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Foreword

The fourth International Conference “Computer algebra”
hitp://www.ccas.ru/ca/conference

is organized in Moscow from 28 to 29 June 2021 jointly by the Dorodnicyn Computing Centre
(Federal Research Center “Computer Science and Control”) of Russian Academy of Science
and the Russian University of Peoples’ Friendship.

The first, second and third conferences were held in Moscow in 2016, 2017 and 2019:

http://www. ccas.ru/ca/conference2016,
http://www. ccas.ru/ca/conference2017,
http: //www. ccas.ru/ca/conference2019.

Computer algebra algorithms are focused on the exact solutions of mathematical and

applied problems using a computer. The participants of this conference present new results
obtained in this field.

Program and Organizing Committees of the conference
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Level Lines of a Polynomial in the Plane

A.D. Bruno!, A.B. Batkhin"?
Y Keldysh Institute of Applied Mathematics of RAS, Russia
2Moscow Institute of Physics and Technology, Russia

e-mails: abruno@keldysh.ru, batkhin@gmail.com

Abstract. We propose a method for computing the position of all level lines of
a real polynomial in the real plane. To do this, it is necessary to compute its
critical points and critical lines (there are finite number of them), and then its
critical values of the polynomial. Now finite number of critical levels and one rep-
resentative of noncritical level corresponding to a value between two neighboring
critical ones enough to compute. Software for these computations is discussed.
A nontrivial example is considered.

Keywords: polynomial, critical point, critical curve, level line

1. Introduction

Let X = (x1,73) € R% Consider the real polynomial f(X). For a constant ¢ € R, the curve
in the plane R?

f(X)=c (1)

is the level line of the polynomial f(X).

Our task is to describe all level lines of the polynomial f(X) on the real plane X € R
Let C, = inf f(X) and C* = sup f(X) for X € R% The main result is as follows:
Theorem 1. There is a finite set of critical values of c:

Ci<e<c<---<c, <Cr, (2)
to which there correspond the critical level lines
f(X)=¢, j=1,....m, (3)
and for ¢ values from each of the m + 1 intervals
Iy =(C.,q), I; = (c;f,c;ﬂ) Jg=1....m—-1, I, = (c,,C") (4)

level lines are topologically equivalent. If C,, = ci or C* = ¢}, there are no Iy or I, intervals.
Therefore, to identify the location of all level lines of the polynomial f(X) we need to
find all critical values cj, figure m of critical level lines (3) and one level line each for any
value ¢ of m + 1 interval (4). The way to compute these level lines is described in [1] and
partly in [2, Ch. I, § 2] using power geometry. The local structure of the polynomial level
lines was considered in [2, Ch. I, § 3]. Here some results from [2, Ch. I, § 3] are extended.

2. Critical points and critical lines

A point X = X is called simple for a polynomial f(X) if at least one of the partial derivatives
Of /0x1, Of /Oxs is non-zero in it.
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Definition 1. Point X = XY for a polynomial f(X) is called critical of order k if at the
point X = XY all partial derivatives of f(X) to order k are zero, that is, all

o' f

WXO):O’ 1<i+j=1<k,
1 2

and at least one partial derivative of order k + 1 is non-zero.
Definition 2. Line
9(X) =0 (5)

is called critical for a polynomial f(X) if
1. it lies on some level line (1) and
2. onit df/0xy =0, or df/Jxs = 0.

Values of the constant ¢ = f(X) at critical points X = X° and at critical lines (5) are
called critical and denote ¢} according to (2).

3. Local and global level line analysis
Near the point X = X° we will consider analytic invertible coordinate substitutions
yi =) + @i (11— af,xp —29) , i = 1,2, (6)

where ¢; are analytic functions of X — X°.
Lemma 1. [2, Ch. I, § 3] If the point X° is simple and it has Of /Oxy # 0, then there
exists a substitution (6) that transforms equation (1) into the form

fX)=p=c (7)

Level lines (7) are lines parallel to the y; axis.
Consider solutions to the equation (1) near the critical point X° = 0 of order 1. Then

f(X) = fo+axi +bryxs +cay+ ...

The discriminant A of the written above quadratic form is A = b? — 4ac.
Lemma 2. [2, Ch. I, § 3] If at the first-order critical point X° = 0 the discriminant
A # 0, then there exists a substitution (6) that reduces equation (1) to the form

F(X)=fo+toyi+ys =c (8)

where o =1 (if A <0) oro=—-1 (if A>0).
Lemma 3. If at the first-order critical point X° = 0 the discriminant A = 0, then there is
a substitution (6) that brings the equation (1) to the form

JX)=foty+Tyi =c (9)

where the integer n > 2 and the number T € {—1,0,+1}.

The expressions (8) and (9) are normal forms of the polynomial f(X) near its critical
point of the first order X° = 0. Now let the critical point X° = 0 be of order & > 1.
According to [1, p. 5], its corresponding level line either has no branches going to the critical
point X? = 0, or has several such branches. In the first case, the critical level line consists

12



of this point X° = 0, and other level lines are closed curves around it and correspond to one
sign of the difference ¢ — f(X?).

In the second case, the critical level line consists of a finite number of branches of different
multiples entering the critical point X° = 0. They divide the vicinity of this critical point into
curvilinear sectors. The remaining level lines fill these sectors, remaining at some distance
from the critical point X° = 0. In neighboring sectors, they correspond to different signs of
the difference ¢ — f(X?°) if the branch separating them has odd multiplicity, and to one sign
of this difference if the branch separating them has even multiplicity.

