (4)

Here and further, the index T denotes transposition, the subscripts z, u denotes partial
derivatives of functions with respect to vectors z and u:

Wu =
∂W

∂u
,Wz =

∂W

∂z
, ΦT

u =
∂ΦT

∂u
, ΦT

z =
∂ΦT

∂z
. (5)

We will also denote i-th and j-th components of vectors z and u as zi, zj, ui, uj.
The forward method allows you to calculate the gradient of the function T (grad(f)) in

a time not exceeding:
T (grad(f)) ≤ Cforward · r · T (f), (6)

and the reverse method in time:

T (grad(f)) ≤ Creverse · T (f), (7)

where T (f) is the calculation time of the function and Cforward and Creverse — some constants.
Theoretical estimates of these constants (excluding access time to RAM and the possibility
of parallel computing) are given in [2]:

Cforward = Creverse = 3. (8)

Practically achievable estimates for Creverse are given in [5]: 2-4 for the manual method of
encoding derivatives and 2.7-4 for the package Adept. For the forward differentiation method,
the practically achievable estimates Cforward, as a rule, do not exceed the theoretical ones.

In the case of a vector function f(u) : Rr → Rm, the matrix of the first derivatives of the
function (the Jacobi matrix) is calculated in a time not exceeding:

T (grad(f)) ≤ Cforward · r · T (f), (9)

and the reverse method in time:

T (grad(f)) ≤ Creverse ·m · T (f), (10)
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As can be seen from (7) and (8), the inverse differentiation method is effective for r >> m.
The simplest and most common way to implement methods of automatic differentiation is

to use the operator overloading mechanism, which is available in many modern programming
languages. The forward differentiation method is implemented quite straightforwardly — a
new data type is introduced, which contains not only the value of a variable, but also all
the values of its derivatives for one or more input variables [8]. The reverse method is more
difficult to implement, since when calculating a function, it is necessary to write the results
of calculating each basic elementary function into memory, creating an ”information graph”,
and then go through this graph in reverse order, calculating derivatives [4].

3. Automatic differentiation packages

The electronic resource of the https://www.autodiff.org is dedicated to automatic differ-
entiation packages. On this resource you can find packages that support the calculation of
derivatives in more than 10 high-level algorithmic languages. In particular, C/C++, Fortran
and Python are supported. For the C/C++ language, we recommend using the Adept [5]
and CoDiPack [6] packages.

The Adept package supports 2-pass forward and reverse methods for obtaining gradients
of scalar and vector functions using an information graph. The package is easy to use and
modify. Therefore, if you need to calculate gradients using the reverse method, then this will
be the best choice. The program is modified using formal transformations – the double data
type is replaced with a special adouble type; then a few lines of initialization and gradient
calculation are added. For example:

Initial program

• double W(const double x[2]) {

• double y = 4.0;

• double s = 2.0*x[0] + 3.0*x[1]*x[1];

• y *= sin(s);

• return y;

• }

Modified program

• adouble W(const adouble x[2]) {

• adouble y = 4.0;

• adouble s = 2.0*x[0] + 3.0*x[1]*x[1];

• y *= sin(s);

• return y;}

• using namespace adept;

• Stack stack;

• adouble x[2] = x val[0], x val[1];
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• stack.new recording();

• adouble Y = W(x);

• Y.set gradient(*Y ad);

• stack.reverse();

• x ad[0] = x[0].get gradient();

• x ad[1] = x[1].get gradient();

• *Y ad = Y.get gradient();

The CoDiPack [6] package has great functionality (but also great complexity), allows you
to efficiently calculate the first derivatives (and derivatives of higher orders) both forward and
reverse methods. The advantages of the package are that the direct method is parallelized
using AVX2, AVX512 technologies and does not require the allocation of RAM for the
information graph.
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Abstract

Computer algebra methods are used to study the plane equilibrium orientations of
a system of two bodies connected by a spherical hinge that moves on a circular orbit.
The main attention is given to the study of the equilibria of the two-body system in
the plane of the circular orbit, in the plane perpendicular to the circular orbital plane
and in the plane tangent to the circular orbital plane. A new method is proposed for
transforming the system of trigonometric equations determining the equilibria into a
system of polynomial equations, which in turn are reduced by calculating the resultant
to a single algebraic equation. The domains with an identical number of equilibria are
classified using algebraic methods for constructing a discriminant hypersurface.

Keywords: connected rigid bodies, spherical hinge, circular orbit, Lagrange equa-
tions, algebraic equations, resultant, equilibrium orientation, computer algebra

1. Introduction

In the present work, we use symbolic computations to investigate the equilibrium orien-
tations of a system of two bodies (satellite and stabilizer) connected by a spherical hinge
that moves along a circular orbit. Determining the equilibria for the system of bodies on a
circular orbit is of practical interest for designing composite gravitational orientation systems
of satellites that can stay on the orbit for a long time without energy consumption. The dy-
namics of various composite schemes for satellite-stabilizer gravitational orientation systems
was discussed in detail in [1] and [2]. In [3], [4], [5] equilibrium orientations for the two-body
system in the orbital plane were found in the case where the spherical hinge is positioned at
the intersection of the principal central axes of inertia of the satellite and stabilizer, as well
as in the case where the hinge is positioned on the line of intersection between two planes
formed by the principal central axes of inertia of the satellite and stabilizer. In this work, we
study the equilibrium orientations of the two-body system in the orbital plane, in the plane
perpendicular to the circular orbital plane and in the plane tangent to the circular orbital
plane in the case when the hinge is positioned on the line of intersection between two planes
formed by the principal central axes of inertia of the satellite and stabilizer.

2. Equilibrium Orientations of a System of Two Bodies

We consider a system of two bodies connected by a spherical hinge that moves along a
circular orbit [1]. To write the corresponding equations of motion, we introduce the following
right-handed rectangular coordinate systems. The orbital coordinate system is OXY Z. The
OZ− axis is directed along the radius vector that connects the Earth’s center of mass with
the center of mass of the two-body system O, the OX− axis is directed along the linear
velocity vector of the center of mass O, while the OY− axis is directed along the normal to
the orbital plane. The coordinate system of the ith body (i= 1, 2) is Oixiyizi, where the
axis of these coordinate systems are the principal central axes of inertia of the ith body.
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The orientation of coordinate system Oixiyizi with respect to the orbital coordinate system
is determined using aircraft angles αi (pitch), βi (yaw), and γi (roll) [1].

Let (ai, bi, ci) are the coordinates of spherical hinge in the coordinate system Oixiyizi;
Ai, Bi, Ci are the principal central moments of inertia of the each bodies; M = M1M2/(M1 +
M2); Mi is the mass of the ith body.

1. We consider the first case where the hinge is located at the line of intersection of two
planes formed by the principal central axes of inertia of the satellite and the stabilizer when
b1 = b2 = 0 and the equilibrium orientations of the two-body system are in the orbital plane
(α1 ̸= 0, α2 ̸= 0, β1 = β1 = 0, γ1 = γ2 = 0) [5]. Then, in the coordinate systems connected
to body 1 and body 2, the spherical hinge has coordinates (ai, 0, ci).

Using the expression of the kinetic energy T of the system [5]

T = 1/2
(
B1 + M(a21 + c21)

)
(α̇1 + ω0)

2 + 1/2
(
B2 + M(a22 + c22)

)
(α̇2 + ω0)

2

− M
(
(a1a2 + c1c2) cos(α1 − α2) (1)

− (a1c2 − a2c1) sin(α1 − α2)
)
(α̇1 + ω0)(α̇2 + ω0),

and the force function

U = −3/2ω2
0

(
(A1 − C1)sin

2α1 + (A2 − C2)sin
2α2

)

+ 3/2Mω2
0

(
(a1 sinα1 − c1 cosα1)− (a2 sinα2 − c2 cosα2)

)2
(2)

+ Mω2
0

(
(a1a2 + c1c2) cos(α1 − α2)− (a1c2 − a2c1) sin(α1 − α2)

)
,

the equations of motion for this system can be written as the Lagrange equations of the
second kind

d

dt

∂T

∂α̇i

− ∂T

∂αi

− ∂U

∂αi

= 0, i = 1, 2. (3)

By applying symbolic differentiation in (3) using Wolfram Mathematica system [6], equations
(3) can be presented in the form of a system of second-order ordinary differential equations
in variables α1 and α2.

Then from Lagrange equations we can obtain the stationary trigonometric system which
allows us to determine equilibrium orientations for the system of two bodies connected by
the spherical hinge in the orbital coordinate system. Seting in Lagrange equations α1 =
α01 = const, α2 = α02 = const we obtain the stationary equations

((A1 − C1)/M) sinα01 cosα01 − (a1 cosα01 + c1 sinα01)(a1 sinα01 − c1 cosα01)

−(a1 cosα01 + c1 sinα01)(c2 cosα02 − a2 sinα02) = 0, (4)

((A2 − C2)/M) sinα02 cosα02 − (a2 cosα02 + c2 sinα02)(a2 sinα02 − c2 cosα02)

−(a2 cosα02 + c2 sinα02)(c1 cosα01 − a01 sinα01) = 0.

The trigonometric system (4) cannot be solved analytically for two unknown aircraft angles.
To solve system (4), we use the universal approach whereby the sines and cosines of angles
α0i are replaced by their tangents ti = tan(α0i).

As a result, we obtain from (4) the algebraic system of two equations in two unknowns
t1, t2

ā0t
3
1 + ā1t

2
1 + ā2t1 + ā3 = 0,

b̄0t
2
1 + b̄1t1 + b̄2 = 0, (5)

where āi, b̄i are the polynomials depending on six system parameters a1, a2, c1, c2, d1 = (A1−
C1)/M, d2 = (A2 − C2)/M and tangent t2.
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By using the resultant approach to eliminate t1 from system (5) and symbolic computa-
tions in Wolfram Mathematica 12.1 [6] to find the determinant of the resultant matrix, we
obtain a twelfth-order algebraic equation in one unknown t2, which upon factorization, turns
into a product of three polynomials: P (t2) = P1(t2)P2(t2)P3(t2) = 0. Here P1(t2), P2(t2) are
second-order polynomials and P3(t2) is an eighth-order polynomial, the coefficients of which
are polynomials in six system parameters.

By the definition of the resultant, each root of equation P (t2) = 0 corresponds to one
common root of system (5). The algebraic equation obtained has the even number of real
roots, which does not exceed 12. By substituting real root of algebraic equation P (t2) = 0
into the equations of system (5), we find the common root of these equations. It can be
shown that two equilibrium solutions of the original system correspond to each real root of
equations (2).

Since the total number of real roots of P (t2) = 0 does not exceed 12, the satellite–
stabilizer system in the plane of the circular orbit can have no more than 24 equilibrium
orientations in the orbital coordinate system. Using obtained equations for each set of system
parameters, we can determine all equilibrium orientations of the satellite–stabilizer system
in the orbital coordinate system. Each of the polynomial P1(t2), P2(t2) and P3(t2) describes
the separate class of equilibrium orientations.

To investigate the number of equilibrium solutions for the satellite-stabilizer system,
we define domains with equal numbers of real roots of P3(t2) = 0 in the space of the six
parameters. For this purpose, we construct a discriminant hypersurface of this polynomial,
which defines the boundary of the domains with equal numbers of real roots.

2. Using the above approach we can obtain the results of investigation the equilibrium
orientations of the two-body system in the plane perpendicular to the circular orbital plane
and in the plane tangent to the circular orbital plane. In our works [7] and [8], it was shown
that the satellite-stabilizer system can have up to 24 equilibrium orientations in the orbital
coordinate system in the plane orthogonal to the orbital plane and in the plane tangent the
orbital plane.

In the each of the above cases the equilibrium orientations of the two-body system in
the plane perpendicular to the circular orbital plane and in the plane tangent to the circular
orbital plane are defined by the real roots of the twelfth-order algebraic equation in one
unknown tan γ02 or tan β02.

The use of computer algebra methods allowed us to solve the classical problem of space
flight mechanics in a fairly simple form.

References

[1] Sarychev, V.A. Problems of orientation of satellites, Itogi Nauki i Tekhniki. Ser. Space
Research, Vol. 11. VINITI, Moscow (1978) (in Russian)

[2] Rauschenbakh, B.V., Ovchinnikov, M.Yu., McKenna–Lawlor, S. Essential Spaceflight
Dynamics and Magnetospherics. Kluwer Academic Publishers (2003)

[3] Sarychev V.A. Relative equilibrium orientations of two bodies connected by a spherical
hinge on a circular orbit. Cosmic Research. 1967. Vol. 5, P. 360–364.

[4] Gutnik S.A., Sarychev V.A. Symbolic investigation of the dynamics of a system of two
connected bodies moving along a circular orbit. In: England, M., Koepf, W., Sadykov,
T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, Vol. 11661, P. 164–178.
Springer, Cham (2019)

85



[5] Gutnik S.A., Sarychev V.A. Research into the Dynamics of a System of Two Connected
Bodies Moving in the Plane of a Circular Orbit by Applying Computer Algebra Methods.
Computational Mathematics and Mathematical Physics. 2023. Vol. 63, N. 1. P. 106–114.

[6] Wolfram S The Mathematica Book, 5th edn. Wolfram media, Inc. Champaign (2003)

[7] Gutnik S.A., Sarychev V.A. Symbolic methods for studying the equilibrium orientations
of a system of two connected bodies in a circular orbit. Programming and Computer
Software. 2022. Vol. 48, N. 2. P. 73–79.

[8] Gutnik S.A., Sarychev V.A. Computer algebra methods for searching the stationary
motions of the connected bodies system moving in gravitational field. Math. Comput.
Sci. 2022. Vol. 16, P. 1–15.

86



Regularity Criterion for a Linear Differential System
with Meromorphic Coefficients

D.O. Ilyukhin2, A.V. Parusnikova1

1HSE University, Russia
2Volgograd MOU secondary school No. 18, Russia

e-mail: dennic.96@mail.ru, aparusnikova@hse.ru

Abstract

Regularity criterion for the singular point of a linear meromorphic system is ob-
tained. Its proof is based on trasform of the system to a linear equation with mero-
morphic coefficients. We can check, whether the singular point of the system is regular
using computer algebra system.

