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Abstract

In the classical problem of the motion of a rigid body around a fixed point, described by the
Euler-Poisson equations, we propose a new method for computing cases of integrability: first, we
provide algorithms for computing values of parameters ensuring potential integrability and then
we select cases of global integrability. By the method we have obtained all the known cases of
global integrability, six new cases of potential integrability, for which the absence of their global
integrability are proven.
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1. Introduction (1)

This study introduces an innovative approach to identify integrable cases of motion of
the rigid top with a fixed point. Using the structural characteristics of the dynamical
equations and developing new invariants within a unified framework, we seek to advance
previous methodologies and expand the repertoire of recognized integrable configurations.

The system of Euler-Poisson equations (1750) (or shortly EP-equations) is a real
autonomous system of six ordinary differential equations (ODEs).



1. Introduction (2)

𝐴𝑝′ + (𝐶 −𝐵)𝑞𝑟 =𝑀𝑔 (𝑦0𝛾3 − 𝑧0𝛾2) ,

𝐵𝑞′ + (𝐴− 𝐶)𝑝𝑟 =𝑀𝑔 (𝑧0𝛾1 − 𝑥0𝛾3) ,

𝐶𝑟′ + (𝐵 −𝐴)𝑝𝑞 =𝑀𝑔 (𝑥0𝛾2 − 𝑦0𝛾1) ,

𝛾′1 = 𝑟𝛾2 − 𝑞𝛾3, 𝛾′2 = 𝑝𝛾3 − 𝑟𝛾1, 𝛾′3 = 𝑞𝛾1 − 𝑝𝛾2,

(1)

with dependent variables 𝑝, 𝑞, 𝑟, 𝛾1, 𝛾2, 𝛾3 and parameters 𝐴,𝐵,𝐶, 𝑥0, 𝑦0, 𝑧0, satisfying
the triangle inequalities

0 < 𝐴 ⩽ 𝐵 + 𝐶, 0 < 𝐵 ⩽ 𝐴+ 𝐶, 0 < 𝐶 ⩽ 𝐴+𝐵. (2)

Here, the prime indicates differentiation over the independent variable time 𝑡, 𝑀𝑔 is
the weight of the body, 𝐴,𝐵,𝐶 are the principal moments of inertia of the rigid body,
𝑥0, 𝑦0, 𝑧0 are the coordinates of the center of mass of the rigid body, 𝛾1, 𝛾2, 𝛾3 are the
vertical directional cosines.



1. Introduction (3)
EP-equations describe the motion of a rigid top around a fixed point [Golubev, 1960]
and have the following three first integrals:

energy: 𝐼1
def
= 𝐴𝑝2 +𝐵𝑞2 + 𝐶𝑟2 − 2𝑀𝑔 (𝑥0𝛾1 + 𝑦0𝛾2 + 𝑧0𝛾3) = ℎ = const,

momentum: 𝐼2
def
= 𝐴𝑝𝛾1 +𝐵𝑞𝛾2 + 𝐶𝑟𝛾3 = 𝑙 = const,

geometric: 𝐼3
def
= 𝛾21 + 𝛾22 + 𝛾23 = 1.

EP-equations are integrable if there is a fourth general integral 𝐼4. So far, 5 cases of
integrability are known:



1. Introduction (4)

Case 1. Euler-Poinsot: 𝑥0 = 𝑦0 = 𝑧0 = 0 and the fourth integral is

𝐼4
def
= 𝐴2𝑝2 +𝐵2𝑞2 + 𝐶2𝑟2 = const.

Case 2. Lagrange-Poisson: 𝐵 = 𝐶, 𝑥0 ̸= 0, 𝑦0 = 𝑧0 = 0, and the fourth integral is

𝐼4
def
= 𝑝 = const.

Case 3. Kovalevskaya (1890): 𝐴 = 𝐵 = 2𝐶, 𝑥0 ̸= 0, 𝑦0 = 𝑧0 = 0, and

𝐼4
def
=

(︀
𝑝2 − 𝑞2 + 𝑐𝛾1

)︀2
+ (2𝑝𝑞 + 𝑐𝛾2)

2 = const,

where 𝑐 =𝑀𝑔𝑥0/𝐶.
Case 4. Kinematic symmetry: 𝐴 = 𝐵 = 𝐶 and 𝐼4

def
= 𝑥0𝑝+ 𝑦0𝑞 + 𝑧0𝑟 = const. It is

derived from Case 2.