Lemma 4. For all values of constant ¢ from one of the m + 1 intervals (4) the level lines
(1) are topologically equivalent.

Theorem 1 follows from Lemmas 1-4 and the properties of level lines near the critical

point X° = 0 of order k¥ > 1 described above.

4. Building level line sketches

To build a level line sketch, you can use any computer algebra system that has programs for
building isolines (isosurfaces) for two- or three-dimensional scalar fields. These programs use
different computational algorithms based on finite elements that triangulate some part of the
plane (usually with triangular or square finite elements). Then the function values (1) in the
vertices are calculated and interpolated over the whole finite element. Such algorithms deal
well with the situation when the level line has no singularities. The presence of singularities
makes us significantly reduce the partitioning step and, accordingly, increase the volume of
calculations.

In some cases it is possible to improve the quality of the level line sketch if for a certain
value of ¢ the equation (1) can be factored into multipliers and zeros of those multipliers
(or part of them) define an algebraic curve of genus 0. In this case we can compute a
rational parametrization of such a curve, and use it to construct a sketch with any accuracy.
The package algcurves of Maple does a good job with such a problem. This package, in
particular, allows to study planar algebraic curves. It can be used to represent a sketch of
the curve f(z1,z2) = 0 by numerically integrating the corresponding differential equation

0 of d
—f —f L8tz 0 for some set of initial conditions, defined by points where at least one
Oory Oxe dxy

partial derivative of the function f(z1,x2) is zero. Using this package to study a set of curves
with different orders of singularities showed that in the case of high-order singularities, the
quality of the sketch is not very high.

5. Example
Consider computing the level lines of the polynomial

F(X) =2° + 201wy + 4o} + 2322 + 230y + 423 + 2323 — 62222~ (10)
— 122229 + 22125 + 2105 — 120,03 — 122,29 + 25 + 425 + 423,
Here C, = —o0, C* = +00. They are reached at z; = 0.

To compute the critical points, we will use the Grobner basis for the system consisting of
the polynomial itself (10) and its two partial derivatives on the variables 1, x9, choosing the
lexicographic order of the variables as x1y < x5 < ¢. The first polynomial of the computed
basis is g = ¢(c+ 1) (3125¢% + 56736¢ + 54000). Among its roots, we select those critical
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values ¢} for which the corresponding values are real:

= {— (28368 + 3036@) /3125, — <28368 . 3036@) /3125, o} .

The value ¢ ~ —17.1478 corresponds to the critical point (:17&1) mél) = (34++/69)/10). Tt
has the discriminant A ~ —14221.2 < 0 and is isolated. The value ¢§ ~ —1.0077 corresponds
to the critical point (:E%Q) = xgz) = (3 —1/69)/10). It has the discriminant A ~ 1.3415 > 0
and two branches passing through it. The value ¢ = 0 corresponds to the critical point
(a:ﬁS) = xé?’) = 0). Here the discriminant A ~ 144 > 0 and two branches pass through it.
Finally, at c¢5 = 0 there is a critical line z; + 29 +2 = 0.

The critical level lines for the polynomial (10) are shown in Figure 1. The critical points
XM X and X = 0 and the critical line z; + 25 + 2 = 0 are shown as bold. The level
line for the critical value ¢j ~ —17.14 is shown as dash-dotted line. The level line for the
critical value ¢ ~ —1 is shown as dashed line. It has three components: an oval in the
first quadrant, two intersecting branches above the critical line, and one curve below it. The
level line for the critical value c; = 0 is shown as a solid line. It consists of two components:
the critical straight line and the Descartes folium. Four types of non-critical level lines are
easily recovered as lying entirely between adjacent critical ones. They are shown in Fig. 1
as dotted lines for ¢ = —25 and ¢ = 25.

Figure 1. Level lines of the polynomial (10).

References

1. Bruno A.D., Batkhin A.B. Introduction to nonlinear analysis of algebraic equations.
KIAM Preprints. 2020. No. 87. DOI: 10.20948 /prepr-2020-87 (in Russian).
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What’s New in Maple 2021

J. Gerhard!
' Maplesoft, Canada

e-mail: jgerhard@maplesoft.com

Abstract. We will give an overview over the new features of Maple 2021, in-
cluding limits and asymptotic expansions, automatic plotting domain and range
selection, a new Student:-ODEs package, approximate polynomial algebra, and
improved LaTeX export.

Keywords: Maple 2021, computer algebra system
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On Infinite Sequences and Difference Operators
S.A. Abramov'?, M. A. Barkatou®, M. Petkovsek?

Y Dorodnicyn Computing Center, Federal Research Center
“Computer Science and Control” of RAS, Russia

2Faculty of Computational Mathematics and Cybernetics, Moscow State University, Russia
3 Unaversity of Limoges ; CNRS ; XLIM UMR 7252 ; MATHIS, France
4 University of Ljubljana, Faculty of Mathematics and Physics, Slovenia

e-mail: sergeyabramov@mail.ru, moulay.barkatou@unilim.fr, Marko.Petkovsek@fmf.uni-lj.si

Abstract. Some properties of linear difference operators whose coefficients have
the form of infinite two-sided sequences over a field of characteristic zero are
considered. In particular, it is found that such operators are deprived of some
properties that are natural for differential operators over differential fields. In
addition, we discuss decidability of certain problems arising in connection with
the algorithmic representation of infinite sequences.