Keywords: computer algebra, regular point

We prove the regularity criterion for the singular point t = 0 of a second order system
ẋ = A(t)x, where A(t) is the coefficient matrix aij(t), i, j = 1, 2 with meromorphic elements.
The proof of this criterion is based on several theoretical concepts and properties, including
these definitions: singular point, Fuchs type point, meromorphic function [1, 2]. Based on
the main lemmas, a linear system was obtained using a linear gauge transformation, from
which a transition to a second-order linear differential equation is possible.

A regularity criterion for a n-th order system is obtained. Computations can be carried
out using a computer algebra system.

The preliminary version of this work can be found in [3].
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Abstract

This paper presents the development of the support system for modeling socio-
economic processes based on an open source platform. This system is based on the ap-
proach of the ECOMOD system developed for complex economic models where agents
plan decisions based on optimal control problems. The system enables analysis of a
model containing a set of several agents, each either solving an optimal control planning
problem or following a scenario. The combined descriptions form a complex system
of nonlinear relations, which is difficult to write down without errors in mathematical
expressions on paper or using computer. The system includes elements for verifying
the correctness of the model record: balances, dimensions etc.

Keywords: optimal control, symbolic calculation, economic modeling

1. Symbolic calculus to support for economic modeling

The representative agent principle is one of the key foundations of applied macroeco-
nomic modeling. In a broad sense, it means that the system under study is described as the
interaction of rational Decision-Makers who act in accordance with their goals, constraints
and available information. In this interpretation, even most of social and many ecological
models are also agent-based. In general, the logic of constructing an agent’s problem starts
from description of agents’ optimization problems separately, then interaction models (mar-
kets, balances, etc.) are added and then comes to numerical and scenario analysis of the
solution. Such models require not only an adequate description of agent decision-making and
agent interactions, but also technological means of working with the complex mathematical
formulation of the model. Typically it is a system of nonlinear relations, which is difficult
to write down without errors in mathematical expressions on paper. This requires software
systems capable of: support modeling at all stages, starting with the formal description of
the model and ending with the presentation of computation results; simplification of the
system of model relations, preferably preserving the attributes of equations and variables;
automatic verification the correctness of the dimensions of variables in the ratios, which
avoids errors and erroneous calculations due to incorrect formulation of the problem; verifies
the balances of money and product transfers between agents.

The existing systems are built on commercial software tools, strongly limited by rigid
assumptions about the nature of the model. The most common is DYNARE [1] based on a
commercial Matlab product, as well as a less common one, named EcoMod, but developed
by another group and with a different approach (static general equilibrium of the economy),
also based on Matlab [2, 3]. Software for automated model processing based on open source
platforms is beginning to develop (both general, see Wolfram Alfa, and specialized, see
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Dolo [4, 5]). However, the vast majority of such systems are aimed at automated research
of the model ”as is”, and not at automating the construction of models.

The authors of the paper propose a support system based on the previous realization
of the support system ECOMOD, developed by the group led by I. G. Pospelov at the
Computing Center of RAS [7, 6], and applied in a wide range of projects on modeling na-
tional economies. Complex systems, especially in economics, are capable of self-development
exhibit similar challenges when modeling. At the same time, due to the preferences of the au-
thors or customers of the model computations, these structures use different sets of concepts
and, being simplified descriptions, neglect individual deviations from the patterns described
in them [8, 9]. Sometimes, one team of researchers uses different constructions when model-
ing economic subsystems - bank, international trader, partial market, with different details
or, conversely, aggregation of indicators [10]. The description of micro-systems in an applied
model can use a large number of indicators that are linked by several ratios [11], which makes
the task of analyzing the model difficult from the point of view of calculations. Despite all
its advantages (the Ecomod system supports basic checks and has a device for integrating
models of different agents), it is based on the non-free Maple platform and does not have a
special interface designed for third-party users.

2. System architecture

The system must be able to solve the following tasks:

• automation of data input and output in the generally accepted mathematical format
(LaTeX);

• cross-checking the system of variables, informing the user about the errors committed
in it and suggestions of typical fixes for identified problems

• information of model balances, identification of problems of unclosed and unrelated
interactions between agents;

• check the dimensionality of equations;

• automated output of optimality conditions.

The ECOMOD [12] system is an end-to-end processor of agent models and the output of
optimality conditions for them, implemented in Python. The SymPy library is used as the
main tool to convert symbolic expressions and check their correctness. External interfaces
to work with the system, such as LaTeX, are also integrated.
As subsystems, ECOMOD contains : Support engine, Core and Export & Import
modules.

The input and output points of the system are the following representations of the agent
models:

1. Native Python
One can describe models using the internal Python (SymPy) interface and use the sys-
tem as a python-library in exploring your models and developing them further. This
representation is used to transfer information within the system. All other represen-
tations are translated with appropriate processing modules to this data model. All
expressions are fully compatible with SymPy syntax, so you can operate with those
using any SymPy functions.
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Figure 1: Use cases of the system. The dotted lines indicate links that have not yet been
implemented

2. LaTeX
One can describe models by importing agent models written as a LaTeX structure file.
The internal structure of the file must be represented as YAML (KV-storage). Such
a representation is convenient, when operating the system as a black box, which will
derive the optimality conditions for the economic model. For unambiguous processing
of LaTeX formulas in the system, rules for writing LaTeX formulas have been suggested.
Examples can be found in the attached repository. To form the final LaTeX file, the
template provided in the jinja2 system is used.

3. Hypergraph GUI
One can also visualize the model as a hypergraph where the vertices correspond to
agents and the edges correspond to the flows between the agents. The hypernetx
library is responsible for the visualization In the future, we plan to create a visual
interface that allows interactive work with the hypergraph, ie create and modify agent
models.

The kernel and the support system are paired to process and validate economic models.
The support system checks the completeness of the system of equations by comparing the set
of variables used and the declared variables. It also checks the dimensionality of equations
and inequalities in the model by substituting the dimensions of variables with random coeffi-
cients. The kernel, on the other hand, is a set of transformation functions written for Sympy
expressions. The set of these functions computes auxiliary objects (e.g. Lagrangian) as well
as optimality conditions for the control problem (Euler equations, transversality conditions,
etc.) for further import of these objects for analysis.

3. Conclusions

Automation of work on agency models allows you to create complex models of complex
systems that are based not on statistical patterns, but on the logic of optimal choice. Such
models make it possible to find optimal solutions even in an unstable external environment,
when the social or technical system as a whole switches between qualitatively different modes.
The main limitation in the development of system agent models remains precisely the high
probability of errors in the description of agents, which increases rapidly with an increase in
the number of agents.

The presented architecture of the automatic processing of agent models already has
all the main advantages of the Ecomod system, while at the same time having the main
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advantages of competing systems: implementation on publicly available programming tools
(Python SymPy), the possibility of portable deployment on a local device without purchasing
commercial licenses. The feedback tools embedded in the system are significantly superior
to existing analogues.

This allows us to count on the great potential of practical application of the system,
primarily in the construction of models of general equilibrium of large systems (both in
economics and in other complex systems that can be formalized by the same types of math-
ematical models).
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Abstract

Laurent solutions of systems of linear ordinary differential equations with the trun-
cated power series coefficients are considered. The Laurent series in the solutions are
also truncated. We use induced recurrent systems for constructing the solutions and
have previously proposed an algorithm for the case when the induced system has a
non-singular leading matrix. The algorithm finds the maximum possible number of
terms of the series in the solutions that are invariant with respect to any prolongation
of the original system. Below we present advances in extending our algorithm to the
case when the leading matrix is singular using algorithm EG as an auxiliary tool.

Keywords: differential systems, truncated series coefficients, truncated Laurent
series solutions

1. Starting Point

We consider systems of the form

Ar(x)θry(x) + Ar−1(x)θr−1y(x) + · · ·+ A0(x)y(x) = 0, (1)

where y(x) = (y1(x), y2(x), . . . , ym(x))T is the vector of unknowns, Ar(x), . . . , A0(x) are
m×m-matrices of coefficients with entries in the form of power series in x over the field of
algebraic numbers, θ = x d

dx
.

A solution y(x) = (y1(x), . . . , ym(x))T of the differential system (1) the components of
which are formal Laurent series is referred to as a Laurent solution:

y(x) =
∞∑

n=v

u(n)xn, (2)

where v ∈ Z is a valuation of the series, u(n) = (u1(n), . . . , um(n))T are vectors of coefficients
of Laurent series for n ∈ Z.

For a full-rank system the coefficients of which are series specified algorithmically (i.e.
an algorithm is given which computes the coefficient of any term xs of any series), the
algorithm from [2] finds all its truncated Laurent solutions with any given truncation degree.
The algorithm is based on the construction of an induced recurrent system R(u) = 0 which
is satisfied by the sequence of vectors u(n) from (2). The induced recurrent system is
constructed with the transformation

x→ E−1, θ → n, (3)

applied to the original differential system (1). E−1 denotes the shift operator: E−1u(n) =
u(n−1). Thus R = B0(n)+B−1(n)E−1+B−2(n)E−2+ . . . and the induced system is written
as

B0(n)u(n) + B−1(n)u(n− 1) + . . . = 0, (4)

92



where u(n) = (u1(n), . . . , um(n))T is the column vector of unknown sequences such that
ui(n) = 0 for all negative n with large enough value of |n|, i = 1, . . . ,m; B0(n), B−1(n), . . .
are matrices of polynomials in n; B0(n) is the leading matrix of system (4). If B0(n) is
non-singular, then we can consider the equation detB0(n) = 0 as an indicial equation of the
original differential system: the set of integer roots of this algebraic equation includes the set
of all possible valuations of the Laurent solutions of system (1). This makes it possible, in
particular, to find the lower bound for the valuations of all Laurent solutions of the system.
If detB0(n) = 0 has no integer roots, then the system has no Laurent solutions. If B0(n) is
singular, then algorithm EG∞

σ (it is a version of original EG algorithm from [1] introduced in
[2] for infinite recurrent systems) initially applied to transform the induced recurrent system
to the embracing recurrent system of the same form with a non-singular leading matrix,
and it constructs any given number of its initial terms. The embracing recurrent system
supplemented with a set of linear constraints, which are also constructed by EG∞

σ algorithm,
has the same set of solutions as the system (4).

In our current research we are focused on the case when the series in the system coef-
ficients are represented in a truncated form, with the truncation degree being different for
different coefficients. We refer to such systems as truncated systems. Each truncated series
is represented as

a(x) + O(xt+1), (5)

where a(x) is a polynomial, the integer t ≥ deg a(x) is a truncation degree.
The prolongation of a truncated series is a series (possibly, also truncated) the initial

terms of which coincide with known initial terms of the original truncated series. In turn, the
prolongation of a truncated equation is an equation the coefficients of which are prolongations
of coefficients of the original equation, and the prolongation of a system of equations is a
system the equations of which are prolongations of the equations of the original system.

We are interested in finding the maximum possible number of terms of truncated Laurent
solutions of a given truncated system that are invariant with respect to any prolongations
of the truncated coefficients of the given system. Solutions with arbitrary truncation degree
cannot be calculated for a truncated system. This statement was proved in [3] for a particular
case, namely, for a scalar equation (m = 1). In [3] we also proposed an algorithm which
finds such truncated Laurent solutions for scalar equations. We utilized induced recurrent
systems and literals as a foundation for finding the solutions. Literals are symbols used
to represent unspecified coefficients of the truncated series involved in the system. For a
series of form (5), we say that the coefficients of terms xs,s > tkij are unspecified. When
constructing solutions of the truncated system, these coefficients are represented by symbols,
i.e., by literals. Our algorithm for truncated systems is a modification of the algorithms for
the systems with the algorithmically specified coefficients. The key idea is to represent the
truncated series (5) algorithmically: the algorithm returns the known coefficient of the series
if s ≤ t, and it returns literals if s > t.

In [6] we applied the approach from [3] to the systems with m > 1 and proposed an
algorithm for constructing Laurent solutions of the system for the case when the determinant
of the leading matrix of the induced system is not zero (i.e. the leading matrix is non-
singular) and does not contain literals.

2. Advances and Further Plans

Our advances in the research of finding Laurent solutions of the systems in hand are
related to the use of the algorithm EG∞

σ to extend the applicability of the algorithm from [6]
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to the systems whose induced recurrent systems have singular leading matrix. We continue
the adaptation of the algorithm for the systems with the algorithmically specified coefficients
by representing the truncated series algorithmically with the help of literals.

The EG∞
σ algorithm consists in the successive repetition of reduction and shift steps,

which continues until the rows of the leading matrix remain linear dependent. On the
reduction step, coefficients of the dependence are found; then, the equation corresponding
to one of the dependent rows is replaced with the linear combination of the other equations,
hence the row of the leading matrix is set zero. On the shift step, the shift operator E is
applied to the new equation. The termination of the algorithm is guaranteed with using a
simple rule when selecting equations to be replaced. The reduction steps also lead to a finite
set of linear constraints, each of which involves a finite number of elements of a sequential
solution and is a linear combination of these elements with constant coefficients. The linear
constraints correspond to the integer roots of a polynomial which is the coefficient of the
row of the replaced equation in the linear combination (we further refer to the polynomials
as the constraint polynomials).

The main obstacle is that literals may appear in intermediate calculations. If there
are no literals both in the determinant of the leading matrix and in the constraint poly-
nomials after EG∞

σ execution then the further calculations with the resulting induced re-
currence and the linear constraints in the way as in algorithm from [6] gain desired trun-
cated Laurent solutions which form the extended version of our algorithm in the case. It
is preliminary implemented in Maple ([7]) as an updated version of procedure LaurentSolu-
tion of package TruncatedSeries [4, 5] (for more information about the package, please visit
http://www.ccas.ru/ca/TruncatedSeries).

Let’s consider the following system

(
3x + O(x2) 7x2 + O(x4)

O(x2) 17x2 + O(x4)

)
θ2y(x) +

(
−1 + 2x + O(x2) x + 5x2 + O(x4)

O(x2) 11x2 + O(x4)

)
θy(x)+

+

(
O(1) x− 3x2 + O(x4)

1 + O(x2) −6x2 + O(x4)

)
y(x) = 0. (6)

The leading matrix of its induced recurrent system is singular:
(

U[1,1],[0,0] − n 0
1 0

)
.