1. Introduction (5)

Case 5. Bruno–Batkhin (2024) [Bruno, Batkhin, 2024]: 𝐴 = 𝐵 = 2𝐶, 𝑥0 ̸= 0,
𝑦0 ̸= 0, 𝑧0 = 0, the fourth integral is

𝐼4
def
=

(︀
𝑝2 − 𝑞2 + 𝑐𝛾1 − 𝑑𝛾2

)︀2
+ (2𝑝𝑞 + 𝑑𝛾1 + 𝑐𝛾2)

2 = const,

where 𝑐 =𝑀𝑔𝑥0/𝐶, 𝑑 =𝑀𝑔𝑦0/𝐶.

Below ℓ is the number of nonzero values among parameters 𝑥0, 𝑦0, 𝑧0.
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2. Theory. Local and global integrability

Definition 1.
The ODE system is locally integrable near a stationary point (SP) of the system if
it has enough analytic integrals in a vicinity of the SP. It is evident that an integrable
system is locally integrable at each of its stationary points.

Hypothesis 1 ([Edneral, 2023]).

If an autonomous polynomial ODE system is locally integrable in the neighborhood of all
its stationary points, then it is globally integrable.



2. Theory. Local integrability (1)

Therefore, to find global integrability, we must first find all stationary points of the ODE
system and then find out whether the system is locally integrable in their neighborhoods.

Let 𝑋 = (𝑝, 𝑞, 𝑟, 𝛾1, 𝛾2, 𝛾3), the point 𝑋 = 𝑋0 be a stationary point of the system (1)
and

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝐵 − 𝐶

𝐴
𝑟

𝐵 − 𝐶

𝐴
𝑞 0 −𝑧0

𝐴

𝑦0
𝐴

𝐶 −𝐴

𝐵
𝑟 0

𝐶 −𝐴

𝐵
𝑝

𝑧0
𝐵

0 −𝑥0
𝐵

𝐴−𝐵

𝐶
𝑞

𝐴−𝐵

𝐶
𝑝 0 −𝑦0

𝐶

𝑥0
𝐶

0

0 −𝛾3 𝛾2 0 𝑟 −𝑞
𝛾3 0 −𝛾1 −𝑟 0 𝑝
−𝛾2 𝛾1 0 𝑞 −𝑝 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
be a matrix of the linear part of the system (1) near the SP 𝑋0.



2. Theory. Local integrability (2)

The characteristic polynomial 𝜒(𝜆) of the matrix 𝑀 is

𝜒(𝜆) = 𝜆6 + 𝑎4𝜆
4 + 𝑎2𝜆

2.

Canceling it by 𝜆2 we get a bi-quadratic form, and compute its primary discriminant
on 𝜆2:

𝐷𝜆2(𝜒) = 𝑎24 − 4𝑎2. (3)

It is a rational function 𝐷 = 𝐺/𝐻, where 𝐺 and 𝐻 are polynomials in system parameters.

A stationary point is locally integrable [Bruno, 2007] if 𝑎2 < 0 or 𝐷𝜆(𝜒) < 0. But this
property is not satisfied for definite values of system parameters (1).

The stationary points of the EP system form one- and two-dimensional families ℱ ℓ
𝑗 in

R6. Below 𝑗 is the number of the family for a given value of ℓ.



2. Theory. Local integrability (3)

The numerator 𝐺 of the primary discriminant 𝐷𝜆(𝜒) depends on the set Ξ of parameters

Ξ
def
={𝑠, 𝐴, 𝐵, 𝐶} (4)

where 𝑠 is the parameter along the family ℱ ℓ
𝑗 and others are parameters of the system (1).

Let 𝜉 be one of the parameters (4).

By Δ𝜉

(︁
ℱ ℓ
𝑗

)︁
we denote the secondary discriminant of the numerator 𝐺 of the primary

discriminant (3) in the parameter 𝜉.