Keywords: linear difference operators, infinite sequences, dimension of solution
spaces

1. Introduction

The need to consider linear difference operators with coefficients in the form of sequences
(or of equivalence classes of sequences) arises, in particular, in connection with the universal
Picard-Vessiot extensions of difference fields (cf. [3]). The point that difference-ring exten-
sions of difference fields have to be considered in this context was first noticed by C. H. Franke
in [2]. Thus questions arise naturally about properties of difference operators having their
coefficients in a difference ring.

It is not surprising that difference operators over rings, in particular, over rings of se-
quences, lack some properties, enjoyed by differential operators over differential fields (cf. [3,
Appx. A] or [5]). Below, we present some such properties, and demonstrate undecidability
of several problems related to linear difference operators with sequences as coefficients.

2. Preliminaries

In the sequel, R denotes the ring Q% of two-sided sequences having rational-number terms,
with termwise addition and multiplication, and o is the shift operator on R defined by
(oc)(k) = c(k+1) for all k € Z. Clearly, o is an automorphism of R, and the field of rational
numbers Q is the field of constants of R. For any k,m € Z, m > 1, define ., w,, € R by

S(n) = {1, n =k, o (n) = {1, n=m (mod m+ 1),

0, otherwise, 0, otherwise.

The ring R]o] is the ring of linear difference operators with coefficients in R. The order
of L € R[o], denoted by ord L, is the non-negative integer equal to the degree of the (skew)
polynomial L in o; conventionally, ord 0 = —oo. For L € R[o], the Q-linear space of all

f € Rs.t. L(f) =0 will be denoted by V.
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3. On dimension of solution spaces

3.1. A useful lemma

Lemma 1. Let L € R[o| have order m € N. If there are a two-sided sequence f € V7,
and a one-sided sequence of indices v € ZN such that

1.VneZn>vy: (f(n)#0 < Jke€N:n=1), and
2.VkeN:vypyy > v +m—+1,

then dim Vi, = oo.

Example 1. Let L = >_1" ax(n)o® € R[o] be such that (L (wy,))(n) = 0. As wy,((m +
DE)=wn((m+1Dk+1)=-=wp((m+1)k+m—1) =0 and w,,((m+ 1)k +m) =1 for
all k € Z, it follows that for each n € Z and i € {0,1,...,m} exactly one term w,,(n + 7)
is nonzero, namely that for which n = (m + 1)k + m — i for some k € Z. Hence w,, € V[
implies that a;((m + 1)k +m —i) =0 for all k € Z and ¢ € {0,1,...,m}. Now it is not
difficult to see that dpni1yesm € Vi for all k € Z. Since {0ni1)ktm; k € Z} is an infinite
Q-linearly independent subset of R, it follows that dim V, = co.

3.2. Annihilating operators

Proposition 1. For any positive integer m there exist fy,..., frn € R such that if for
some L € Rlo]\ {0}, ord L < m, the equalities

L(f)=0, i=1,....m,

hold then dim Vi, = oo.
Proof. This is a consequence of Lemma 1. For example, any fi,..., f,, € R such that
f1 = w., possess the stated property. O

Recall that in the differential case we can find an operator L, ord L < m, annihilat-
ing given fi,..., f;, such that dim V,, equals the maximum number of linearly independent
elements of the set {f1,..., fm}

Note that an even stronger form of the statement of Lemma 1 is possible:

Lemma 1*. There exist sequences such that if an operator L of arbitrary order annihi-
lates any one of them, then dim V; = co.

Accordingly, the statement of Proposition 1 can be strengthened as well by skipping the
restriction ord L < m.

3.3. Least common left multiple

Definition 1. For L, Ly € Ro|, we define lclm(Ly, Lo) as the set of all operators
L € RJo] such that

.« LA0,

e [ is a common left multiple of L; and Lo,

e there is no operator M such that M # 0, M is a common left multiple of L; and Lo,
and ord M < ord L. O

20



Note that it is possible that for some Ly, Ly € R[o] their only common left multiple is 0.

Example 2. Consider two operators of order 0: L; = ¢ = wy, i.e., ¢(2k) = 0, c(2k+1) =1
for all k € Z, and Ly = d = o(wy), i.e., d(2k) =1, d(2k + 1) = 0 for all k € Z. It is easy to
see that the only common left multiple of ¢ and d is the zero sequence.

Proposition 2. There exist first-order operators Ly, Ly such that

(i) dimVy, =dimV;, =1,

(1) there ezists a second-order common left multiple L of Ly, Lo,

(111) for any common left multiple M of Ly, Ly with ord M < 2, we have dim Vj; = co.

It follows from Proposition 2 that for L € lelm(Ly, Ls), the equality
Vi =V, + Vi, (1)

need not hold in general.

Recall that in the differential case, when L, Ly are two operators over a differential field
K, equality (1) holds if we consider solutions from a Picard-Vessiot extension of K. Similarly,
this holds also in the case of differential systems (see [1]).

In the scalar difference case, equality (1) is valid if the coefficients belong to a difference
field possessing some special properties (cf. [4]).