U[i,j][k,s] is the representation of the literal denoting an unspecified coefficient of xs in (i, j)-th
element of matrix coefficient Ak(x) of the system (1). After execution of EG∞

σ the trans-
formed leading matrix becomes non-singular:

(
3n2 + 2n + U[1,1],[0,1] n + 1

1 0

)
,

and its determinant (−n − 1) contains no literals. No linear constraints constructed by
EG∞

σ , so there is no constraint polynomials with literals as well. It is the case when our new
algorithm is applicable and it computes the truncated Laurent solution (c1 is an arbitrary
constant): (

6x2c1 + O(x3)
c1
x

+ c1 + O(x)

)
.

Let’s consider another system:
(

O(x5) −1 + O(x5)
1 + O(x5) O(x5)

)
θy(x) +

(
O(x5) O(1)

2 + O(x5) O(x5)

)
y(x). (7)
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The leading matrix of its induced recurrent system is already non-singular:

(
0 U[1,2],[0,0] − n

2 + n 0

)
.

However there is a literal in its determinant (n − U[1,2],[0,0])(2 + n). It is seen that the
determinant has the roots −1 and U[1,2],[0,0]. It means that the set of integer roots of the
determinant may be different for different integer values of the literal U[1,2],[0,0]. It is easy to
check that there is no desired Laurent solutions of the system. It may be done by constructing
various prolongations of the original system with substituting various integer values of the
literal U[1,2],[0,0] and finding Laurent solutions of the prolongations with our algorithm from [6]
(the algorithm is applicable to the prolongations since for each of them the leading matrix
of the induced recurrence is still non-singular and there are no literals in its determinant
already). For example, for U[1,2],[0,0] = 5 the solution of the prolongation is

(
O(x10)

c1x
5 + O(x6)

)

and for U[1,2],[0,0] = 6 the solution of the prolongation is

(
O(x11)

c1x
6 + O(x7)

)
.

Since the solutions of the prolongations has no coinciding initial terms of the series, there is
no desired Laurent solution of the original system.

Let p(n) be the determinant of the leading matrix (either of the induced recurrent system
if its leading matrix is non-singular, or of the embraced recurrent system after the application
of EG∞

σ otherwise). If p(n) contains literals then it may be represented in the general
case as p(n) = a(u1, . . . , us)(n − r1) . . . (n − rk)(bq(u1, . . . , us)n

q + · · · + b1(u1, . . . , us)n +
b0(u1, . . . , us)), where u1, . . . , us are literals involved in p(n), a(u1, . . . , us), b0(u1, . . . , us),
b1(u1, . . . , us), · · · , bq(u1, . . . , us) are polynomials in the literals, r1 . . . rk are integer roots
of p(n) independent from the literals. If a(u1, . . . , us) does contain literals (i.e. it is not a
number) then there are such values of the literals u1, . . . , us that a(u1, . . . , us) = 0 and, hence
p(n) = 0, i.e. the leading matrix is singular for the values of the literals. If a(u1, . . . , us) is a
number, then the solution of the algebraic equation (bq(u1, . . . , us)r

q
0+ · · ·+b1(u1, . . . , us)r0+

b0(u1, . . . , us)) = 0 in respect to u1, . . . , us allows getting such values of the literals that p(n)
has any desired root r0 in addition to the roots r1 . . . rk. It means that in all cases the set of
integer roots of p(n) is not invariant in respect to the prolongations of the differential system
in hand. The same reasoning is true for the constraint polynomials as well.

EG∞
σ may have variability in its execution. In spite of the fact that the special rule

should be used for choosing the equation to be replaced to guarantee the termination of
the computation, it is still possible to have more than one option to choose. It leads to
the fact that for the same recurrent system EG∞

σ may result in different embraced systems.
For example, for the system (6) EG∞

σ may be executed in another way that leads to the
embraced recurrent system with another leading matrix:

(
U[1,1],[0,0] − n 0

3n2 + 2n + U[1,1],[0,1] n + 1

)

with the determinant
(
U[1,1],[0,0] − n

)
(n + 1) which contains the literal U[1,1],[0,0]. It can be

seen that the determinant is very similar to the determinant of the leading matrix of the
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induced recurrence for the system (7) that has no desired truncated Laurent solution. In addi-
tion, the second variant of EG∞

σ execution gives the constraint polynomial −U [[1, 1], [0, 0]]+n
which also contains the literal. Still, we know from the first variant of EG∞

σ execution, that
the system has desired truncated Laurent solution. It gives us the counterexample to the
conjecture that there is no desired Laurent solution as soon as the determinant of the leading
matrix and/or the constraint polynomials contain literals.

We experiment with the modification of our algorithm for the case of determinants and
constraint polynomials containing literals, which takes into account only invariant integer
roots of the determinant and constraint polynomial (i.e. those roots which are independent of
literals). The experiments show that the modification of the algorithm gives correct answers
for the system (6) for both variants of EG∞

σ execution and for the system (7), as well as for
more other systems. Our further plans is either to prove that the approach is always correct
or to identify the limitations of its applicability.
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Abstract

In the present report, within the phase-space formulation of quantum theory of N -
level systems, we discuss the existence of “classical states” which are defined as those
states whose Wigner function is positive semi-definite. An explicit description of a set of
classical states is given using the associated convex bodies inside the simplex of density
matrices’ eigenvalues. It is demonstrated how these results allow one to calculate
three measures of classicality constructed out of the quasiprobability distributions: the
nonclassicality distance, Kenfack-Życzkowski indicator, and the global indicator.

Keywords: quantum information theory, quantum systems, Wigner quasiproba-
bility distribution, classicality indicator.

1. Motivation

An N -level quantum system is considered as an analogue of a classical statistical system
with the probability distributions between N mutually exclusive events represented by the
probability simplex. But the analogue is not absolute, since in quantum cases, following
strictly this paradigm and attempting to introduce the concept of probability distribution
on a phase space, we face various incompatibilities with the principles of canonical probability
theory (see e.g., discussions in [1] and more recent review [2]).

The present report is based on our recent studies [3]–[9] and is focused on considering such
a peculiarity of the quantum statistical description. Namely, we emphasize the significance
of the existence of states that are characterized by Wigner distributions whose lower bound
is negative. After a detailed algebraic description of those states, following a commonly
accepted opinion that the negativity of a probability distribution is an essential attribute of
the “quantumness” of states, we outline some technical issues of computing the corresponding
“classicality-quantumness” characteristics.

2. Wigner function of states and their classicality

One of the most studied analogues of classical probability distribution for N−level quan-
tum systems is the Wigner function W

(ν)
ϱ (ΩN) constructed via the dual pairing [3],

W (ν)
ϱ (ΩN) = tr [ϱ∆(ΩN |ν)] ,

of a state ϱ from the state space PN ,

PN = {ϱ ∈MN(C) | ϱ = ϱ† , ϱ ≥ 0 , Tr ϱ = 1} ,
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and matrix ∆(ΩN |ν), termed as the Stratonovich-Weyl (SW) kernel. There is a whole
family of SW kernels forming the dual space P∗

N according to the following equations:

P∗
N = {X ∈MN(C) | X = X† , tr (X) = 1 , tr

(
X2
)

= N} . (1)

The SW kernel provides a mapping between phase space ΩN and state space PN and,
according to the master equations (1), can be categorised by the set of moduli parameters,
ν = (ν1, ν2, . . . , νs) , s ≤ N − 2 . A separate analysis of the moduli space of the Wigner
function is given in [4].

In order to effectively compute the “classicality-quantumness” measures, an explicit de-
scription of states attributed to “classical” ones is necessary. The “classical states” form
the subset PN

Cl ⊂ PN of states whose Wigner function is non-negative everywhere over the
phase space:

PCl
N = { ϱ ∈ PN | W (ν)

ϱ (z) ≥ 0 , ∀z ∈ ΩN } .
Furthermore, one can consider a more refined classification of classical states based on the
decomposition of the state space PN on strata which are characterised by the same isotropy
group, Hα ⊂ SU(N) , i.e., belong to a class with the same “orbit type” [Hα] :

PN =
⋃

orbit types

P[Hα] , (2)

with each component of (2) consisting of density matrices with a fixed algebraic degeneracy,

P[Hα] =
⋃

ω∈Sn

Pkω(1),kω(2),...,kω(n
. (3)

In (3) Sn is a symmetric group acting on a given partition of N into n natural numbers
k1, k2, . . . , kn . Algebraically, Pk1,k2,...,kn , being a set of states with a fixed degeneracy and
maximal rank, is defined via the characteristic polynomial of a density matrix:

Pk1,k2,...,kn = { ϱ ∈ PN , ki ∈ Z+ | det(ϱ− λ) =
n∏

i=1

(ri − λ)ki ,
n∑

i=1

ki = N } .

Geometrically, the set Pk1,k2,...,kn with k1 = k2 = · · · = kN = 1 represents the interior of an
(N − 1)−dimensional simplex CN−1 of eigenvalues:

CN−1 := { r ∈ RN

∣∣∣∣
N∑

i=1

ri = 1 , 1 ≥ r1 ≥ r2 ≥ · · · ≥ rN−1 ≥ rN ≥ 0 } ,

while for all other admissible tuples k = (k1, k2, . . . , kn) each Pk1,k2,...,kn represents the union
of the faces and edges of the (N−1)−simplex parameterized by the corresponding degenerate
barycentric coordinates.

Based on the observation above, one can similarly define the “classical states on a fixed
stratum” PHα :

PCl
Hα

= PCl
N ∩PHα .

In the report the set of classical states PCl as well as the classical states on each stratum
PCl

Hα
, will be described using the associated convex bodies inside the simplex of density

matrices eigenvalues CN−1. Particularly, it will be demonstrated that the image of PCl
[Hα]

under the canonical quotient map p onto the orbit space,

C∗N−1(Hα) = { p(x) | x ∈ PCl
[Hα] } ,

admits identification with the dual cone:

C∗N−1(Hα) =
{
π ∈ spec (∆(ΩN |ν)) | (r↓,π↑) ≥ 0, ∀ r ∈ CN−1(Hα)

}
,

where (r↓,π↑) = r1πN + r2πN−1 + · · ·+ rNπ1 .
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3. Computing classicality-quantumness measures

Bearing in mind the above description of classical states, we study the following measures
of classicality:

(I) the nonclassicality distance – a measure of nonclassicality defined as an infinum of the
distance D of a state ϱ from the reference set of “classical states” PCl:

dN(ϱ) = inf
x∈PCl

N

D(ϱ, x) ; (4)

(II) Kenfack-Życzkowski indicator – a measure of nonclassicality of quantum states based
on the volume of a phase space ΩN region where the Wigner function is negative [5]:

δN(ϱ) =

∫

ΩN

dΩN

∣∣W (ν)
ϱ (ΩN)

∣∣− 1 ;

(III) the global indicator of classicality – geometric probability of classicality defined as the
relative volume of the classical subspace PCl

N with respect to the total volume of the
state space:

QN =
Volume

(
PCl

N

)

Volume (PN)
. (5)

Note that similarly to measures (I)-(III), defined in (4)-(5), corresponding counterparts for
the states located on the unitary strata of given orbit type [Hα] can be introduced as well.
For details we refer to our recent publications [6, 7, 8, 9].
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Abstract

We consider a constructive modification of quantum mechanics based on permuta-
tion representations of finite groups in Hilbert spaces over cyclotomic fields, and its
connection with the Weyl–Schwinger “finite quantum mechanics”. Constructive quan-
tum mechanics requires mathematical tools that differ significantly from those used
in traditional continuous theory: number theory, finite fields, complex Hadamard ma-
trices, finite geometries, etc. A natural approach to the various problems that arise
in the field are computer calculations based on the methods of computer algebra and
computational group theory.

Keywords: permutation quantum mechanics, Pontryagin duality, mutually unbi-
ased bases, quantum informatics

The standard formulation of quantum mechanics is essentially non-constructive, since it
is based on continuous unitary groups and number fields R and C. This descriptive flaw does
not allow one to study some fine details of the structure of quantum systems and sometimes
leads to artifacts.

In [1, 2, 3], we considered a modification of quantum mechanics based on permutation
representations of finite groups in Hilbert spaces over cyclotomic fields. This permutation
quantum mechanics (PQM) “can accurately reproduce all of the results of conventional
quantum mechanics” [4] in the permutation invariant standard subspace of the Hilbert space.
Unitary evolution in PQM is generated by a permutation of ontic elements, which form a
basis of the Hilbert space. By decomposing the permutation into a product of disjoint cycles,
we can split the Hilbert space into a direct sum of subspaces, in each of which the evolution
generated by a cyclic permutation occurs independently. Thus, in an N -dimensional Hilbert
space, it suffices to consider the evolutions generated by cycles of length N . Such a cycle
generates the group ZN . Since any projective representation of a cyclic group is trivial, to
describe quantum mechanical phenomena it is necessary to consider the product ZN × Z̃N ,
where Z̃N (≃ ZN) is the Pontryagin dual group to ZN . Note that we have only changed the
description slightly, without introducing any additional external information: if X and Z are
matrices representing generators of ZN and Z̃N , respectively, then Z is simply the diagonal
form of X, obtained by the Fourier transform.

In fact, we have come to the Weyl–Schwinger version of quantum mechanics, which
is sometimes called finite quantum mechanics (FQM). FQM arose as a result of Weyl’s
correction of Heisenberg’s canonical commutation relation, which cannot be realized in finite-
dimensional Hilbert spaces. Weyl’s canonical commutation relation has the form

XZ = ωZX, ω = e2πi/N ,

where X and Z are the matrices mentioned above. Weyl proved that the X and Z are
generators of a projective representation of ZN × ZN in the N -dimensional Hilbert space.
The orthonormal bases associated with the matrices X and Z are mutually unbiased bases,
a concept introduced by Schwinger.
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FQM, constructive by its nature, requires mathematical tools that differ significantly
from those used in traditional continuous theory: number theory, Galois field theory, complex
Hadamard matrices, finite geometries, etc.