Hypothesis 2.

If near a stationary point 𝑋0 of the family ℱ ℓ
𝑗 with certain parameters values (4) the

EP-equations are locally integrable, then at these parameter values there is at least one
secondary discriminant Δ𝜉

(︁
ℱ ℓ
𝑗

)︁
= 0.



2. Theory. Local integrability (4)

Remark
The property given in Hypothesis 2 is a necessity condition for local integrability, but
not a sufficient one. So, the set of parameters for which Hypothesis 2 is satisfied should
be called potentially integrable. Our first task is to compute all sets of potential
integrability and then to select from them the cases of local or global integrability.



2. Theory. Zero eigenvalues

The case where the characteristic polynomial 𝜒(𝜆) has zero roots can be studied using
the approach from [Stolovitch, Verstringe, 2016]. But here we assume the following
Hypothesis

Hypothesis 3.

For EP-equations the stationary point with four zero eigenvalues is locally integrable.



2. Theory. Checking for integrability

There are three ways to check the existence of the fourth integral.
1) Finding this integral in explicit form.
2) Using the Normal Form (NF) of the system near the SP: according to [Bruno, 2007,
Section 5.3] the resonant terms coefficients of the NF at a resonance of order 3, i.e.,
when there exists a pair of eigenvalues with ratio 2 : 1, should be zero in integrable cases.
They are zero in some subcases, and in other subcases they are nonzero. If resonance
of order 3 is absent, then we need to consider the resonance with the minimum possible
order.
3) If in the case that the EP-equations (1) do not have any resonances, one has to
consider the eigenvalues at the stationary point of a family ℱ ℓ

𝑗 . If all of them do not
belong to the straight line that crosses the origin of the complex plane, then in the real
case the normalization transformation is analytic and the system (1) is locally integrable.
See [Moser, 1958] for Hamiltonian systems and [Bruno, 2007] for the EP-equations,
because they can be written as a Hamiltonian system [Gashenenko (et al.), 2012] with
the same set of eigenvalues.
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3. Algorithm of searching for integrable cases (1)

Taking into account Hypothesis 1, now the search for integrable cases consists of the
following steps.

Step 1 Fix the number ℓ of non-zero parameters 𝑥0, 𝑦0, 𝑧0 and find all families ℱ ℓ
𝑗 of

stationary points.
Step 2 Compute primary discriminants (3) 𝐷𝜆(𝜒) on the families ℱ ℓ

𝑗 .

Step 3 In the family ℱ ℓ
𝑗 , calculate all secondary discriminants Δ𝜉

(︁
ℱ ℓ
𝑗

)︁
of the numera-

tors 𝐺 of the primary discriminants 𝐷𝜆(𝜒), where 𝜉 ∈ Ξ defined in (4), and their factors.
All irreducible factors we divide into two groups:



3. Algorithm of searching for integrable cases (2)

Ist group are factors not depending on 𝑠:

𝜙1, . . . , 𝜙𝑚. (5)

IInd group are factors depending on 𝑠:

𝜓1, . . . , 𝜓𝑛.

For each pair 𝜓𝑖, 𝜓𝑘, 1 ⩽ 𝑖 < 𝑘 ⩽ 𝑛, we compute its resultant 𝑅𝑖𝑘
𝑠 (𝐴,𝐵,𝐶) over the

parameter 𝑠 and factorize it into irreducible factors 𝜂𝑖𝑘(𝐴,𝐵,𝐶). So, we obtain a set 𝒮𝑗

of factors (5) and factors 𝜂𝑖𝑘(𝐴,𝐵,𝐶) that are not dependent on 𝑠.
For their roots, all SPs of the family ℱ ℓ

𝑗 are potentially locally integrable.