4. Some undecidable problems

The problem of representing infinite sequences is an important one in computer algebra.
A general formula for the n-th element of a sequence is not always available, and may even
not exist. A natural way for representing a sequence is by an algorithm for computing its
elements from their indices. We will call the sequence computable if such an algorithm exists.
The algorithmic representation of a sequence is, of course, not unique, which is one of the
reasons for undecidability of the zero-testing problem for computable sequences.

4.1. A consequence of a classical result by Turing

Below, we discuss some undecidable problems related to operators with coefficients in R.
Their proofs are, in general, based on the following consequence of the well-known Turing’s
result [6] on undecidability of the halting problem:

Let S be a set with two or more elements, such that there exists an algorithm to test
for equality of any two given elements from S. Then there exists no algorithm to de-
cide whether a given computable sequence, either one-sided (¢(0),c(1),¢(2),...) or two-sided
(...,c(=1),¢(0),¢(1),...), has all of its elements equal to a given u € S; the same holds for
the question of whether such a sequence has none of its elements equal to a given u € S.

4.2. On testing for invertibility and divisibility in R|o]

Lemma 2. The question of whether a given computable sequence ¢ € R and a given
nonnegative integer v satisfy the statement

JdkeNVneZ: c(n)ec(n+r)e(n+2r)...cn+kr)=0

1s undecidable.
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Proposition 3. There exists no algorithm for testing for an arbitrary L € Rlo| \ {0}
whether L is invertible in R[o] or not.

Remark 1. For each integer > 0, there is an invertible operator L, € R[o] of order 7.
Indeed, let 1 denote the sequence all of whose elements are equal to 1. If » = 0 then Ly =1
is invertible since 1 -1 = 1. Otherwise, L, = dyo(n)o” + 1 is invertible since

(6o(n)o" +1)(=do(n)o” +1) = —ds(n)do(n +r)c* +1 = 1.

Proposition 4. There ezists no algorithm for testing for arbitrary Ly, Ly € R[o] \ {0}
whether Ly is right-divisible by Ly in R[o].

Proof. If such an algorithm existed then one could use it to test for invertibility of
a given L € R[o]\ {0}. Indeed, take any M € R[o]. If L is invertible then M = ML™'L and
M +1 = (M + 1)L~ 'L are both right-divisible by L. Conversely, if there are A, B € R|o]
st. M = AL and M +1 = BL then 1 = (B — A)L, so L is invertible. Thus, L is invertible
ifft M and M + 1 are both right-divisible by L, and one could use this to test for invertibility
if one could test for divisibility from the right. But by Proposition 3, this is impossible. [

4.3. On the existence of a nonzero common left multiple

Here we discuss the problem of possibility or impossibility of algorithms for testing for the
existence of a nonzero common left multiple of two given operators Ly, Ly € R[o].

Notice that the impossibility of a general algorithm for this problem can be shown easily
by considering the case of zero-order operators, i.e., the case of sequences.

Proposition 5. Let r,s,€ N. There is no algorithm for testing the existence of a non-
zero common left multiple of two given operators Ly, Ly € Rlo], ord Ly = r,ord Ly = s.

As a consequence we get the following: There is no algorithm for testing the existence of
a non-zero common left multiple of two given operators Ly, Ly € R[o].
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Abstract. Quadratization, that is a transformation of an ODE system with
polynomial right-hand side into an ODE system with at most quadratic right-
hand side via the introduction of new variables, has been recently used for model
order reduction, synthesis of chemical reaction networks, and numeric algorithms.
We will discuss some recent results on optimal (i.e. with the smallest number of
variables) quadratizations: a practical algorithm for finding optimal monomial
quadratizations and some results on arbitrary quadratizations of scalar ODEs.
We will conclude with a list of open problems.

Keywords: differential equations, quadratization, order reduction, combinato-
rial optimization

Introduction to quadratization

The quadratization problem is, given a system of ordinary differential equations (ODEs) with
polynomial right-hand side, transform it into a system with at most quadratic right-hand
side. We give a formal definition below, but start with a simple example of a scalar ODE:

7' =2’ (1)
The right-hand side has degree larger than two but if we introduce a new variable y := a4,

then we can write:
¢ =zy, and y =42z = 4daty = 42 (2)

The right-hand sides of (2) are of degree at most two, and every solution of (1) is the -
component of some solution of (2). Such a transformation has recently appeared in model
order reduction algorithms [4, 7, 8], in synthesis of chemical reaction networks [6], and in
solving differential equations numerically [5].

Definition. Consider a system of ODFEs

= fi(@), ..., z, = f.(%), (3)
where T = (x1,...,x,) and f1,..., fn € C[x]|. Then, a list of new variables
hn :gl(j)""7ym:gm<j)7 (4)

is said to be a quadratization of (8) if there exist polynomials hy, ..., hyin € C[Z,y] of
degree at most two such that

° I‘; = hz(,f‘7g> fO’I" every 1 < l < n;

o Y. =hj,(7,9) for every 1 < j < m.
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The number m will be called the order of quadratization. A quadratization of the smallest
possible order will be called an optimal quadratization.

Definition. If all the polynomaials g1, ..., gn are monomials, the quadratization is called a
monomial quadratization. If a monomial quadratization of a system has the smallest possible
order among all the monomial quadratizations of the system, it is called an optimal monomial
quadratization.