At the same time, in FQM, it is possible to pose and solve problems that are important
for fundamental quantum theory and quantum informatics, but which are difficult or even
impossible to formulate within the framework of standard quantum mechanics. Let us give
examples of problems in which the structure of the decomposition of the dimension of the
Hilbert space into prime numbers is essential, which does not make sense in continuous
quantum mechanics:

• decomposition of a quantum system into smaller subsystems;

• calculation of sets of mutually unbiased bases (sets of orthonormal bases in Hilbert
space, measurements in which give maximum information about the quantum state);

• construction of symmetric information-complete positive operator-valued measures
(SIC-POVM, a symmetric set of vectors in a Hilbert space, important for quantum
measurement theory and related to Hilbert’s 12th problem).

Modern problems of quantum physics and quantum informatics require a detailed analysis
of the “fine structure” of quantum systems, which cannot be carried out using traditional
approximate methods of quantum mechanics. However, exact methods are complex and
often involve open (unsolved) mathematical problems. In these circumstances, a natural
approach is to use computer calculations based on the methods of computer algebra and
computational group theory.
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Abstract

A general analysis of nonlinear oscillations of conservative nonholonomic systems,
possessing the equilibrium manifold is presented. The procedure of normalization of
equations of motion near the equilibrium manifold is discussed. As an example of the
general theory the problem of motion of a heavy rigid thin rod on a perfectly rough
right circular cylinder is considered.
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1. Normalization of the system of differential equations in a neigh-
borhood of the equilibrium manifold

Let on the phase space Φ there is a vector field Z that vanishes on the manifold E. Sup-
pose that in suitable coordinates Xk, ξk the manifold E is locally specified by the equations
E = {ξk = 0}. Thus, the coordinates Xk changes along E, and ξk changes transversally. For
any function f depending on Xk, ξk we have

f (X, ξ) =
∑

M≥0

f (M) (X, ξ) =
∑

M≥0

∑

|j|=M

f (j) (X) ξj,

df

dt
=
∑

M≥0

f [M ] (X, ξ) =
∑

M≥0

∑

|j|=M

f [j] (X) ξj,

where ξj = ξj11 · ξj22 · . . ., |j| = j1 + j2 + . . .
Here df

dt
= Z (f). In particular, in variables Xk, ξk the vector field Z is represented as

follows:
ξ̇k =

∑

|j|≥1

ξ
[j]
k (X) ξj, Ẋk =

∑

|j|≥1

X
[j]
k (X) ξj.

Because of Z = 0 on E, therefore ξ
[0]
k = 0, X

[0]
k = 0.

We consider a small (with respect to ξ) ε-neighbourhood of the manifold E. In order
to establish a proper analogy with perturbation theory, we introduce a small parameter ε,
putting

ξ = εζ.

Then
ζ̇k =

∑

M≥1

εM−1
∑

|j|=M

ξ
[j]
k (X) ζj, Ẋk =

∑

M≥1

εM
∑

|j|=M

X
[j]
k (X) ζj.

When ε = 0 we obtain the first order approximation

Ẋk = 0, ζ̇k =
∑

ν

ξνk (X) ζν .

We shall assume that the first order approximation system has diagonal form

Ẋk = 0, ξ̇k = λk (X) ξk.

103



To obtain the approximation of the N -the order, N ≥ 2 we must retain terms with ε up
to the power N − 1 inclusive.

It is easy to understand the appearance of the N -th order approximation in the variables
Xk, ξk. We assume that the considered system has a form:

Ẋk =
∑

|j|≥1

X
[j]
k (X) ξj, ξ̇k = λk (X) ξk +

∑

|j|≥2

ξ
[j]
k (X) ξj (1)

and neglect in the right-hand sides all monomials starting with degree N in Xk and degree
N + 1 in ξk. Then we can use a reduction to the normal form procedure [1, 2, 3, 4], i.e.
we can construct a change of variables after which the successive approximations take their
simplest form.

The dependence of the coefficients in system (1) on Xk dives definite difficulties (which
will be pointed out) compared with the normalization of ordinary quasilinear systems. We
will start with the change of variables

Y = X + Y (N−1) (X, ξ) , η = ξ + η(N) (X, ξ) , N ≥ 2. (2)

We directly quote the inverse expressions

X = Y − Y (N−1) (Y , η) + . . . , ξ = η − η(N) (Y , η) + . . . . (3)

Here new symbols have been substituted into the expressions Y (N−1), η(N) and the dots
indicate high order terms (only these terms changes due to dependence of the polynomials (2)
on Xk).

Now we differentiate expressions (2). According to (1) in the derivative of the monomial
F (X)ξj of degree M ≥ 1 there will be monomial (λ (X) · j)F (X) ξj of the same degree
plus terms of higher degrees including terms from the differentiation of F with respect to
X. Hence in the variables X and ξ we have

Ẏk = X
[1]
k + . . . + X

[N−2]
k +

∑

|j|=N−1

(
X

[j]
k + (λ · j)Y

(j)
k

)
ξj + . . .

η̇k = λkξk + ξ
[2]
k + . . . + ξ

[N−1]
k +

∑

|j|=N

(
ξ
[j]
k + (λ · j) η

(j)
k

)
ξj + . . . .

(4)

On the right-hand sides of (4) we change to variables Y and η having substituted ex-
pressions (3). After this transformation every monomial F (X) ξj of degree M is represented
as

F (X) ξj = F
(
Y − Y (N−1) (Y , η) + . . .

) (
η − η(N) (Y , η) + . . .

)j
. (5)

The expansion (5) gives a term F (Y )ηj of degree M , and then terms of degree M+N−1
and, finally, terms of degree greater than N . The degree N = M + N − 1 only for M = 1,
so that the coefficients of degree N for ηk changes only as a result of the transformation of
the polynomial

λk (X) ξk = λk (Y ) ηk −
∑

j

∂λk

∂Yj

Y
(N−1)
j ηj − λk(Y )η(N) + . . . .

Consequently, in variables Y and η we obtain:

Y
[j]
k = X

[j]
k + (λ · j)Y

(j)
k , |j| = N − 1, (6)
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η
[j]
k = ξ

[j]
k −

∑

i

∂λk

∂Yi

Y
(j−ek)
i + (λ · j − ek)η

(j)
k , (7)

|j| = N, jk ̸= 0, ek = (0, . . . , 1
(k)
, . . . , 0),

η
[j]
k = ξ

[j]
k + (−λk + (λ · j))η

(j)
k , |j| = N, jk = 0.

If (λ · j) ̸= 0, |j| = N − 1, then by a suitable choice of Y
(j)
k we can eliminate Y

[j]
k , after

which a choice of η
(j)
k , |j| = N , jk ̸= 0 eliminates the corresponding η

[j]
k . We can separately

eliminate η
[j]
k , |j| = N , jk = 0, if

λk ̸= j1λ1 + . . . + jk−1λk−1 + jk+1λk+1 + . . .

When λk does not depend on X, solution (6) does not affect (7), and the normalization
procedure proceeds according to the usual scheme. However, in this case the dependence
on X of other significantly complicates the calculation of the successive approximations. If
elimination is impossible, the corresponding coefficients from (2) will be taken to be zero.

To implement the normalization procedure of the system of differential equations near
the equilibrium manifold the special program was developed using the known complex of
symbolic computations MAPLE. Below we discuss results of application of this program to
the problem of motion of a heavy thin rod on a surface of a right circular inclined cylinder.

2. The problem of motion of a rod on an inclined cylinder

Let the rigid thin rod of the mass M moves without sliding on a rigid circular cylinder of
radius R. We suppose that the rod touches the cylinder by the point P . We will define the
position of the point P on the cylinder by the cylindrical coordinates φ and z. According
to [5], let us introduce the moving coordinate system Px1x2x3 with the unit vectors e1, e2

and e, so that the radius-vector PG of the center of mass G of the rod equals PG = se1.
The vector e is the normal vector to the cylinder at P . We denote by θ the angle of rotation
of the rod about e. We suppose that the rod moves on the cylinder under the action of
gravity and the generatrix of cylinder has a constant angle π

2
− α with the direction of

gravity. Then equations of motion of the rod on a cylinder is written as follows:

ṡ = u, θ̇ = ω, ż = −u sin θ,

φ̇ = −u cos θ

R
, u̇ = − Msu2

J + Ms2
+ 3ωu tan θ − MgRs cosφ cosα

(J + Ms2) cos2 θ
,

ω̇ = − Msuω

J + Ms2
− u2 sin θ cos3 θ

R2
− Mgs sin θ sinφ cosα

J + Ms2
− Mgs cos θ sinα

J + Ms2
.

(8)

Here J is the moment of inertia of the rod with respect to the axis perpendicular to the
rod and passing through its center of mass. Let us introduce the following coordinates:

Φ = φ +
s cos θ

R
, Q = z + s sin θ.

The equilibrium manifold is

E = {s = 0, u = 0, ω = 0} .
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Analysis of the normal form of equations (8) gives the following result. The process of the
motion of the rod can be qualitatively represented as oscillations in s, φ, z with amplitude
of order ε about an equilibrium position with coordinates Φ and Q combined with the slow
rotation of the rod (in the first approximation the latter effect is not present). In a time of
order 1

ε
the angle θ changes by a finite amount, and the equilibrium position about which the

oscillations occurs is displaced by an amount of order ε2 (this is the so called transgression
effect). The displacement occurs along the curve

Q = Q0 − 2R cotα (cos Φ− cos Φ0) .

Thus, using the normal form method we can investigate the behavior of the thin rigid
rod, moving on an inclined cylinder.
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Abstract

The representation of elements of free non-associative algebras in the form of a set of
multidimensional tables of coefficients is determined. The operation of finding partial
derivatives of elements of free non-associative algebras in the same form is considered.
Using this representation, a criterion for the primitiveness of elements of length two in
terms of matrix ranks is obtained, as well as a primitivity test of elements of arbitrary
length. With this test, the number of primitive elements with two generators was
estimated.

Keywords: Schreier varieties of algebras, free non-associative algebras, primitive
elements in free non-associative algebras, free differential calculus in free algebras.

1. Introduction

In 1947 A.G. Kurosh [2] proved that subalgebras of free non-associative algebras are free.
Similar result for free Lie algebras was proved by A.I. Shirshov in 1953 [9].

Primitive element of a free algebra is an element of some set of free generators of this
free algebra.

In 1994 A.A. Mikhalev and A.A. Zolotykh [8] using free differential calculus constructed
algorithms to recognize primitive elements of free Lie algebras and superalgebras and to
construct complements of primitive elements with respect to free generating sets. For free
non-associative algebras these algorithms were constructed by A.A. Mikhalev, U.U. Umir-
baev, and J.-T. Yu [6]. Modified versions of these algorithms with computer realization
was suggested by A.A. Chepovskii. In the monographs [7, 5] many properties of primitive
elements were considered. In 2021 M.V. Maisuradze [3] created software implementation of
algorithms for free non-associative algebras and free differential calculus in the SageMath
computer algebra system.

In this talk we consider primitive elements of free non-associative algebras over finite
fields. In particular, we propose a new approach to the study of elements of free non-
associative algebras and ways of counting primitive elements in these algebras over finite
fields. In our study, we will use the technique of free differential calculus and the criterion
of primitivity [6]:

The system a1, a2, . . . , ar of elements of a free non-associative algebra A is primitive
if and only if the matrix (∂(a1), . . . , ∂(ar)) is left invertible over U(A). In particular, an
element a ∈ A is primitive if and only if there are elements m1, . . . ,mn ∈ U(A) such that∑n

i=1mi
∂a
∂xi

= 1.
Here, U(A) – universal multiplicative enveloping algebra, which is a free associative alge-

bra with a set of free generators S = {rw, lw | w ∈ W} ∪ {1} – left and right multiplication
operators on words from the free groupoid W on X.

The technique of free differential calculus uses a linear differentiation operator D sat-
isfying the Leibniz rule: D (uv) = D (u)v + uD (v), u, v ∈ A and commuting with field
elements: D (au) = aD (u), a ∈ K, u ∈ A. Partial derivatives ∂u

∂xi
of an element u ∈ A are

elements of U(A) such that
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D (u) =
∂u

∂x1

D (x1) + . . . +
∂u

∂xn

D (xn)

2. Linear subspaces

The elements of a free algebra over a field K can be represented as elements of an
arithmetic vector space – tuples composed of coefficients of terms. Due to the Schreier
property, one can consider a free algebra as their direct sum of its subalgebras. At the same
time, various decompositions into direct terms can be used, depending on the current task.

To begin with, let’s consider the decomposition by the length of the word and the place-
ment of brackets.

Let A be a free algebra with n generators. We divide the basis of the vector space
into groups according to the length of the word. In the non-associative case, an additional
division into groups by the arrangement of brackets will also be required. In each group of
words of length k there will be nk elements that can be written as a k-dimensional table. It
is also convenient to write the coefficients for these monomials in the form of a k-dimensional
table.

It is also convenient to represent the unit and words of a free groupoid in the form of
multidimensional tables. Denote: x̄ × . . . × x̄ is a k-dimensional table in which in place
(i1, . . . , ik) there is an element xi1 . . . xik . In the non-associative case, the arrangement of
brackets in the product x̄× . . .× x̄ coincides with the arrangement of brackets in the element
xi1 . . . xik . Considering multiplication between tables of coefficients and words, as well as
addition between elements of one of the subspaces described above, element-wise, we get a
more convenient representation of the elements of free algebras.

Another useful way to decompose a free algebra into a direct sum is obtained if one of
the symbols for each of its possible variants is fixed in a word. Let’s call them layers.

When differentiating monomials of length 1, we obtain the same vector of free terms of
partial derivatives. Differentiating all monomials of length 2 with coefficients written as a
matrix will give us the same matrix of coefficients for right derivatives and transposed for
left ones, in which each layer (in the sense described above) corresponds to the coefficients
of partial derivatives. In the general case, when differentiating a monomial of length k,
one obtains k of various basic monomials of a universal multiplicative enveloping algebra.
Thus, a set of partial derivatives of an element of a free non-associative algebra can be
written in the form of multidimensional tables that coincide up to transpositions with such
a representation of the element.

This allows us to formulate a criterion for the primitiveness of elements of length 2 in
terms of linear algebra.