3. Algorithm of searching for integrable cases (3)

Step 4 For fixed value ℓ and for each set

𝑓1(𝐴,𝐵,𝐶), 𝑓2(𝐴,𝐵,𝐶), 𝑓3(𝐴,𝐵,𝐶),

where 𝑓𝑗 ⊂ 𝒮𝑗 , we compute their common real roots 𝐴0, 𝐵0, 𝐶0, satisfying the triangle
inequalities (2). Such roots are potentially globally integrable cases according to Hypoth-
esizes 1 and 2.
Step 5 Check the values of the parameters obtained for potential integrability by com-
puting the normal forms of the EP system near stationary points or by finding the fourth
independent integral. Usually, it is sufficient to compute coefficients of the resonant
monomials of the normal form in the case of the resonance of order 3, i.e., when there
exists at least one pair of non-zero eigenvalues with ration 𝜆𝑗 : 𝜆𝑘 = 2.
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4. Results for case ℓ = 1 (1)

Theorem 1.

For ℓ = 1 EP-equations has four families of SP:

ℱ1
1 : {𝑝 = 𝑠, 𝑞 = 𝑟 = 0, 𝛾1 = 𝑝/𝑘 = ±1, 𝛾2 = 𝛾3 = 0} ;

ℱ1
2 :

{︂
𝑝 =

𝑥0
𝑘(𝐶 −𝐴)

, 𝑞 = 0, 𝑟 =
𝑠

𝑘
, 𝛾1 =

𝑝

𝑘
, 𝛾2 = 0, 𝛾3 =

𝑟

𝑘
,𝐴 ̸= 𝐶, 𝑥0 ̸= 0

}︂
;

ℱ1
3 :

{︂
𝑝 =

𝑥0
𝑘(𝐵 −𝐴)

, 𝑞 =
𝑠

𝑘
, 𝑟 = 0, 𝛾1 =

𝑝

𝑘
, 𝛾2 =

𝑞

𝑘
, 𝛾3 = 0, 𝐴 ̸= 𝐵, 𝑥0 ̸= 0

}︂
;

ℱ1
4 :

{︂
𝑝 =

𝑥0
𝑘(𝐵 −𝐴)

, 𝛾1 =
𝑝

𝑘
, 𝛾2 =

𝑞

𝑘
, 𝛾3 =

𝑟

𝑘
,𝐴 ̸= 𝐵 = 𝐶, 𝑥0 ̸= 0

}︂
,

where 𝑠, 𝑞, 𝑟 are parameters.



4. Results for case ℓ = 1 (2)

Under the permutation

𝑞 ↔ 𝑟, 𝛾2 ↔ 𝛾3, 𝐵 ↔ 𝐶, 𝑦0 ↔ 𝑧0, 𝑡→ −𝑡 (6)

families ℱ1
3 ↔ ℱ1

2 . The families ℱ1
1 and ℱ1

4 are invariant under automorphism.

Let us apply this approach to the case ℓ = 1. In this case 𝑥0 ̸= 0, 𝑦0 = 𝑧0 = 0. Now we
study local integrability for the families ℱ1

1 , ℱ1
2 , ℱ1

3 and ℱ1
4 .

Starting from the “simplest” family ℱ1
1 and obtaining a set of relations 𝒮(ℱ1

1 ) between
the parameters Ξ, we would provide the corresponding computations for other families
only taking into account the relations obtained for the families processed earlier.

So, for the family ℱ1
1 we have the following:



4. Results for case ℓ = 1 (3)

∙ coefficients 𝑎4 and 𝑎2 of the characteristic polynomial 𝜒(ℱ1
1 ) are

𝑎4 =
(𝐵 + 𝐶)𝑥0 + 𝑠2

(︀
𝐴2 −𝐴𝐵 −𝐴𝐶 + 2𝐶𝐵

)︀
𝐵𝐶

,

𝑎2 =

(︀
(𝐴− 𝐶)𝑠2 + 𝑥0

)︀ (︀
(𝐴−𝐵)𝑠2 + 𝑥0

)︀
𝐵𝐶

;