Our results

In our recent paper [2] we design and implement an algorithm for finding an optimal mono-
mial quadratization for a given ODE system. This is a combinatorial optimization problem
with an infinite search space (the set of all new monomial variables). The prior approaches
to this computation (e.g., [3, 4, 6]) restricted themselves to the new variables which are

monomials of the form z{* - ... z% such that

d; < max deg f;.

ISVAS

It is known that one can always find (not necessarily optimal) monomial quadratization of
this form. This restriction allowed to use powerful techniques based on the SAT-solvers. We
have designed an algorithm based on the branch-and-bound approach and not relying on
this restriction, and used it to show that allowing monomials of arbitrary degrees makes it
possible to find much better quadratizations for some of the benchmarks. Therefore, our
algorithm is the first practical algorithm for monomial quadratization with the optimality
guarantees. We implemented the algorithm in Python, the implementation is available
at https://github.com/AndreyBychkov/QBee.

Once we have a practical algorithm for finding an optimal monomial quadratization, it
is natural to ask can we find a more optimal quadratization if we allow new variables to take
a more general polynomial form? The first step towards answering this question was made
in [1] for scalar ODEs, that is equations of the form 2’ = p(z), where p is a polynomial. The
main results of this paper are:

1. Full characterization is given of polynomials p(x) such that the equation 2’ = p(x) can
be quadratized using only one new variable. It is shown that, for any number N, one
can find such p(z) that the optimal monomial quadratization will be of order at least
N while the optimal quadratization will be of order one.

2. Every equation 2’ = p(x) with degp < 6 can be quadratized with only two new
variables. This is not true for monomial variables (one may need three) and the form
of these new variables is quite nontrivial (was obtained using Grobner bases). More
precisely, an equation

t' = pa® + psa® 4 paat + psxd + pox® + prr + po

with pg # 0 can be always quadratized with the following two new variables

. (6 . P5s__\5 25p3 _ _5pspa 5p3 6 . D5 2
z1:= (V/pe x+6~'"{/p_g> +(216\/p_g 12\/IT§+8\/’T6>(\/])_6 x+6~§/p_)’

5
6

29 1= (¥/pe - v+ —L2 _)3,

6- % Dg
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Open problems

In this section, we would like to state some interesting open questions about quadratizations
of differential equations which we expect to be of interest to the computer algebra community:.

Problem 1: theoretical bounds. It is still not so clear how large the optimal quadrati-
zation may be compared to the size of input. Conjecture 1 in [6] gives a sequence of system
for which it is conjectured that the number of new variables as a function of the number of
monomials in the original system grows exponentially but we are not aware of any proved
non-polynomial lower bound.

Problem 2: Laurent-monomial quadratizations. In the contrast to the conjectured
exponential number of new variables, it has been shown in Proposition 1 in [2] that, if the
new variables are allowed to be Laurent monomials, then there always exists a quadratization
of order not exceeding the number of monomials in the original system. However, we are
not aware of any algorithm computing an optimal Laurent-monomial quadratization. In
particular, we do not know whether such a optimal Laurent-monomial quadratization can
be found as a subset of the quadratization given in the proof of Proposition 1 in [2].

Problem 3: pre-processing for monomial quadratization. It has been observed in [1]
that the size of an optimal monomial quadratization may change dramatically after a linear
change of variables. Therefore, it would be interesting to enhance the existing algorithms
for finding monomial quadratizations with a pre-processing step that tries to perform a
linear change of variables aiming at decreasing the number of new variables required for
quadratization. An example of such pre-processing would be any change of variables strictly
reducing the support of the right-hand sides.

Problem 4: general polynomial case. As has been observed in [1], allowing general
polynomial (not necessarily monomial) quadratizations may dramatically reduce the number
of required variables. Therefore, understanding such general quadratizations is an important
problem. At the moment, it is open even in the scalar case, that is a single ODE z' = p(z).

Problem 5: PDEs. In the context of applications to model order reduction problem,
quadratization of PDEs is also of great interest (see [8]).
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Abstract. In this paper, we study the asymptotic expansions of the solutions of
the hierarchies [2] of the fourth Painlevé equation using power geometry methods.
To find these expansions, we need to build a Newton polygon and find solutions
to the truncated equations using the rules given below. Hierarchies of Painlevé
equations are used in physics, geometry, and other fields.
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The aim of the present work is to investigate asymptotic expansions of solutions to the hier-
archies of the fourth Painlevé equation. Hierarchies of Painlevét equations — mathematical
objects obtained as a result of isomondromic deformations of Painlevé equations. Painlevé
functions are used in statistical physics, quantum field theory, geometry of minimal sur-
faces, number theory, and other areas. Using the methods of Power Geometry, we study the
asymptotic solutions of the hierarchies of the fourth Painlevé equation.