3. Criterion of primitiveness of an element of length 2 and a sign
of primitiveness

Statement 1. The element h = a · x̄ + B · x̄⊗ x̄ of free non-associative algebra is primitive
if and only if the rank of the matrix

(
a | B | BT

)
is greater than the rank of the matrix(

B | BT
)
.

Proof. We use the technique of free differential calculus and the criterion of primitiveness.
An element is primitive if and only if there are m1,m2, . . . ,mn ∈ U(A) such that m1

∂
∂x1

+

m2
∂

∂x2
+ . . . + mn

∂
∂xn

= 1.
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The matrix
(
a | B | BT

)
contains n rows, where n is the number of free generators. Each

of the rows of the matrix corresponds to the representation of a partial derivative of one of
the variables in the form of multidimensional tables.

The problem of determining primitiveness is solved by a reduction algorithm, the step
of which is to eliminate the higher monomials from derivatives at the expense of other
derivatives. Since all the higher monomials lxi

and rxi
of derived elements of length 2

(in general, we will write opxi
) can be obtained either as a · opxi

= b · (c · opxi
), or as

a · opxi
= (b · opxi

) · c , then it is enough to consider two cases.
Case 1. For reduction, multiplication of derivatives by elements U(A) different from

constants is used. In this case, it from partial derivatives must initially be a constant other
than zero. By the criterion of primitiveness, the element is primitive.

Obviously, rk
(
a | B | BT

)
> rk

(
B | BT

)
, because in the matrix

(
B | BT

)
there is a

zero row, and in the vector a there is a non-zero constant in this row.
Case 2. For reduction, only multiplication by elements of F is used.
In this case, the reduction algorithm reduces to solving linear system over the field F .
Using the Kronecker-Capelli criterion, we obtain a proof of the statement.

The criterion obtained for elements of length 2 can be generalized to a test of the primi-
tiveness of elements of arbitrary length. The transposition of the matrices is replaced by a
permutation of the sides of the coefficient tables. And instead of the rank of the matrix, it
is necessary to consider the rank of a system of vectors composed of elements of layers of
multidimensional coefficient tables.

Only the case when only a linear reduction of a system of partial derivatives is performed
falls under the action of this test. I.e., a linear system is solved:

α1
∂

∂x1

+ . . . + αn
∂

∂xn

= 1, α1, . . . , αn ∈ F.

4. Estimation of the number of primitive elements with two gen-
erators of arbitrary length

Assuming that the coefficient for the word w is denoted as aw, and using the primitiveness
test, we found that the coefficients for words with the same arrangement of brackets are
proportional. For example, for monomials of length 3 of the form x(xx):

ax2(x2x2) = tax2(x2x1) = t2ax1(x2x1)

= tax2(x1x2) = t2ax2(x1x1)

= tax1(x2x2) = t2ax1(x1x2) = t3ax1(x1x1).

where t is the general coefficient of proportionality between nonunit partial derivative
monomes. When expressing ax2(x2x2) through other coefficients, its degree is equal to the
number of x1 in the monomial corresponding to the coefficient and vice versa, if we express
ax1(x1x1).

This rule is valid for monomials of any length. If the coefficient matrix for any group of
monomials of length k is written by the k-dimensional table (ai1i2...ik), ij = 1..2, then either
a11...1 = . . . = tka22...2, or a22...2 = . . . = ska11...1.

The Catalan number Ck−1 of equations relates coefficients for monomials of length k.

For monomials of shorter length, the number of equations is
k−1∑
i=2

Ci−1.
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Total
k∑

i=2

Ci−1 of equations relates coefficients for monomials.

Denoting Sk
2 (q) – the number of primitive elements of length k of a free non-associative

algebra with two generators over the field Fq, we obtain the following expression:

Sk
2 (q) ⩾ q(q − 1)(q + 1)q

k−1∑
i=2

Ci−1 (
qCk−1 − 1

)
.

In particular,
S2
2(q) = q(q − 1)(q + 1)q0(q1 − 1) = q(q − 1)2(q + 1) (equality is due to the fact that the

primitiveness criterion for elements of length 2, which we used, has been proved).
S3
2(q) ⩾ q(q1)(q + 1)q1(q2 − 1) = q2(q − 1)2(q + 1)2

S4
2(q) ⩾ q(q − 1)(q + 1)q3(q5 − 1) = q4(q − 1)(q + 1)(q5 − 1)

S5
2(q) ⩾ q(q − 1)(q + 1)q8(q14 − 1) = q9(q − 1)(q + 1)(q14 − 1)

The right part of the obtained estimate in the case of lengths 2 and 3 coincides with the
formulas for counting such elements obtained earlier by A.A. Chepovskii in the dissertation
[1].

References

[1] A.A. Chepovskii. Primitive elements of the algebras of Schreier varieties. Dissertation for
the degree of Candidate of Physical and Mathematical Sciences. Moscow, 2011.

[2] A.G. Kurosh. Non-associative free algebras and free products of algebras. Matem. Sb. 20
(1977), no. 2, 239-262.

[3] M.V. Maisuradze. Software implementation of algorithms for working with primitive
elements in free non-associative algebras. J. Intelligent Systems. Theory and Applications,
Volume 25, Issue 4, Pages 170-175, 2021.

[4] A.A. Mikhalev, A.V. Mikhalev, A.A. Chepovskii, K. Champagnier. Primitive systems of
free non-associative algebras. J. Math. Sci. 156 (2009), no. 2, 320-335.

[5] A.A. Mikhalev, V. Shpilrain, J.-T. Yu. Combinatorial Methods: Free Groups, Polyno-
mials, and Free Algebras. Springer, New York, 2004.

[6] A.A. Mikhalev, U.U. Umirbaev, J.-T. Yu. Authomorphic orbits in free non-associative
algebras. J. Algebra 243 (2001), 198-223.

[7] A.A. Mikhalev, A.A. Zolotykh. Combinatorial Aspects of Lie superalgebras. CRC Press,
Boca Raton, 1995.

[8] A.A. Mikhalev, A.A. Zolotykh. Rank and primitivity of elements of free color Lie (p-)
superalgenras. Internat. Journal Algebra Comput. 4 (1994), 617-656.

[9] A.I. Shirshov. Subalgebras of free Lie algebras. Matem. Sb. 33 (1953), no. 2, 441-452.

110



Computing of Tropical Sequences Associated with
Somos Sequences in Gfan Package

F. Mikhailov

Saint Petersburg Electrotechnical University ”LETI”, Russia

e-mail: mifa 98@mail.ru

Abstract

The main objective of this work is to study tropical recurrent sequences associated
with Somos sequences. For a set of tropical recurrent sequences, D. Grigoriev put
forward a hypothesis of stabilization of the maximum dimensions of solutions to systems
of tropical equations given by polynomials, which depend on the length of the sequence
under consideration. The validity of such a hypothesis would make it possible to
calculate the dimensions of these solutions for systems of arbitrary length. The main
purpose of this work is to compute tropical sequences associated with Somos sequences
using the Gfan package and to test the Grigoriev hypothesis.

Keywords: tropical recurrent sequence, tropical prevariety, Gfan package, Somos
sequence

1. Introduction

Tropical mathematics is a young area of modern mathematics related to the study of
semirings with idempotent addition. Despite its novelty, it has already found its application
in algebra, geometry, mathematical physics, biology [1], economics, neural network theory
[3], dynamic programming, and other areas.

This work is a continuation of the work [3], which was devoted to tropical linear recurrent
sequences. As part of this work, tropical sequences associated with Somos sequences are
computed in the Gfan package. The purpose of this work, as well as the previous one, is to
test Grigoriev’s hypothesis about the stabilization of the maximum dimensions of solutions
to systems of tropical equations given by polynomials that depend on the length of the
sequence under consideration. The validity of such a hypothesis would make it possible to
calculate the dimensions of these solutions for systems of arbitrary length.

Gfan is a software package for computing universal Gröbner bases, some related geometric
objects (Gröbner fans) and tropical varieties, developed in 2005 by A. Jensen, based on the
algorithms described and developed in his dissertation [4]. The Gfan package can compute
universal Gröbner bases, Gröbner fans, tropical prevarieties, varieties given by a system of
tropical polynomials, and other objects of tropical geometry and the theory of Gröbner bases.
It is currently the most powerful software tool for such computations. Gfan is distributed as
a standard Linux package and is part of the Debian distribution.

2. Formulation of the problem

One of the main objects of tropical mathematics is the tropical semiring (R ∪
{−∞},⊕,⊗). This set consists of real numbers with an additional element – minus in-
finity. In the tropical semiring, the classical operations of addition and multiplication over
real numbers are replaced by the operations of taking the maximum and classical addition
respectively: x⊕ y := max{x, y} , x⊗ y := x+ y. Tropical mathematics has its analogues of
polynomial algebra, linear algebra and other areas of mathematics [5]. Taking the minimum
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can be considered as tropical addition, then the additional element to the set of real numbers
will be plus infinity.

Let k ≥ 2 be a natural number and

α = {αi|1 ≤ i ≤ [k/2]}, x = {xj| − k/2 < j ≤ [k/2]}

- two sets of independent formal variables in the amount of [k/2] in the first case and
k in the second. The sequence of rational functions Somos-k of variables from α and x,
Sk(n) = Sk(n;α;x)(n ∈ Z), is defined by the recursive relation

Sk

(
n +

[
k + 1

2

])
Sk

(
n−

[
k

2

])
=

∑

1≤i≤k/2

αiSk

(
n +

[
k + 1

2

]
− i

)
Sk

(
n−

[
k

2

]
+ i

)
.

This sequence for k = 6, α1 = α2 = α3 = 1, x−2 = x−1 = x0 = x1 = x2 = x3 = 1 was
first considered by Michael Somos in connection with the study of the properties of elliptic
theta functions [6].

In this work, we study the tropical sequences pk(n) associated with Sk(n) that satisfy
the recurrent relation

pk

(
n +

[
k + 1

2

])
+pk

(
n−

[
k

2

])
= min

1≤i≤k/2

{
pk

(
n +

[
k + 1

2

]
− i

)
+ pk

(
n−

[
k

2

]
+ i

)}
.

An interesting fact is that the tropical analogue of such sequences is related to the classical
Somos sequences by some relation. It was proved in [7] that Sk(n) is a Laurent polynomial
in the initial variables xj and an ordinary polynomial in αi. Therefore, it can be written as

Sk(n) =


 ∏

−k/2<j≤[k/2]

x
p
(j)
k (n)

j


Pk(n),

where Pk(n) = Pk(n;α;x are polynomials with integer coefficients and p
(j)
k (n) are integer

sequences.
In this work, we will consider all solutions of the finite sequences pk(n) with 0 ≤ n ≤ s for

k = 4 and k = 5. To do this, we transform the tropical recurrent sequence into a system of
tropical polynomials. The solution for the system of tropical polynomials will be found using
the Gfan package, computing the tropical prevarieties for the system. Detailed computations
for tropical linear recurrent sequences with all definitions are presented in [3].

3. Computations of Somos-4 sequences in the Gfan package

In this work, we consider sequences Somos-4 and Somos-5. Let us consider detailed
computations for k = 4. To compute the sequences p4(n), we consider the sequences

q4(n) = ∆2p4(n) = ∆p4(n + 1)−∆p4(n) = p4(n + 2)− 2p4(n + 1) + p4(n).

Then the tropical relations will look like

q4(n− 1) + q4(n) + q4(n + 1) + max{0, q4(n)} = 0

For computation in the Gfan package, we reduce this relation to a tropical polynomial.
Let yn = q4(n). Then we get

max{yn−1 + yn + yn+1, yn−1 + 2yn + yn+1} = yn−1 ⊗ yn ⊗ yn+1 ⊕ yn−1 ⊗ y⊗2
n ⊗ yn+1
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To find solutions to this relation, we find tropical prevarieties. Since tropical prevarieties
are the set of nonsmoothness of a tropical polynomial, the difficulty for this is that this
polynomial is equal to zero. To solve this problem, add 0 as a term to the tropical polynomial

yn−1 ⊗ yn ⊗ yn+1 ⊕ yn−1 ⊗ y⊗2
n ⊗ yn+1 ⊕ 0.

We can notice that the system of tropical polynomials max{yn−1 +yn +yn+1, yn−1 +2yn +
yn+1} for 1 ≤ n ≤ s − 1 reaches a maximum greater than zero only in two cases: y0 > 0
and ys > 0. Because of this, the addition of the term 0 does not affect the dimension of the
tropical prevariety. Therefore, to compute the dimensions of the solution space, these cases
were excluded. This idea was verified experimentally in the Gfan package for computed finite
sequences.

To compute tropical prevarieties, we compose a system of tropical polynomials for all
relations for 1 ≤ n ≤ s − 1. Tropical prevarieties can be computed using the function
gfan tropicalintersection of the Gfan package [8]. Denote the dimension of the solution
space by ds. The obtained dimensions of the solution space are presented in Table. 1.

Table 1: Dimensions of the Somos-4 solution space

s 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
ds 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6

The obtained solutions correspond to the calculations carried out in [9].

4. Computations of Somos-5 sequences in the Gfan package

The tropical relations in this case look like

q5(n− 2) + q5(n− 1) + q5(n) + q4(n + 1) + max{0, q5(n− 1) + q5(n)} = 0.

Let yn = q4(n). Then we get

max{yn−2 + yn−1 + yn + yn+1, yn−2 + 2yn−1 + 2yn + yn+1} = 0.

Then we consider tropical prevarieties for the following polynomial

yn−2 ⊗ yn−1 ⊗ yn ⊗ yn+1 ⊕ yn−2 ⊗ y⊗2
n−1 ⊗ y⊗2

n ⊗ yn+1 ⊕ 0.

We can notice that the system of tropical polynomials max{yn−2+yn−1+yn+yn+1, yn−2+
2yn−1 + 2yn + yn+1} for 2 ≤ n ≤ s − 1 reaches a maximum greater than zero only in three
linear cases: y0 > 0, ys > 0 and yn = (−1)n. Because of this, the addition of the term 0 does
not affect the dimension of the tropical prevariety. Therefore, to compute the dimensions of
the solution space, these cases were excluded.

The obtained dimensions of the solution space are presented in Table. 2.