∙ numerator 𝐺 of the discriminant 𝐷𝜆(𝜒) is

𝐺(ℱ1
1 ) = 𝐴2 (𝐴− 𝐶 −𝐵)2 𝑠4+2 (𝐵𝐴+𝐴𝐶 − 4𝐶𝐵) (𝐴− 𝐶 −𝐵)𝑥0 𝑠

2+(𝐵 − 𝐶)2 𝑥20,



4. Results for case ℓ = 1 (4)

∙ the secondary discriminants Δ𝜉 are the following

Δ𝑠2
(︀
ℱ1
1

)︀ ∼= (𝐴− 2𝐶)2 (𝐴− 2𝐵)2 (𝐴−𝐵 − 𝐶)6 (𝐵 − 𝐶)2𝐴2𝐵2𝐶2𝑥60,

Δ𝐴

(︀
ℱ1
1

)︀ ∼= 𝑔1𝐴 (𝐵 − 𝐶)2 𝑥30𝐵
2𝐶2𝑠12,

Δ𝐵

(︀
ℱ1
1

)︀ ∼= (𝐴− 2𝐶)2 𝑔1𝐵𝑥
2
0𝐶 𝑠

2,

Δ𝐶

(︀
ℱ1
1

)︀ ∼= (𝐴− 2𝐵)2 𝑔1𝐶𝑥
2
0𝐵𝑠

2,

where

𝑔1𝐴 =2 (𝐵 + 𝐶)3 𝑠6 + 3 (𝐶 − 5𝐵) (𝐵 − 5𝐶) 𝑠4𝑥0 + (24𝐵 + 24𝐶) 𝑠2𝑥20 + 16𝑥30,

𝑔1𝐵 =(𝐴− 𝐶)𝑠2 + 𝑥0, 𝑔1𝐶 = (𝐴−𝐵)𝑠2 + 𝑥0.



4. Results for case ℓ = 1 (5)

For the family ℱ1
2 we have the following.

Connection between parameter 𝑘 and other parameters from the set Ξ is

(𝐴− 𝐶)2 𝑘4 = 𝑥20 + 𝑠2 (𝐴− 𝐶)2 .