In this work, we use the methods of Power Geometry [1] to study asymptotic expansions
of solutions to the hierarchies of the fourth Painlevé equation [3]:

1
(yac:c - QZL'y - 2y3 - B)y2ymx:m - §y2y§m; + (292 + 8y3y:c + 4yyxl‘ — YzYzz + ﬁyx)yy:mx_

4 3. 3
gyyiw + <3$y2 + 38y — §y4 + §y§> vz, + (By* = 2y, — 12y2y° — 2%y + 10zy°

3
—3B8y2 + 10y" — dzyy? — ABxy*)yus + 2(8 — 49°)y?y, + (45:1:3/ + 8yt + 552 + 1251/3) yi—

1—3?3/10 — 8xy® — 2By — 62°y° — 228y° + (352 —2+90 — §x3) yt + 282y + %ﬁ3y = 0.
First, we need to build a Newton polygon for this equation. In order to do it, we
should align the vector exponent Q(a) = (qi,q2) € R? with each differential monomial
YooY Yszres —20YY > Yowzzs —BY*Yzzze - using the rules described in [3].
Then we get 18 vector exponents:
<_4; 3)7 (_6; 4>’ (_3; 4)’ (_4; 6)7 (_2; 5)7 (_2; 2)7 <_1; 6)7 (_2; 8)’ (_1; 3)? (0; 10)’ (1; 8)7 (0; 7)7
(2; 6)7 (_1; 5)7 (0;4)7 (3; 4)7 (1; 2)7 (0; 1)'

We put them on the coordinate plane (g1, ¢2) and construct the convex hull of the set
containing these points. The resulting figure is called Newton polygon. To build polygons,
we use a program by K.V. Romanov.
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Each face I'y, 'y, I'3, I'4 of a given polygon can be associated with points (); that belong to it.
Each point corresponds to a monomial, from these monomials you can compose a function
of the truncated sum for a given face of the polygon: f;d) (X) = > a;i(X) with Q(a;) € Sj(~d).
For our equation we get:

For each face, we construct the normal vector directed outward the polygon:
Ni = (=1;-2), No = (=1;1), N3 = (2;1), Ny = (1; -1).

The general form of the coordinates of the normal: Aw(1,r), where A > 0. If w > 0, then
x — 0, if w <0, then z — cc.

The general view of the asymptotic expansion of the solution to the equation is y = cz”.

If we need to find the next terms of the asymptotics, it is necessary to substitute y that
is equal to the sum of the obtained term of the asymptotics and y1 (the required term of
the asymptotics) into the original equation.

For this equation, we can build a Newton polygon. The second term of the asymptotics
can be obtained by constructing a truncated equation for an edge whose normal has the
following properties:

1) The value to which z tends, corresponding to the given normal, coincides with the
value for the first term of the asymptotics.

2) The exponent x for a given normal is greater than the exponent for the first term of
the asymptotics.

The method for finding the exponent x and the value to which x tends is described above.

For finding the general form of the terms of the asymptotic expansion, it is necessary:
The found asymptotic expansions are presented below:

_ _ 2 B 5w 243k
Wl—{y——O.lﬁx +%x —|—;ckx ,w——l,BEC}

W2 = {y = 0.582” + 0.025(28 + 4.242648/7)a” + > ra® ¥ w = 1,8 ¢ C}

k=2
-1 B=2Y\ 5 w 3k—1
W3=<y=2zx""+ 0 :E—i—chm yw=—1
k=2
2 o0
W4:{y— 2 _1—1-(&;(_) ):L’z—i-anz?’k 1,w:—1}
k=2



—8—86—232+9 -
W5:{y:371j:\/ ﬁ 5 il 0$2+chx3k1’w:—17ﬁeC7aeC}
k=2

4v2
\/8 88+ B2—90 5 = a1
W6=<y=—x" x—l—zckx w=—-1,0€C oeC
42 o
B . B VB (2 —180). 1 & 13k
W?—{y—zﬁ—ir(z:t 1 >E+k216kx w=1p8eC

WS_{ _—zf+(ﬁ VA 6 _180 +chx - k,w—l,ﬁeC}
W9 = {y = /0.4i\/z — 0.5% + ickx_l_gk,w =1,8€¢ C}
k=1
W10 = {y = —/0.4i\/z — 0.55% + ickx_l_gk,w =1,8¢ C}
k=1
Wil = {y = ﬁ% +0.5(=78 — 58% + 650)% + ickx_l_‘%,w =1,8¢ O}

WlZ:{ :—05& i0756\/_ +chx - w:1,ﬁe()}

References

1. Bruno A.D. Asymptotics and expansions of solutions to an ordinary differential equa-
tion. Uspekhi Matem. Nauk. 2004. Vol. 59(3). P. 31-80 (in Russian) = Russian
Mathem. Surveys. 2004. Vol. 59(3). P. 429-480 (in English)

2. Pickering A. Painlevé hierarchies and the Painlevé test. Theoret. and Math. Phys.
2003. Vol. 137(3). P. 445-456 (in Russian) = Theoret. and Math. Phys. 2003.
Vol. 137(3). P. 1733-1742 (in English)

3. Kudryashov N.A. About the fourth Painlevé hierarchy. Theoret. and Math. Phys.
2003. Vol. 134(1). P. 101-109 (in Russian) = Theoret. and Math. Phys. 2003.
Vol. 134(1). P 86-93 (in English)

29



Algorithms for Solving a Polynomial Equation
in One or Two Variables

A.B. Batkhin'?, A.D. Bruno!
LKeldysh Institute of Applied Mathematics of RAS, Russia
2Moscow Institute of Physics and Technology, Russia

e-mail: batkhin@gmail.com, abruno@keldysh.ru

Abstract. Here we demonstrate two new methods of solution of polynomial
equations, based on constructing a convex polygon, and provide description of
corresponding software. The first method allows to find approximate roots of
a polynomial by means of the Hadamard polygon. The second one allows to
compute branches of an algebraic curve near its singular point and near infinity
by means of the Newton polygon and to draw sketches of real algebraic curves in
the plane. Computer algebra algorithms are specified, which allow to investigate
any complex cases.
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1. Introduction

Here we present two new methods for solving polynomial equations based on the construction
of a convex polygon from a polynomial. The first method allows one to find approximate
roots of a polynomial using the Hadamard broken line (section 3). The second method allows
one to find branches of an algebraic curve near its singular point and near infinity with the
Newton polygon (section 4). It also allows one to construct sketches of real algebraic curves
in the plane. These methods can be generalized to higher dimensions [1].