5. Conclusion

Based on the computed tropical prevarieties, we can make the assumption that for Somos-
4 sequences ds =

[
s−2
4

]
+ 2. Then for such sequences the tropical entropy [3] takes the value
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Table 2: Dimensions of the Somos-5 solution space

s 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
ds 3 3 3 4 4 4 4 4 5 5 6 6 6 6 6 7 7 8 8 8

H = 1/4. For systems of tropical polynomials yn−1 ⊗ yn ⊗ yn+1 ⊕ yn−1 ⊗ y⊗2
n ⊗ yn+1 for

1 ≤ n ≤ s − 1 without addition 0, it is obtained that ds = 2 for any s. Then for such
sequences the tropical entropy takes the value H = 0.

Based on the computed tropical prevarieties, we can make the assumption that for Somos-
5 the tropical entropy takes the value H = 2/7. For systems of tropical polynomials yn−2 ⊗
yn−1 ⊗ yn ⊗ yn+1 ⊕ yn−2 ⊗ y⊗2

n−1 ⊗ y⊗2
n ⊗ yn+1 for 2 ≤ n ≤ s − 1 without addition 0, it is

obtained that ds = 3 for any s. Then for such sequences the tropical entropy takes the value
H = 0.

For the Somos-6 and Somos-7 cases, it is more difficult to find the dimension of the
solution space using the computation of tropical prevarieties. The problem is that before
adding zero as a tropical monomial to tropical polynomials, the solution space of finite
sequences increases.

The results obtained are consistent with Grigoriev’s hypotises on the stabilization of the
maximum dimensions of solutions to systems of tropical sequences.
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Abstract

We will discuss bounding the support in the differential elimination problem. The
main result is the characterisation of the support of the result of the differential elim-
ination for a planar system with generic polynomials of fixed degree in the right-hand
side.

Keywords: differential elimination, Newton polytope, dynamical systems

Differential elimination is a differential analogue of elimination for polynomial systems
and Gaussian elimination from linear algebra. Its study has been initiated by Ritt [1], the
founder of differential algebra, in the 1930s. He developed the foundations of the characteris-
tic set approach, which has been made fully constructive by Seidenberg [2]. The algorithmic
aspect of this research culminated in the Rosenfeld-Gröbner algorithm [3, 4] implemented in
the BLAD library [5] (available through Maple). In theory, differential elimination problem
can be stated (and solved) in full generality but here we will focus on an important special
case.

Let R be a differential ring. Consider a ring of polynomials in infinitely many variables

R[x(∞)] := R[x, x′, x′′, x(3), ...]

and extend the derivation from R to this ring by (x(j))′ := x(j+1). The resulting differen-
tial ring is called the ring of differential polynomials in x over R. The ring of differential
polynomials in several variables is defined by iterating this construction.

Let S := R[x∞
1 , ..., x∞

n ] be a ring of differential polynomials over a differential ring R. An
ideal I ⊂ S is called a differential ideal if a′ ∈ I for every a ∈ I. Denote by ⟨f1, ..., fs⟩(∞)

the differential ideal
⟨f (∞)

1 , ..., f (∞)
s ⟩

for every f1, ..., fs ∈ S.
Consider a system of differential equations of the form

x′ = f(x),

where x = (x1, ..., xn) is a tuple of differential indeterminates and f = (f1, ..., fn) is a tuple of
polynomials from C[x]. Systems of these form describe dynamical systems with polynomial
dynamics and appear often in the literature. One natural elimination task is to eliminate all
the variables except one, say x1, that is, describe a differential ideal

⟨x′
1 − f1(x), ..., x′

n − fn(x)⟩(∞) ∩ C[x
(∞)
1 ].

In this report we will consider the case of system

x′
1 − g1(x1, x2) = x′

2 − g2(x1, x2) = 0,

where g1 and g2 are generic polynomials of degrees d1 and d2, respectively, and prove the
characterization of Newton polytopes of the minimal polynomial of the corresponding elim-
ination ideal for the degree pairs (d1, d2).
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Figure 1: Newton polytope of the minimal polynomial for (d1, d2), d1 > d2 case.

Figure 2: Newton polytope of the minimal polynomial for (d1, d2), d1 ≥ d2 case.

Theorem 1. Consider the system

{
x′
1 = g1(x1, x2),

x′
2 = g2(x1, x2),

(1)

where g1 and g2 are generic polynomials of degrees d1 and d2, respectively. Then the Newton
polytope of the minimal polynomial of (1) in (s0, s1, s2)-coordinates (xs0

1 (x′
1)

s1(x′′
1)s2) is

1. a pyramid with vertices

(0, 0, 0), (d1(d1 + d2 − 1), 0, 0), (d1(d1 − 1), d1, 0), (0, 2d1 − 1, 0), (0, 0, d1)

if d1 > d2 (see figure 1).

2. a tetrahedron with vertices

(0, 0, 0), (d1(d1 + d2 − 1), 0, 0), (0, d1 + d2 − 1, 0), (0, 0, d1)

if d1 ⩽ d2 (see figure 2).
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Abstract

Given an input program P , program specialization aims at run-time optimization
of P w.r.t. its sintactic structures. The simplest example is to generate a definition of
a (partial) subfunction of the (partial) function defined by P . One may wonder in some
of syntactic properties of the program q resulted by specialization rather than run-time
of q. We show a number of corollaries of known mathematical constructions, which
derived by a general purpose tool, a specializer, and shortly introduce those properties
of the tool, that allow it to achieve such interesting results. The idea of using such a
tool for generating mathematical formulae was originated by Alexandr Korlukov.

Keywords: program specialization, finite extension of field, divisibility property,
well quasi-order, free monoid

Memory of Alexandr V. Korlyukov

We use the following presentation programming language R. The alphabet A is a union
of a set of symbols and the natural numbers. The data set is defined by the grammar:
d ::= (d1) | d1 d2 | symbol | empty

A program in R is a term rewriting system. The semantics of the language is based on
pattern matching and call-by-value evaluation. As usually, the rewriting rules are ordered
for matching from the top to the bottom. The terms are generated using two constructors.
The first is concatenation and is denoted by the blank. The data set is a free monoid w.r.t.
the concatenation1. The second constructor is unary. It is denoted with its parenthesis only
(that is without a name) and is used for constructing tree structures. Every function is
unary. Since the parenthesis is used as the constructor, the fucntion call is denoted by angle
brackets closing both the function name and its arguments. Empty sequence is a special
basic datum denoted with nothing. It is the neutral element of concatenation. Below we use
sometimes the meta-symbol [] for the empty expression. There exist two types of variables:
namee and names. An e-variable can take any datum as its value, an s-variable ranges over
A. For every rewriting rule its set of variables from the left side includes its set of variables
from the right side.

1. Specialization for Deriving Formulae

The main goal of specialization of programs is their running time optimization. Never-
theless a specialized program represents a residual code that may be interesting by itself and
even is not intended to be evaluated with some input.

1Associativity of concatenation may cause pattern matching to be ambiguous on some patterns. For
example, the following equation xe ye = A B has three solutions: 1) xe = [], ye = A B; 2) xe = A, ye =

B; 3) xe = A B, ye = []; . In such cases the R pattern matching chooses the solution with the minimal
length of the datum assigned to the first e-variable (from the left to the right) and so on by induction.
See the examples given below and [10] for details. In our case the first solution xe = [], ye = A B will be
chosen.
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Let theorem be a program with two parameters condition1 and condition2. Then de-
riving a corollary theoremcondition1 from theorem and condition1 is a good example demon-
strating Korlukov’s idea:

theoremcondition1(condition2) = theorem(condition1, condition2).

The corollary theoremcondition1 can be more useful then the general theorem when we are in
the scope of condition1.

Divisibility criteria are ways of telling whether one natural number divides another
without actually carrying the division through. Divisibility criteria are constructed in
terms of the digits that compose a given number. The criteria have to be simpler than
the direct division of the second number by the first one. Let N be the number whose
divisibility by another number d we are going to investigate. In the decimal system:
N = 10ndn + 10n−1dn−1 + · · ·+ 10d1 + d0 , where dn ̸= 0, 0 ≤ di ≤ 9.

Let us consider a positive integer qs the following program represents an algorithm being
a divisibility criterion by the number qs. I.e. checking a given input (of the program) on
divisibility is reduced to checking the output.

$ENTRY divide { qs (dse) = <div 1 0 qs (dse)>; }
div {

ms ress qs ( ) = ress ;

ms ress qs (dse ds) = <div <Mod <* ms 10 > qs>> <+ ress <* ds ms>> qs (dse)>; }
Where Mod is a primitive function returning the remainder of dividing the first argument
by the second, the primitive functions + and * stand for the corresponding mathematical
functions.

Function divide takes as arguments a given number qs and a sequence of the decimal
digits dse (dn, dn−1, . . . d0) of the number whose divisibility (by qs) is investigated. We
consequently calculate the remainders of the divisions of 10i by qs and add them. We have
united all rewriting rules of div and enclosed them with curly brackets following the function
name. Figures 1 and 2 below shows a number of examples of specializing this program w.r.t
q0s. Additional comments to the examples above will be given after a short introduction to
the specialization method used.

Arithmetic in Finite Field Extensions. Given an algebraic closed field K of characteristic
0 and its subfield F there is a classical constructive method consructing finite extensions
of F inside of K [8, 3]. The method is uniform both on K and its subfield set. Given a
non-constant polynomial p(x) ∈ K[x] which is irreducible over F , the field of fractions of
F [x]/(p) is an extension of F , which is isomorphic to the extension of F by a root of p (from
K). For instance, Q(i) ∼= Q(x)/(x2 + 1) is the field of the rational complex numbers. Thus
the procedure of extension takes two arguments: F and p(x).

Let Extension be a uniform definition of the arithmetic operations in the field of frac-
tions. Consider specialization of <Extension F [x], p0> w.r.t. a given irreducible polynomial
p0. The result of the specialization is definitions of the arithmetic operations in terms of
F [x]. Thus, for example, if p0(x) = x2 + 1 (irreducible over F ) the residual program repre-
sents formulae for calculating the complex numbers over the field F . Let p0(x) = x2 − 2 be
irreducible over an F , then we obtain formulae for calculating in F (

√
2).

Like in the function divide above, we declare the operations in the original filed F
undefined during specialization. That is to say, we call for functions defining the operations,
but declare the functions as external w.r.t. the given program module (in the case of divide
similar functions were primitive and the specializer had an information of properties of the
functions). If the external functions are defined (in another module) as the operations over
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Specialization of the program divide and its entry configuration <divide 3 (dse)> gives
the following result:
$ENTRY Go { (dse d0s) = <F19 (dse) d0s>;}/* d0 + ... + dn is divided by 3 */

F19 { ( ) x2s = x2s;

(x1e x3s) x2s = <F19 (x1e) <+ x2s x3s>>; }
If the entry configuration is <divide 8 (e.ds)> the residual program looks as:
$ENTRY Go { (d0s) = d0s ; /* d0 + 2*d1 + 4*d2 is divided by 8 */

(d1s d0s) = <+ d0s <* d1s 2>> ;

(x1e d2s d1s d0s) = <+ <+ d0s <* d1s 2>> <* d2s 4>>; }
For <divide 10 (dse)> the output of the specializer is:
$ENTRY Go { (dse d0s) = d0s ; } /* d0 is divided by 10 */

If we are interested in a divisibility criterion by 18, the specializer produces:
/* d0 + 10*(d1 + ... + dn) is devided by 18 */

$ENTRY Go { (dse d0s) = <F19 (dse) d0s>; }
F19 { () x2s = x2s ;

(x1e x3s) x2s = <F19 (x1e) <+ x2s <* x3s 10>>>; }

Figure 1: The results of specialization of the program divide.

the rational numbers, then in the two examples given above we have formulae for calculation
in Q(i) and Q(

√
2), respectively.

2. Some of Properties of the Specializer Used

The residual programs mentioned above were produced by the supercompiler SCP4 [6],
a specializer based on specialization method known as Turchin’s supercompilation [9]. We
note that the language R specified above is a functional programming language. For the sake
of simplicity in this section we consider only R-programs defining partial predicates rather
than arbitrary partial functions.

Any R-program P can be seen as a evaluation tree being infinite, as a rule, i.e. any
recursion is unfolded. The edges are labeled with P -patterns. Parameterized states of P label
the tree nodes. They are predicates. The tree root is labeled with the initial parameterized
state. Given a program and its initial parameterized state SCP4 explores the corresponding
evaluation tree, starting from the tree root. It considers the predicates labeling some of the
nodes as hypotheses to be proven. Given such a node it tries to prove the corresponding
hypothesis by induction on the R-machine steps along every path originating in this node.
There may be a number of hypotheses labeling different nodes to be simultaneously proven.
The main problems are as follows. How does SCP4 determine the hypotheses-nodes to be
proven? How does it decide that a current hypothesis is too strong to be automatically
proven? And if it takes such a decision, then taking into account the main specialization
aim, how should the statement be weakened? Both the problems arise from undecidability
of the program optimization task per se. Thus SCP4 has to approximate the corresponding
solutions. It is based on variants of Higman–Kruskal relation [1, 4], being well quasi-orders
on the parameterized program states along the evaluation tree paths.

It is also possible to manually create annotations in the input program to be specialized,
which may provide some support for SCP4. The structure of the proofs of all hypotheses

120



By 12 : d0 + 10d1 + 4(d2 + · · ·+ dn)
That is equivalent to: d0 − 2d1 + 4(d2 + · · ·+ dn).

By 37 : (d0 + 10d1 + 26d2) + (d3 + 10d4 + 26d5) + . . .
or (d0 + 10d1 − 11d2) + (d3 + 10d4 − 11d5) + . . .

By 101 : (d0 + 10d1 + 100d2 + 91d3 + d4) + (d5 + 10d6 + 100d7 + 91d8 + d9) + . . .
or (d0 + 10d1 − d2 − 10d3 + d4) + (d5 + 10d6 − d7 − 10d8 + d9) + . . .

For example 2023 is not divided by 37 because 3 + 20 + 2 = 25 is not divided by 37.