Numerator 𝐺 of the discriminant 𝐷𝜆(ℱ1
2 ) is the following

𝐺(ℱ1
2 ) = 𝐶4 (𝐴− 𝐶)4 (𝐴+𝐵 − 𝐶)2 𝑠4 + 2𝐴𝐶 (𝐴− 𝐶)2 (𝐴+𝐵 − 𝐶)×

×
(︀
2𝐴2𝐵 −𝐴2𝐶 − 6𝐴𝐵𝐶 + 2𝐴𝐶2 + 5𝐵𝐶2 − 𝐶3

)︀
𝑠2𝑥20+

+𝐴2
(︀
𝐴2 − 2𝐴𝐵 − 2𝐶𝐴+ 3𝐶𝐵 + 𝐶2

)︀2
𝑥40



4. Results for case ℓ = 1 (6)

and the secondary discriminants Δ𝜉 are

Δ𝑠

(︀
ℱ1
2

)︀ ∼=(𝐵 − 𝐶)2 (𝐴− 2𝐶)4 (𝐴− 𝐶)16 (𝐴+𝐵 − 𝐶)6×

×
(︀
𝐴2 − 2𝐴𝐵 − 2𝐴𝐶 + 3𝐵𝐶 + 𝐶2

)︀2
𝐴6𝐵2𝐶8𝑥120 ,

Δ𝐴

(︀
ℱ1
2

)︀ ∼=(𝐵 − 𝐶)5ℎ2𝐴𝑔
2
2𝐴𝐵

8𝐶19𝑥200 𝑠
8,

Δ𝐵

(︀
ℱ1
2

)︀ ∼=(𝐴− 2𝐶)2 (𝐴− 𝐶)5 𝑔2𝐵𝐴
3𝐶 𝑥40𝑠

2,

Δ𝐶

(︀
ℱ1
2

)︀ ∼=𝑓13(𝑠, 𝑥0, 𝐴,𝐵)𝑔22𝐶𝐴
25𝐵10𝑥280 𝑠

26,



4. Results for case ℓ = 1 (7)

where

ℎ2𝐴 =16𝐵5𝐶7𝑠8 − 8𝐶5𝐵3
(︀
5𝐵2 − 10𝐵𝐶 − 27𝐶2

)︀
𝑠6𝑥20+

+ 3𝐵𝐶3
(︀
291𝐵4 + 4𝐶 𝐵3 − 638𝐵2𝐶2 + 612𝐵𝐶3 + 243𝐶4

)︀
𝑠4𝑥40

− 8𝐵𝐶 (3𝐵 + 𝐶)
(︀
9𝐵3 + 249𝐵2𝐶 − 557𝐵𝐶2 + 171𝐶3

)︀
𝑠2𝑥60 + 16 (3𝐵 + 𝐶)4 𝑥80,

𝑔2𝐴 =2(𝐵 − 𝐶)𝑥20 + 𝐶2(𝐵 + 𝐶)𝑠2, 𝑔2𝐵 = (4𝐶 − 3𝐴)𝑥20 + 𝐶 (𝐴− 𝐶)2 𝑠2,

𝑔2𝐶 =8 (2𝐵 −𝐴)𝑥20 +𝐴2 (𝐴+ 2𝐵) 𝑠2,

and 𝑓13(𝑠, 𝑥0, 𝐴,𝐵) is a very cumbersome expression. Similar results for the family ℱ1
3

can be obtained by permutation (6).



4. Results for case ℓ = 1 (8)

Local integrability for the family ℱ1
4

For family ℱ1
4 of SP, the coefficient 𝑎2 of the characteristic polynomial 𝜒(ℱ1

4 ) is equal
to zero. So, we have four zero eigenvalues here. Jordan form of matrix 𝑀(ℱ1

4 ) has only
one Jordan block 2 × 2, and Hypothesis 3 is applicable, and gives local integrability for
the family ℱ1

4 .

Collecting together the previous results of local integrability for the families ℱ1
𝑗 ,

𝑗 = 1,2,3, we obtain

ℱ1
1 :𝐿11 = {𝐵 = 𝐶}, 𝐿12 = {𝐴 = 2𝐶}, 𝐿13 = {𝐴 = 2𝐵}, 𝐿14 = {𝐴 = 𝐵 + 𝐶};

ℱ1
2 :𝐿21 = {𝐵 = 𝐶};𝐿22 = {𝐴 = 2𝐶}, 𝐿23 = {𝐴 = 𝐶}, 𝐿24 = {𝐶 = 𝐴+𝐵};
𝐿25 =

{︀
𝐴2 − 2𝐴𝐵 − 2𝐴𝐶 + 3𝐵𝐶 + 𝐶2 = 0

}︀
.

ℱ1
3 :𝐿31 = {𝐵 = 𝐶}, 𝐿32 = {𝐴 = 2𝐵}, 𝐿33 = {𝐴 = 𝐵}, 𝐿34 = {𝐵 = 𝐴+ 𝐶},
𝐿35 =

{︀
𝐴2 − 2𝐴𝐵 − 2𝐴𝐶 + 3𝐵𝐶 +𝐵2 = 0

}︀
,

(7)



4. Results for case ℓ = 1 (9)

∙ For all families ℱ1
𝑗 , 𝑗 = 1,2,3, there is a case 𝐿11 ≡ 𝐿21 ≡ 𝐿31, i.e. 𝐵 = 𝐶. So, it is

an integrable case.
∙ For families ℱ1

1 and ℱ1
2 , there are cases 𝐿12 ≡ 𝐿22, i.e. 𝐴 = 2𝐶, and for family ℱ1

3

there is a case 𝐿33, i.e. 𝐴 = 𝐵. So, case 𝐴 = 𝐵 = 2𝐶 is integrable; similarly, case
𝐴 = 𝐶 = 2𝐵 is also integrable.

There is one more case 𝐿13, 𝐿24, 𝐿32, that is, 𝐴 = 2𝐵, 𝐶 = 3𝐵 or

𝐴 = 2𝐵, 𝐵 = 𝐶/3. (8)

Here an additional integral is absent because there are non-zero resonant terms in the
NF

Any other combinations of local integrability cases contradict the triangle inequalities or
give the case 𝐵 = 𝐶. These cases of integrability are known.