All algorithms are provided with descriptions of their software implementation in various
computer algebra systems.

New points of this work are the following:

e the concept of the cone of the problem is actively used ;

e the application of Newton’s polygon to find branches of a curve near infinity is given;
e the theory of Hadamard’s broken line method is given;

e computer algebra software is discussed for all algorithms.

For extended version of this work with many examples, listings of program for computer
algebra systems Maple, Sympy, Mathematica and for detailed references see [2].

2. Polyhedron and normal cone

Let in R™ be given several points {Q1,...,Qr} = S. Their convex hull

k
I(s) = {@:zm@i,m 0.3 1}
=1
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is a polyhedron. Its boundary OI' consists of vertices Fg-o), edges Fgl) and faces Fﬁd) of
different dimensions d : 1 < d < n — 1. If the real n-vector P = (py,...,p,) is given, then
the maximum and minimum of the scalar product (P, Q) = p1q1+. ..+ pngn on S are reached

at points @); that lie on the boundary dI'. For each boundary element FEd) (including vertices
I‘;O) and edges F§-1)), we identify the set of vectors P whose maximum (P, Q) is reached on

points ; € ng). This will be its normal cone

U — (P (P.Q) = (P.Q") > (P.Q") for Q,Q" €T\, Q" eT\T\"}.

The vector P lies in the space R?, dual to the space R™.

Let us be interested not in the whole boundary OI', but only a part of it corresponding
to some set K of directions P. Then let us call the set I the cone of the problem. It is not
necessarily convex. By OI'(K) we denote the part of the boundary OI' for whose elements

—~

Fg-d) their normal cones U'”) intersect with the cone of problem K. Let us call II'(K) as
boundary of the problem.

<

Software for convex hull and normal cones computation

The @hull package is used in many application software packages, both commercial and
free. The main feature of the package is that the calculations are performed using real
numbers rather than in the field of rational numbers, which is convenient when working
with the Hadamard polyhedron. When calculating the Newton polyhedron, additional steps
are required to bring the results of the calculations to rational values.

Since the 2015 version, the Maple computer algebra system includes the PolyhedralSets
package. In this package all calculations are performed in the field of rational numbers, which
somewhat simplifies its use for the study of the Newton polyhedron, but makes it useless
when working with the Hadamard polyhedron. Note that PolyhedralSets has extremely
low performance compared to Qhull.

3. Hadamard broken line method

Let us describe a new method for computing approximate values of roots of the polynomial
fm(z) = Zakxk. (1)
k=0

To do this, the points in the real plane g, gy are plotted Qx = (q1, ) = (k,In |az|), where
In0 = —o0, k = 0,...,m, forming the supersupport S = {QO, e ,Qm}, and their convex
& def

hull is constructed I'(S) = {Q =3 Qx> 0,00 fix = 1} = H(f,,), which is called
k=0

Hadamard’s polygon [3] (Hadamard, 1893). The boundary 0H is a broken line. Each edge

F§1) and vertex ng) of this boundary 0H corresponds to a boundary subset Sgd) of points

Qr lying on ng) , and the truncated polynomial

fj(d) (x) = Zakxk over Qy € Sg-d). (2)

If Fg-d) is a vertex (d = 0), then the truncated polynomial (2) is a monomial that has

no nonzero root. If ng) is an edge (d = 1), then the truncated polynomial (2) has nonzero
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roots, which give approximate values for the roots of the full polynomial (1). Except very
special cases, the truncated polynomials (2) are significantly simpler than the original poly-
nomial (1), and their roots are easier to compute.

Since the vector (py, 1) lies in the upper half-plane of the dual plane R2, the cone of the
problem here K = {P = (p1,p2) : po > 0}, i.e. this is the upper half-plane. It corresponds to
the upper part of the boundary OH. It will be called Hadamard’s broken line and denoted
by H. Examples with successful application of the Hadamard broken line method see in |1,
2].

4. Plane algebraic curve

Let f(x1,22) be a polynomial with real or complex coefficients. The set of solutions x1, x2
of the equation

f(x1,72) =0 (3)

in X = (z1,79) € R? or C? is called a plane algebraic curve F.

A point X = X f(X% = 0 is called the simple point of a curve F if the vector
(0f/Ox1,0f/0xs) in it is nonzero. Otherwise, the point X° is called singular. By a shift,
move the point X to the origin of coordinates.