Figure 2: Additional divisibility criteria derived by the specializer.

encountered and maybe weakened specifies the residual program. We refer the reader to [9, 5]
for details.
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Abstract

The port-Hamiltonian approach provides a natural formalism for studying mechan-
ical and physical systems with interaction or dissipation. We address the problem of
recovering an optimal port-Hamiltonian structure for systems of ordinary differential
equations. The procedure includes a machine learning based phase – isolating the nodes
in the connectivity graph of the system and a “deterministic” phase – spelling-out the
internal geometric structure of each node.

Keywords: geometric mechanics, port-Hamiltonian systems, symplectic and Pois-
son structures, learning connectivity.

Introduction / motivation

This contribution is a part of a series of works related to geometric numerical methods
or more generally geometric mechanics – that is a study of methods and tools coming from
differential geometry which are useful for describing physical and mechanical systems, for
their qualitative analysis as well as reliable and efficient modelling and computer simulation.
We have made an overview of active research directions in the context ([1]) and realized that
some of them give rise to problems suitable for computer algebra algorithms ([2]).

We have in particular mentioned the so-called port-Hamiltonian systems (PHS). The
idea of those is rather natural: consider several mechanical systems governed by the classical
Hamiltonian dynamics (see e.g. [3] for the terminology from analytical mechanics); make
them interact by introducing some forces which will be encoded in ports. The construction,
to the best of our knowledge, first appeared in [4] with a rather straightforward engineering
approach, and was revisited in [5], where a kind of catalog of “components” appeared.

While conceptually the representation of such interacting systems in the port-
Hamiltonian form is merely a “game of notations”, it has important consequences for ef-
ficient simulation of those. One popular approach is to use the structure of PHS for a smart
strategy of distributed computations. An example (far from being unique) of such a strategy
is provided by modelling in synthetic music and acoustics ([6]).

One notices immediately that in all what is mentioned so far, there is one natural direction
of constructing a PHS (and the evolution equations) from the knowledge of physics of the
studied system and the interaction of its submodules. A more complicated direction would
be the other way around: from an arbitrary system of differential equations reconstruct the
structure of a PHS that represents it. The motivation for that construction will be the same
as before: produce a smart way of parallelizing / distributing the simulation of the studied
system. In what follows we will present an algorithm of this reconstruction.

PHS in a nutshell

Let us briefly recall that port-Hamiltonian systems are traditionally ([5]) decomposed to a
collection of interconnected subsystems (nodes), each of them can be written in the form:

ẋ = (J(x)−R(x))
∂H

∂x
+ w(x)u, (1)
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Here x is a vector-valued variable characterizing the state of the node, J(x) is a skew-
symmetric matrix (subject to some differential conditions), together with the Hamiltonian
function it corresponds to the conservative (internal) part of the node. R(x), w(x) and u
are the new terms corresponding to ports. Morally, R encodes internal forces, while w and
u are responsible for interaction with the “external world” (for the given node). One of
the messages of [5] is to classify the physically motivated origins of these terms: storage,
dissipation, control, etc, but for the current study we will not need those details.

The only important thing left to mention is that the whole PHS is constructed out of
systems like (1) (obviously with different x, J , R, . . . ) like building blocks – they are
interconnected via ports. The J , R and H variables stay internal for each node, while w and
u from different nodes start literally “talking to each other”, those interactions are called
input–output or flux–effort. Figure 1 from [7] is a schematic representation of a PHS in the
form of a decorated graph.

H, J
e1
f1

R

e2
f2

e3
f3

Figure 1: Representation of a port-Hamiltonian system. Image courtesy – [7].

The question we are addressing now is how to recover this graph structure together with
the data of Equation (1) for each node, given an arbitrary system of differential equations
Ẋ = F(X). Very roughly speaking the difficulty lies in severe non-uniqueness of the solution,
it is due to the fact that several systems of the form (1) connected together produce again
a (larger) system of the form (1). So one extreme case would be a graph with just one node
and only internal structure. The other extreme case is the opposite: forgetting completely
the conservative part of the subsystems, declare all the components of X to be nodes and
all the right-hand-sides to be ports. Both such solutions clearly do not make sense from the
perspective of distributed computations, so the real question we ask is to recover the PHS
structure which is somehow optimal. The solution is provided by the algorithm below.
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Algorithm

Input data: a system of differential equations in the form Ẋ = F(X)

I. Recovering the connectivity graph structure:

1. Declare all the components of X to be vertexes of the graph. From the right-
hand-sides recover the connectivity information for it.

2. Regroup strongly connected subsets of vertexes into clusters – those will be the
nodes of the final graph.

3. For each node separate the terms in the right-hand-sides that correspond to inter-
nal interactions (i.e. depending only on variables of their own node) and external
ones (all the others).

II. Decorating the graph part 1 – for each node recovering the Hamiltonian structure:

1. Construct (or select from a catalog constructed in advance) all the matrices J of
suitable size.

2. From the internal variables select the maximal combination of terms, preserving
one of the structures from the previous step. Check compatibility conditions.

3. Construct the function H satisfying (1), corresponding to the selected combina-
tion of terms. If this step results in unreasonably complicated symbolic com-
putations, come back to steps 1.-2., dropping highly non-linear terms from the
selection.

III. Decorating the graph part 2 – for each node recovering the ports:

1. The internal terms not selected in step II.2. are declared internal ports, associate
“virtual” vertexes to them.

2. To external terms for each group (responsible for interactions) assign an edge in
the resulting graph.

Output: the decorated graph, like on figure (1) is constructed.

Discussion

Several remarks are in place. First of all, the algorithm presented above is more a strategy
of action, we have provided details of various steps of it in [7] and [8]. Let us briefly sketch
them here for self-consistency of the paper.

The step I.2. is actually the crucial part of the whole construction. It turns out that
purely symbolic (deterministic) algorithms are very difficult to produce – this is explained
by the non-uniqueness of solutions mentioned above and a rather vague notion of optimality.
The way out was suggested by the use of machine learning algorithms being extremely pop-
ular nowadays, hence the word “learning” in the title. Indeed, the problem turned out to
be very suitable for simple neural networks algorithms: we are able to generate sufficiently
many port-Hamiltonian systems with a known connectivity structure (for example using the
results of [6] and the library [9]) – those are used to train the network. For the precise choice
of the algorithms, we have tried several approaches ranging from purely matrix networks
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to ones specially tailored for graph analysis. The most efficient method from the scalabil-
ity perspective turned out to be based on a rather standard graph pooling – details and
benchmarking will be available in [8].

Second, the step II.2. is also an intricate question, having its origins in symplectic or
Poisson geometry. The mentioned compatibility conditions are related to some cohomological
constructions. We have presented the details in [7], and the necessary vocabulary is reviewed
in [2]. It is important to note that in the purely Hamiltonian formulation the problem does
not necessarily admit a solution, but the possibility to shift some of the terms to ports
actually explains the existence.

Last but not least, is a rather conceptual remark about the perspectives of this study.
The approach presented above can be viewed regardless of the potential application for
modelling and simulation of mechanical systems. In the essence it is a way to “order” a
system of ordinary differential equation. In contrast to standard approaches often based
on ordering polynomials or classification of elementary functions, the suggested algorithm
rather takes into account the internal structure of the system as a whole. Hence it may be
viewed as a new approach to definition of normal forms of systems of differential equations.
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Abstract

Over a field of characteristic not equal to two, we proved a lower bound for the rank
of a square matrix, where every entry outside the leading diagonal is equal to either
zero or one, but every diagonal entry is neither zero nor one. This lower bound equals
half of the order of the matrix. It is tight.
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The rank of an n × n matrix over a field can be calculated using a polynomial number
of processors and performing only O(log2

2 n) algebraic operations per processor [1, 2]. On
the other hand, the computational complexity of both matrix rank [3] and the characteristic
polynomial [4, 5] is equivalent in complexity to matrix multiplication. In practice, calcu-
lating the matrix rank requires a lot of time or a large number of processors. Simple lower
bounds are important for planning calculations because a sufficiently large rank ensures the
applicability of some algorithms for solving pseudo-Boolean programming problems [6, 7].
The distribution of the matrix rank over a finite field is used in cryptography [8].

Let us denote by K an arbitrary field of characteristic not equal to two. Let us consider
an n× n matrix over the field K, where every entry outside the leading diagonal belongs to
the set {0, 1}, but every diagonal entry is neither 0 nor 1. How small can its rank be?

This problem has a simple geometric interpretation. We consider an affine space over a
field K with a fixed system of Cartesian coordinates. A point is identified with a column,
where entries are coordinates of the point in this coordinate system. A column of zeros
and ones corresponds to a (0, 1)-point, i.e., to a vertex of the unit cube. In matrices under
consideration, each column corresponds to a point in a straight line passing through two
adjacent (0, 1)-points, but this point does not coincide with any of (0, 1)-points. Moreover,
different columns of the matrix correspond to non-parallel straight lines.

The rank of a matrix A is related to the dimensionality of the affine hull L of all points
corresponding to columns of the matrix. If L passes through the origin, then rank(A) =
dim(L), else rank(A) = dim(L) + 1.

Theorem 1. Given an n×n matrix A over the field K, where every entry outside the leading
diagonal belongs to the set {0, 1}, but every diagonal entry is neither 0 nor 1. The rank of
the matrix A is at least n/2.

Proof. The theorem is obvious when the matrix A has at most two columns because
rank(A) ≥ 1.

Let the theorem be proved for some n ≥ 3 and for all m×m matrices with m < n. Let
us consider an n× n matrix A.

A column of the matrix A corresponds to a point in a straight line passing through
two adjacent (0, 1)-points, but this point itself is different from any (0, 1)-point. Changes of
coordinates xk → 1−xk (for different indices k) commute with each other and map each (0, 1)-
point to some (0, 1)-point. Such coordinate transformations preserve the dimensionality of
the affine hull of given points, as well as the number of (0, 1)-points belonging to this affine
hull. Therefore, if no (0, 1)-point belongs to this affine hull, then such transformations do
not affect the rank of the matrix.
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By applying these transformations to the matrix A, one can obtain a matrix M of the
same type so that in the last column of the matrix M all entries vanish except for the entry
belonging to the leading diagonal. Removing both last column and last row from the matrix
M , we get the (n − 1) × (n − 1) matrix B of lower rank. By the inductive hypothesis,
rank(B) ≥ (n− 1)/2. Thus, rank(M) ≥ n/2.

Let us denote by L the affine hull of all points corresponding to columns of M . Two
cases are possible. If the origin belongs to L, then rank(M) = dim(L). Therefore, the rank
rank(A) ≥ dim(L) = rank(M) ≥ n/2.

Else if the origin does not belong to L, then rank(A) ≥ rank(M) − 1 = rank(B). By
applying some transformations to the matrix B, one can obtain a matrix N of the same type
so that in the last column of the matrix N all entries vanish except for the entry belonging
to the leading diagonal. Moreover, rank(B) ≥ rank(N). Removing both last column and
last row from the matrix N , we get the (n − 2) × (n − 2) matrix C of lower rank. By the
inductive hypothesis, rank(C) ≥ (n − 2)/2 = (n/2) − 1. Thus, rank(N) ≥ n/2. Therefore,
rank(A) ≥ rank(B) ≥ rank(N) ≥ n/2.

The lower bound is tight. Let ⌈·⌉ denote rounding up.

Theorem 2. For every odd n, there is an n× n matrix A over the field K such that every
entry outside the leading diagonal belongs to the set {0, 1}, every diagonal entry is neither 0
nor 1, no (0, 1)-point belongs to the affine hull of all points corresponding to columns of the
matrix A, and the equality rank(A) = ⌈n/2⌉ holds.
Proof. Let us consider the n× n matrix

A =




1/2 0 1 0 1 · · · 0 1
0 −1 1 0 0 · · · 0 0
0 1 −1 0 0 · · · 0 0
0 0 0 −1 1 · · · 0 0
0 0 0 1 −1 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · −1 1
0 0 0 0 0 · · · 1 −1




.

Let us denote by B an (n − 1) × (n − 1) matrix obtained by removing both first column
and first row from the matrix A. Obviously, rank(A) = rank(B) + 1. The matrix B is
block-diagonal with 2 × 2 blocks. All blocks are degenerate. Thus, rank(B) = (n − 1)/2.
Next, rank(A) = rank(B) + 1 = (n + 1)/2 = ⌈n/2⌉.

Every column of the matrix A is a solution to the inhomogeneous system of equations
{

2x1 − x2 − · · · − x2k − · · · − xn−1 = 1
x2k + x2k+1 = 0, 1 ≤ k ≤ (n− 1)/2

This system defines the affine hull, which does not pass through any (0, 1)-point.

Example 1. For the 3× 3 matrix



1/2 0 1
0 −1 1
0 1 −1


 ,

the rank equals two. Three columns correspond to three points belonging to a straight line L.
The straight line L is given by the system of two equations 1−2x1 +x2 = 0 and x2 +x3 = 0.
But the straight line L does not pass through any of the (0, 1)-points.
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Example 2. For 2× 2 matrices under consideration, the rank equals one for matrices

(
1/α 1

1 α

)
,

where α ̸∈ {0, 1}. Two points corresponding to columns of this matrix belong to a straight
line that passes through the origin, i.e., through a (0, 1)-point. This straight line is given by
the equation x2 = αx1. Therefore, if no (0, 1)-point belongs to the affine hull of all points
corresponding to columns of the matrix A, then rank(A) = 2.

Theorem 3. Given an even n and an n × n matrix A over the field K, where every entry
outside the leading diagonal belongs to the set {0, 1}, but every diagonal entry is neither 0
nor 1. If no (0, 1)-point belongs to the affine hull of all points corresponding to columns of
the matrix A, then the rank of the matrix A is at least (n/2) + 1.
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Abstract

We propose a symbolic algorithm and a C++ program for generating and calculat-
ing supersymmetric Feynman diagrams for N = 1 supersymmetric electrodynamics.
The program generates all diagrams that are necessary to calculate a specific contri-
bution to the two-point Green function of matter superfields in the needed order, and
then reduces the answer to the sum of Euclidean momentum integrals.

Keywords: computer algebra, quantum corrections, supersymmetry

1. Introduction

Computer algebra methods have been used in high energy physics for a long time. [1].

Various programs for calculations in high-energy physics can be divided into several
groups. The first group includes programs that can generate Feynman diagrams in the given
theories. The most famous ones are QGRAPH [2] and FeynArts [3, 4]. The first one uses
mathematical graph theory, the second one works directly with the Vick theorem.