4. Results for case ℓ = 1. Some new potentially integrable cases (1)

In the above, we considered only factors that do not depend on 𝑠. Let us take into
account factors, which do depend on mentioned above parameters:

ℱ1
1 : 𝑔1𝐴, 𝑔1𝐵, 𝑔1𝐶 ;

ℱ1
2 : 𝑔2𝐴, 𝑔2𝐵, 𝑔2𝐶 , ℎ2𝐴, 𝑓13(𝑠, 𝑥0, 𝐴,𝐵);

ℱ1
3 : 𝑔3𝐴, 𝑔3𝐵, 𝑔3𝐶 , ℎ3𝐴, 𝑓13(𝑠, 𝑥0, 𝐴,𝐶),

(9)

where

𝑔3𝐴(𝐵,𝐶) = 𝑔2𝐴(𝐶,𝐵), 𝑔3𝐵(𝐵,𝐶) = 𝑔2𝐶(𝐶,𝐵),

𝑔3𝐶(𝐵,𝐶) = 𝑔2𝐵(𝐶,𝐵), ℎ3𝐴(𝐵,𝐶) = ℎ2𝐴(𝐶,𝐵).



4. Results for case ℓ = 1. Some new potentially integrable cases (2)

Remark
The parameter 𝑠 along one family is independent of the parameters along the other ones.
So, it can be eliminated from the pairs of factors related to the same family of SP only.

Brief description of the computational procedure
Step 1 Using the elimination technique, we prepare sets of polynomial factors for each

family ℱ1
𝑗 , 𝑗 = 1,2,3, eliminating parameters 𝑠 from the polynomials in Formula (9).

Step 2 The sets 𝒮𝑗 of possible factors are prepared by union polynomials from For-
mula (7) with factors obtained in the previous step.

Step 3 From each factor of the corresponding set 𝒮𝑗 , 𝑗 = 1,2,3, we construct a system
of polynomial equations, compute the Gröbner basis for it and find all real non-
trivial solutions, that is, all parameters 𝐴,𝐵,𝐶 are non-zero.

Step 4 The solutions obtained are checked for whether they satisfy the triangle inequal-
ities (2).



4. Results for case ℓ = 1. Some new potentially integrable cases (3)

In Step 2 we prepare 3 sets 𝒮𝑗 , 𝑗 = 1,2,3, which contain all possible factors for each
family, namely 6 factors in 𝒮1 and 14 factors in each 𝒮2 and 𝒮3 sets. In total, we get
6 · 14 · 14 = 1176 possible combinations of factors.

Implementation of Steps 3 and 4 gave us 17 non-trivial solutions, i.e., solutions with
non-zero values of 𝐴,𝐵,𝐶 satisfying the triangle inequalities (2). 9 solutions of them
correspond to Case 2 of Lagrange–Poisson: common case and 8 particular cases. 2
solutions correspond to Case 3 of Kovalevskaya up to the permutation (6) 𝐵 ↔ 𝐶,
𝑞 ↔ 𝑟. The 2 solutions correspond to the case 𝐴 = 2𝐵,𝐵 = 𝐶/3 considered above.
So, we could find 2 new pairs of solutions:

1) 𝐴 = 2𝐶, 𝐵 = 3𝐶/2 and symmetrical

𝐴 = 2𝐵, 𝐵 = 2𝐶/3. (10)



4. Results for case ℓ = 1. Some new potentially integrable cases (4)

2) 𝐴 = 2𝐶, 3𝐵3 − 6𝐵2𝐶 + 5𝐵𝐶2 − 4𝐶3 = 0 and symmetrical under permutation
𝐵 ↔ 𝐶 is 𝐴 = 2𝐵, 4𝐵3 − 5𝐵2𝐶 + 6𝐵𝐶2 − 3𝐶3 = 0. The last homogeneous cubic
equation has only one real root for

𝐵/𝐶 = (𝛼− 47/𝛼+ 5) /12 ≈ 0.67456267248393436447, (11)

where 𝛼 =
3
√︀

233 + 36
√
122.