For local analysis of a simple point one can use
Theorem 1 (Cauchy). If at X° = 0 the derivative Of/0x; # 0, then all solutions to the
equation (3) near point X° = 0 are contained in the expansion

T; = Z b, (4)
k=1

where by — constants, and j = 3 — 1.
Further consider local analysis of the singular point X° = 0 and points at infinity. Let’s
write the polynomial f(X) as

FX)=> foX%over Q=0, QeZ’ (5)

where X = (21,29), Q = (q1, ¢2), X9 = 2% 2% fo € C are constants. Let S(f) ={Q : fo #
0} C R% The set S is called the support of the polynomial f(X). Let it consist of points
Q1,- .., Qk. The convex hull of the support S(f) is the set

k k
(S) = {Q = Q1 =0, = 1}défN<f>,
j=1 i=1

which is called Newton’s polygon. The boundary ON(f) consists of vertices ng) and edges
Fgl), where j is the number.
Each generalized face F§d) corresponds to: its boundary subset S;d) =SSN ng), its a

truncated polynomial f;d) (X) =Y foX9by Q € Sg-d) and its normal cone Ug-d) ={P:

(P.Q) = (P.Q") > (P,Q"),Q,Q" € T\",Q" € T\I'\"}, where P = (p1,p») € R?, and the
plane R? is conjugate to the plane R2.
We will look for solutions to the equation

FX)EY foX?=0 (6)

Q€S

32



in the form of expansion
Ty = bll'}ljl + bgf]?fz + bgl’}fB + - y (7)

where fg, by = const € C, Q € R? p;, = const € R, wpy, > wpry1. In these expansions, the
exponents of degree pj, increase with £ if x; — 0 (w = —1), and decrease if z; — o0 (w = 1).
Theorem 2. For solutions (7) of equation (6), the truncated solution xo = byal" is the

solution to the truncated equation
» (1)

corresponding to the boundary element Fgl) with the external normal vector w(1,p;) € U§-1).

The truncated equation (8) uniquely determines the sign of w and the index of degree
p1. If in the sum (5) all vector indexes of degree @@ = (q1,g2) have rational components ¢,
and ¢o, then the index p; is rational. For the coefficient b; we obtain the algebraic equation
b)) =o0.

Theorem 3. For the polynomial equation (6), all solutions xo(x1) are expanded into a
series of the form (7), where all exponents of degree py are rational numbers with a common
denominator.

For the neighborhood of the point X = 0, Theorem 3 is that of V. Puiseau, 1850, i.e.,
for the cone problem IC = {P = (p1, p2) : p1,p2 < 0}. The corresponding part (lower left) of
the boundary ON is called Newton’s broken line. The expansions of Theorem 1 converge, so
all expansions (7) for solutions of polynomial equations (6) also converge.

Software for plane curve investigation

The Maple system has an excellent package algcurves that allows to study planar algebraic
curves: build their sketches with high precision, calculate their genus, find singular points;
for curves of genus 0 find rational parameterization, for elliptic curves bring to Weierstrass
normal form. The package allows to construct a sketch of the real curve f(z,y) = 0 by
numerical integration of the differential equation f,+f;y" = 0 for some set of initial conditions
defined by points in which at least one of the partial derivatives of the function f(z,y) is
equal to zero.

Since version 12, Wolfram Mathematica has included an AsymptoticSolve procedure
that implements an asymptotic representation of solutions to equations or systems of equa-
tions (not necessarily algebraic) in the form of either Taylor, Laurent, or Puiseau series near
finite or infinite points. If the point is singular, the procedure tries to calculate the asymp-
totic expansions of all branches. In this case we can specify that we should restrict ourselves
to real expansions only.
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Abstract. We present empirical runtime and memory use improvements for
computing Grobner bases of ideals generated by polynomials that appear in
solving the parameter identifiability problems for ODE models by the STAN
algorithm. Such differential-algebraic systems may also occur some other in
prolongation-based algorithms and efficiently computing Grobner bases can be
critical. The main speed-up is achieved by automatically choosing problem-
specific monomial orderings.

Keywords: structural parameter identifiability, Grobner bases, monomial or-
derings

Structural identifiability properties of ODE systems determine whether a parameter value
can be recovered form experimental data. If recovered value is unique, we say that param-
eters are uniquely identifiable. In case of finitely many values, we say that parameters
are locally identifiable. If there are infinitely many such values, a parameter is said to be
non-identifiable.

Structural identifiability queries can be solved using methods of differential algebra.
Among available tools for determining parameter identifiability such as [2, 3, 7, 8, 10, 11].
In this work, we focus our attention on SIAN, Structural Identifiability Analyzer presented
and detailed in [6] and [7]. This package has multiple notable advantages most notably a
typical computational speed advantage when compared to other similar tools, [7].

STAN uses Grobner bases to analyze structural identifiability of the input differential
system. Grobner bases can have degrees that are doubly exponential in the input size [4]
thus leading to significant resource requirements for computing them. While in practice these
computations can be efficient, especially with resent developments in hardware and software
[1, 5], one may nonetheless encounter computationally hard problems that may take up to
several days to resolve.

It is crucial to seek empirical approaches that can lead to improvements in computing
Gobner bases. For instance, it is well-known that a choice of monomial ordering could
significantly impact the speed and that reverse degree lexicographic order of variables is
often the most efficient in practice [12].

In this work, we show several observations on monomial orderings for polynomial systems
produced by the SIAN algorithm from ordinary differential equations. Similar polynomial
systems arise in other prolongation-based algorithms, see for instance [9]. These observations,
if taken into account, significantly reduce runtime and memory use of the SIAN and its
Grobner basis calculation compared to degree reverse lexicographic ordering.
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