The second group can work with momentum integrals produced by diagrams. The prob-
lem in this case is that such integrals are usually divergent so some regularization must be
implemented. Mostly such programs work with dimensional regularization. In the case of
integrals in d dimension a lot of methods were found to take them. Usually integrals are re-
duced using special methods [5] to limited number of so called master integrals (e.g. LiteRed
[6]). Then using standard methods these integrals can be taken (e.g. AMBRE [7]). The
third group appeared recently and try to combine generation of graphs and calculation of
integrals. These are FeynMaster [8], HepLib [9] and tapir [10]. Mostly they use QGRAPH
program to generate graphs and different software to calculate integrals.

Some of the mentioned programs were designed to work with such theories (e.g. FeynArts
[11]). But they work in component field terms. It is more comfortable to make calculations in
terms of superfields where manifest supersymmetry exists. There are also such programs that
can work in terms of superfields (SUSYCAL [12] and Susymath [13]). Unfortunately they
are rather limited, i.e. they cannot generate supegraphs, moreover now they are unavailable
to download.

Thus, we can note that despite the significant progress in this area, there is a noticeable
lack of software for working within supersymmetric theories in terms of superfields. So
recently new computer-algebraic approaches for working with superfields in the superspace
were proposed [14]. Using them, a program was created, that is capable to generate Feynman
diagrams in terms of superspace, as well as to perform various operations with them, after
which the result is output in the form of standard Feynman integrals.
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2. N = 1 superspace formalism

N = 1 superspace is a space with the coordinates (ct, x, y, z, θ), where θ is a Majorana
spinor1. The spinor indices are raised and lowered using charge conjugation matrices:

θa ≡ θbC
ba; θa = θbCab.

The supersymmetric covariant derivative is usually introduced as follows:

D̄ȧ =
∂

∂θ̄ȧ
− i(γµ)ȧ

bθb ∂µ.

The usual fields in this approach are components of superfields. So, the gauge field is a
component of the real superfield V (xµ, θ), spinor, and scalar superfields are components of
chiral or antichiral fields (ϕ(xµ, θ) and ϕ∗(xµ, θ), respectively), which, by definition, satisfy
the conditions:

D̄ȧϕ = 0, Daϕ
∗ = 0.

Integration is introduced with respect to θ variables. In our notation , it can be defined as
follows: ∫

d2θ̄ =
1

2
D̄2 =

1

2
D̄ȧD̄ȧ,

∫
d2θ = −1

2
D2 =

1

2
DaDa

∫
d4θ =

∫
d2θ̄d2θ.

3. Perturbation theory in N = 1 superspace formalism

We now consider how the standard perturbation theory works in the superspace2. It
is most convenient to carry out quantization by the functional integral method. The main
element of this approach, from which various quantities can be obtained, is the generating
functional Z, which is constructed as follows:

Z = eiSint(
1
i

δ
δj

, 1
i

δ
δJ

)

∫
D(superfields) ei(S

(2)+Ssources) = eiSint(
1
i

δ
δj

, 1
i

δ
δJ

)Z0 (1)

where S(2) is a contribution to the action quadratic in fields, and Sint is a sum of contributions
of degree higher than 2, Ssources = jϕ+JV and D(superfields) is a measure of the functional
integration. In the end all sources must be set to zero. The Gaussian integral Z0 is taken
using standard methods. The interaction term series expansion is interpreted graphically
using Feynman diagrams. However we will consider the effective action. It is obtained by
Legendre transformation:

Γ = −i lnZ[Sources]− Ssources|sources−→superfields, (2)

In fact, Γ removes all disconnected diagrams and one-particle reducible diagrams from Z.
These are diagrams that can be divided by cutting a single internal line.

1You can read more about spinors, for example, in [15]
2You can read about the usual perturbation theory in QFT, for example, in [16]
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4. Main steps of calculation and result

First of all exponent in the (1) should be expanded. We work directly with this formula
and add external fields to the exponent in order to obtain effective action part according to
Legendre transformation (2). For example one of such terms takes form:

-1/8*i*e^4*F#_1^1{-1}*J_1^1{-7}*j_1_1{-11}*j#_2^1{7}*J_2^1{-7}*F_2_1{1}

*j#_3^1{1001}*J_3^1{-7}*J_3^1{-11}*j_3_1{-13}

Γ ∼ −ie0
2

∫
d8x1 ϕ

∗
1

1

i

δ

δJ1

1

i

δ

δj1

e20
2

∫
d8x2

1

i

δ

δj∗2

1

i

δ

δJ2

1

i

δ

δJ2

1

i

δ

δj2
× e0

2

∫
d8x3

1

i

δ

δj∗3

1

i

δ

δJ3
ϕ3Z0

∣∣∣∣
J,j=0

here J_2^1{-7} and j_3_1{-13} means derivatives by sources.
At the second step we need to collect all the derivatives in pairs, because Z0 has only

squares of sources.

-1/4*i*e^4*F#_1^1{-1}*F_2_1{1}*J_1^1{-7}*J_3^1{-7}*j_1_1{-11}*j#_3^1{1001}

*j#_2^1{7}*j_3_1{-13}*J_2^1{-7}*J_3^1{-11}

Γ ∼ −ie
4
0

8

∫
d8x1 d

8x2 d
8x3 ϕ

∗
1ϕ3

δ

δJ1

δ

δj1

δ

δj∗2

δ

δJ2

δ

δJ2

δ

δj2

δ

δj∗3

δ

δJ3
Z0

∣∣∣∣∣∣∣
J,j=0

From the programming point of view this means that we simply move pairs together to the
end of list. At this point it is necessary to check if the diagram is one-particle reducible
or not and delete reducible ones. Next we need to use Z0. For example in supersymmetric
quantum electrodynamics (SQED) it takes form:

Z0(J, j) = exp{ i
2

∫
d8xJ

[
− 2

R∂4

]
J + i

∫
d8x

(
j

1

∂2
j∗ + j̃

1

∂2
j̃∗
)
}.

Each pair produces so-called propagators that also consists of superspacial delta function,
that acts just like simple delta-function but in superspace:

δ

δJ1

δ

δJ2
Z0(J, j) = − 2

R∂2
δ812 → -2*e^0*I{1^-2}*K4{1}*d_{1}{12}

δ

δj1

δ

δj∗2
Z0(J, j) =

D̄2
1D

2
2

4∂2
δ812 → 1/4*e^0*I{1^-2}*D#_1(D_2(d_{1}{12}))

Here we need to move to momentum representation. Each momentum is given by a prime
number, and the sum of the momenta corresponds to their product, so each number uniquely
sets the sum. For example: we have momenta k, l and q. Let us assign k-number 2, l-number
3, q-number 5. Then, for example, k + l will be 6, and k + l + q will be 30. This makes
comparison and other operations easier. The results takes form:

1/16*e^4*F#_1^1{-1}*F_2_2{1}*d_{-3}{13}*d_{2}{23}*D_3(D#_1(d_{3}{13}))

*D_2(D#_3(d_{-2}{23}))*K4{3}*I{3^-2}*K4{2}*I{2^-2}*I{3^-2}*I{2^-2}

Where I{3^-2} is momentum in some power and K4{3} is some function of the momentum.
Then according to [14] we use rules of supesymmetric covariant derivatives algebra and
obtain final result.
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-1*e^4*F#_1^1{-1}*F_1_2{1}*K4{3}*I{3^-2}*K4{2}*I{2^-4}*I{6^-2}

In the analytic form:

−e40
∫

d4K

(2π)4
d4L

(2π)4
d4θ ϕ∗

α(0, θ)ϕα(0, θ)
1

RKK4RLL2(K + L)2
. (3)

The program neglects some parts of the result as integrations over momenta and superspace.
Expressions like (3) are parts of the final result that program produces. At the end it try to
collect terms using some types of integral transformations. In the lowest orders it is usually
enough but in higher ones sometimes collecting of terms is not full, and a lot of work to be
done by hand. Making collecting of terms more efficient is an open problem.

The program was used to check results of the paper [17]. Also new result i.e. three-loop
anomalous dimension of SQED regularized by higher derivatives was also obtained by it [18].
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Bound propagation is a critical step in wide range of Neural Network model checkers
and reachability analysis tools. So far, linear and convex optimizations have been used
to perform bound propagation, however, these methods suffer from introducing large
errors due to the high non-convexness. In this work, we study several techniques on
how to produce both tight and efficient bound propagation for Neural Networks based
on Bernstein polynomial approximations.
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Application for Rician Data Analysis
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Abstract

The paper presents a mathematical research directed on the optimization
of the computer-algebra methods’ application for solving the task of stochastic data
analysis. Within the conducted theoretical investigation a few mathematical techniques
of the statistical data analysis have been elaborated which allow essential simplifying
of solving the task by computer algebra methods. The developed two-parameter ap-
proach to data analysis is efficiently applicable to a wide spectrum of scientific and
applied tasks, in which the signal to be analyzed is described by the Rice statistical
model.

Keywords: Rice distribution, data processing, two-parameter analysis, informa-
tion technologies

1. Introduction

At the random signals processing, in particular, at handling the problem of noise suppres-
sion, recently an approach is being widely developed based on the methods of mathematical
statistics such as the method of moments, the maximum likelihood method, etc. Obviously,
at applying such an approach the peculiarities of the statistical distribution of the data being
analyzed have a substantial significance for the possibility of the task solution. The present
paper deals with the problem of simplifying the application of the computer algebra meth-
ods and decreasing the calculative resources for solving the task of two-parameter Rician
signals processing. The so-called two-parameter methods provide the joint calculation of
both the required signal value and the noise dispersion value.

The Rice statistical distribution is known to describe a wide range of information pro-
cessing problems when the output signal is composed as a sum of the sought-for initial signal
and a random noise generated by many independent normally-distributed summands of zero
mean value. The variable to be measured and analyzed is an amplitude, or an envelope of
the sum signal, while this value is known to obey the Rice statistical distribution, [1].

The so-called two-parameter approach to the Rician signals’ analysis consists in solving
the task of joint determination of both parameters of the Rice distribution. In contrast to
the traditional one-parameter approximation this approach is free of limitations that are
inherent to the one-parametric approximation based upon the supposition that one of the
task statistical parameters — the noise dispersion — is known a priori, [2]–[4]. That’s why
the technique of the two-parametric task solution ensures much more correct estimation of
the required values.

2. Theoretical aspects and numerical testing results

The task of joint computing of the Rice distribution’s parameters allows efficient recon-
struction of the informative component of the signal against the noise background. In [5]–[7]
there has been developed an accurate theory of Rician signals statistical processing: new
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mathematical methods have been elaborated and strictly substantiated for solving the task
of data analysis by means of joint signal and noise evaluation.

However this task is connected with finding solution of a system of two essentially nonlin-
ear equations what is conjugated with considerable difficulties of both the theoretical and the
computational character. On the other hand the Rician data analysis is especially needed in
such areas which imply the necessity of the signal processing in systems with the priority of
operation in a real time mode. In this connection it is important to simplify the algorithms
of the Rician parameters joint computing and just these aspects of the problem have become
the subject of the present paper.

As it has been shown (see, for example, [5]), in virtue of the specific peculiarities and
nonlinear properties of the Rice statistical distribution, the Rician data analysis demands a
development of the particular methods and the corresponding mathematical apparatus.

The particular theoretical methods having been developed within the two-parameter
analysis of the Rician signal in [5]–[7] which differ in underlying statistical principles they
are based upon. In the present paper the problem of simplifying the algorithms of joint signal
and noise parameters computing is demonstrated by the example of using a method that
presents a combination of the maximum likelihood technique and the method of moments.
By means of application of this method for Rician data analysis the task of numerical solution
of the problem connected with the necessity to solve a system of two essentially nonlinear
equation for two variables has been reduced to solution of just one equation for one variabe.
This obviously means an essential simplifying the applicability of the computer algebra means
to solving the task as well as a significant decreasing of the required calculative resources.

Fig. 1 demonstrates the plots for the sought-for Rician parameters obtained by application
of such a simplified algorithm at Wolfram Mathematica system. In Fig. 1(a) the solid, dashed
and dot-dashed curves correspond to various values of standard deviation paramer σ, namely:
σ = 0.5 (solid curve); σ = 1.0 (dashed line); σ = 1.5 (dot-dashed line). In Fig. 1(b) the solid,
dashed and dot-dashed curves correspond to various values of the initial signal parameter
ν, namely: ν = 3.0, ν = 2.0 and ν = 1.0, correspondingly. The straight lines in both
grapfs correspond to the initially determined value of the corresponding parameter. The
sample lenght n in the presented variants of computing was n = 4 with the averaging over
25 samples (in real systems of digital signal processing the number of averaged samples is
normally within 103 ÷ 104) what ensures still more high accuracy at computing the Rician
parameters, i.e. the informtive and the noise components of the signal.

2 4 6 8 10
nêdn

1

2

3

4

5

n calc.MLM

(a)

2 4 6 8 10
s êds

0.05

0.10

0.15

0.20

0.25

0.30

s calc.MLM

(b)

Figure 1: The results of computing the signal (a) and the noise (b) parameters in dependence
of the signal-to-noise ratio SNR

The presented graphical illustration of the computing efficiency demonstrates the follow-
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ing expected result: the precision of the calculated sought-for parameters noticeably decrease
with the increase of the signal-to-noise ratio.

3. Conclusion

The joint computing of the Rice distribution’s parameters ensures an efficient reconstruc-
tion of the informative component of the signal against the noise background. The presented
mathematical research allows an essential decreasing of the needed calculating resources and
the simplification of the numerical algorithms for Rician data analysis as solving the system
of two essentially nonlinear equations has been mathematically reduced to solving just one
equation for one unknown variable. Such an optimization of the task solution by computer
algebra methods and the needed calculative resources decreasing mean enhancing the in-
formative capacity and the precision of stochastic data processing, what in its turn make
it possible to apply the elaborated techniques in the information technologies and systems
with the priority of operation in a real-time mode.

The numerical results confirm the possibility of solving the problem of the Rician signals
analysis by the developed methods ensuring a high precision in a wide range of the signal-
to-noise ratio’s values.
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