Among the set of roots obtained, we need to select only those that satisfy the triangle
inequalities, which are successful on the following values 𝐵/𝐶 only:

𝐵/𝐶 ∈ {0.6656638025, 0.6668031182, 0.9967129831}. (12)



4. Results for case ℓ = 1. Some new potentially integrable cases (5)

Summarizing the results of potentially integrable cases (8), (10), (11), (12) we can state
that all the cases are implemented under the conditions 𝐴 = 2𝐵 and 𝐵/𝐶 = 𝛽, where
the parameter 𝛽

𝛽 ∈ {1/3, 0.6656638025, 2/3, 0.6668031182, 0.6745626725, 0.9967129831}.

For each of these values, we need to provide the check of local integrability separately
for the families ℱ1

1 , ℱ1
2 , and ℱ1

3 . Here we encounter three different situations concerning
Resonant condition for the definite values of 𝛽.

1) Resonance of order 3 is implemented for some real values of the parameter 𝑥0.
2) Resonance of order 3 does not exist for any real values of the parameter 𝑥0, but is
implemented for some resonances of higher order.
3) There are no resonances of any orders for any real values of the parameter 𝑥0.



4. Results for case ℓ = 1. Some new potentially integrable cases (6)

Theorem 2.

For the case 𝐴 = 2𝐵, 𝐵/𝐶 = 𝛽, 𝑦0 = 𝑧0 = 0, and 1/3 ⩽ 𝛽 ⩽ 1, the EP-equations are
locally integrable in the vicinity of the family ℱ1

1 of the stationary points.

We collect the minimal order of resonance existing for the real values of the parameters
𝑠, 𝑥0

Table 1: Minimal order of a resonance existence for real values of parameters 𝑠, 𝑥0

No 1 2 3 4 5 6
𝛽 1/3 0.6656638025 2/3 0.6668031182 0.6745626725 0.9967129831
ℱ1
2 3 – – 3457 62 3

ℱ1
3 3 4 4 4 4 26



4. Results for case ℓ = 1. Some new potentially integrable cases (7)

For Situation|1), we select the values No 1 and No 6, when the resonance of the order
3 exists. The computational procedure here is similar to the procedure described for the
family ℱ1

1 above.

Theorem 3.

For 𝛽 values No 1 and No 6 in Table 1 the NFs in the vicinity of the family ℱ1
2 are not

integrable.

Now we check the values No 2 and 3 for the family ℱ1
2 , where Situation 3) takes place.

Theorem 4.

For 𝛽 values No 2 and No 3 in Table 1 the corresponding NFs in the vicinity of the family
ℱ1
2 are integrable.



4. Results for case ℓ = 1. Some new potentially integrable cases (8)

Finally, we give the description of results of the NF computation for the family ℱ1
3 for

values No 2, 3, 4, 5, i.e. when Situation|2) takes place with resonance of order 4.

For the value 𝛽 = 2/3 (No 3 in Table 1) the coefficients of the resonant terms can be
computed symbolically, but for other values (No 2,4,5) only numerically. The coefficients
obtained, divided by

√
𝑠, are presented in Table 2.

Table 2: Table of the resonant terms coefficients. Here 𝛿 = 𝑖423/4
√
6/72.

No 𝑐123 𝑐214 𝑐310 𝑐420
2 −0.192267822892𝑖 0.192267822892𝑖 0.0413172384893𝑖 −0.0413172384893𝑖

3 −𝛿 𝛿 𝛿/3 −𝛿/3
4 −0.192107258655 −0.192107258655 −0.0413243675971 −0.0413243675971

5 −0.190226341400 −0.190226341400 −0.0411825670879 −0.0411825670879



4. Results for case ℓ = 1. Some new potentially integrable cases (9)

Theorem 5.

For each value 𝛽 No 2, 3, 4, 5 in Table 1 of the family ℱ1
3 the NF has non-zero resonant

monomials and therefore is not locally integrable.

So, now we can summarize all the computations for the case ℓ = 1.

Theorem 6.

All known cases of global integrability were obtained. For all new computed potentially
integrable cases of the form 𝐴 = 2𝐵, 𝐵 = 𝛽𝐶, with 𝛽 ∈ ℬ, there are no global
integrability.

We have some new results for cases ℓ = 2 and ℓ = 3, but we do not have time to present
them.
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