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Introduction

Modular representation is a popular technique to accelerate the
arithmetic of computer algebra systems. However, there are
overheads involved when this technique is applied:

1. conversion to modular representation (involves division by a
modulus)

2. reduction of the intermediate results during computations
(division by a modulus)

3. reconstruction from modular representation (involves
multiplication and division by moduli and multiplication by
computed modular inverses)

The choice of special-form moduli can help to reduce the overhead.
We demonstrate that popular choice of Mersenne type moduli can
be outperformed by selecting the moduli of Fermat type.
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Mersenne

Mersenne type moduli are of the form (2n − 1):
A popular choice dating back more than 60 year with multiple
generalizations (Schönhage [4], Knuth [3], and Fraenkel [1])

Relative primality of 2n − 1 and 2m − 1 is guaranteed by selecting
relatively prime exponents n and m.
Overhead 1 and 2 are improved since division by 2n − 1 is linear in
bit-length of the input.
Overhead 3 is slightly improved as multiplication by 2n − 1 is linear
in bit-length of the result.
Computing inverses and multiplication by inverses remain a part of
overhead 3...
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Fermat

Fermat type moduli are of the form (2n + 1):
Mostly “ignored” until Zima and Steward [5] found that shifted
scheme of Fermat moduli gives simple closed-form inverses with
three terms. However, moduli with this property are very
imbalanced in bit-length.

Relative primality of 2n + 1 and 2m + 1 is guaranteed by selecting
exponents n and m with different binary valuation.
Overhead 1 and 2 are improved since division by 2n + 1 is linear in
bit-length of the input.
Overhead 3 is significantly improved as multiplication by 2n + 1 is
linear in bit-length of the result. Also inverses have sparse pattern
and multiplication by inverses is linear in bit-length of the result.
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Mersenne vs Fermat (motivational example)

Consider a simple moduli set of size 2, {m1,m2}: Given
u1 = u mod m1, u2 = u mod m2, by CRT and Garner’s algorithm:

u = u1 + ((u2 − u1)M mod m2)m1,

with 0 ≤ u < m1m2 where M = m−1
1 mod m2.

Reconstruction involves

1. (pre-)computing inverse M

2. multiplications by M and by m1

3. division by m2

4. addition and subtraction (linear time in bit-length of the
result)
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Mersenne vs Fermat

Consider two Mersenne type moduli: m1 = 223 − 1, m2 = 217 − 1
with M = 212 + 26 + 1.
Also consider two Fermat type moduli: m1 = 224 + 1,
m2 = 216 + 1 with M = 215 + 27 + 1 = 216−1 + 28−1 + 1.

They seem to have comparable performance for fixed-range
computation as reconstruction is linear in the bit-length of the
inverse.
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Mersenne vs Fermat

However, if our inputs come in various sizes such that we need to
dynamically adjust the range of our moduli set:
Suppose we want to increase the representable range by a factor of
10:

▶ Mersenne: Recomputation is needed, and the sparsity of
inverses is not guaranteed.
One possible new Mersenne type moduli set:
m1 = 2239 − 1, m2 = 2161 − 1 with
M = 2159 + 2156 + 2154 + · · ·+ 23 + 1 (64 terms, dense!).

▶ Fermat: Existing moduli set can be scaled up:
m1 = 2240 + 1, m2 = 2160 + 1 with
M = 2159 + 279 + 1 = 2160−1 + 280−1 + 1 (sparsity is
preserved)
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Fermat polynomials and their properties

Was the previous example a fluke? It was not.
In fact any two relatively prime Fermat type moduli are scalable
(similarly to the example shown).

Some facts about Fermat type moduli:

▶ Scaling (i.e. when 2 is replaced by 2c for a natural c)
preserves the relative primality of two moduli

▶ Scaling preserves the sparsity of the inverses

▶ For any b ∈ N, there exist a set of b pairwise relatively prime
and scalable moduli of Fermat type with balanced bit-size

In order to prove these facts, it is more convenient to study Fermat
polynomials first.
Observation: Given a Fermat type polynomial f (x) = xn + 1, it
links naturally to its corresponding Fermat type modulus
f (2) = 2n + 1 and scaled Fermat type modulus f (2c) = 2cn + 1.
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Fermat polynomials and their properties

Consider two Fermat type polynomials f (x) = xn + 1 and
g(x) = xm + 1 in Q[x ].
Existence of Fermat Moduli Sets:

▶

gcd(xn + 1, xm + 1) =

{
1, ν2(n) ̸= ν2(m)

xgcd(n,m) + 1, otherwise

ν2(n): binary valuation of a natural number n

▶ If gcd(f (x), g(x)) = 1, then for any integer ℓ ≥ 1 numbers
f (2ℓ) and g(2ℓ) are relatively prime.



Fermat polynomials and their properties

Bézout cofactors:

▶ If gcd(f (x), g(x)) = 1, then non-zero coefficients of Bézout
cofactors s(x) and t(x) in equation

s(x)f (x) + t(x)g(x) = 1

are dyadic with the numerators ±1 and denominators equal to
2.
Thus, f (2ℓ) = 2ℓn + 1 and g(2ℓ) = 2ℓm + 1 is a scalable pair
of moduli with scalable inverses for any ℓ ≥ 2.



Fermat polynomials and their properties

Bézout cofactors:

▶ If the cofactors s(x), t(x) have more than 1 term, the
difference in adjacent degrees of the terms in the cofactors
ordered by the degree is h = gcd(n,m). Specifically,

s(x) = ±1

2
xm−h ± 1

2
xm−2h ± · · · ± 1

2
,

t(x) = ±1

2
xn−h ± 1

2
xn−2h ± · · · ± 1

2
.



Fermat polynomials and their properties

Existence of scalable inverses:

▶ If gcd(f (x), g(x)) = 1 then there exist polynomials p(x) with
deg p(x) ≤ m and q(x) with deg q(x) ≤ n having coefficients
from the set {0,±1/2,±1} such that

f (2ℓ)−1 mod g(2ℓ) = p(2ℓ),

g(2ℓ)−1 mod f (2ℓ) = q(2ℓ).

The number of set bits in the scaled inverses is the same as
the support of polynomials p(x) and q(x) and will be
preserved under scaling.

For example, if f (x) = x15 + 1 and g(x) = x20 + 1 then
q(x) = 1

2x
15 + 1

2x
10 + 1

2x
5 + 1 and for any integer ℓ ≥ 1

g(2ℓ)−1 mod f (2ℓ) = q(2ℓ) = 215ℓ−1 + 210ℓ−1 + 25ℓ−1 + 1.
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Selecting Fermat type moduli

Two Fermat moduli are co-prime iff their exponents have different
binary valuations. There are two greedy schemes to generate the
exponents of a moduli set of size b:

1. ek = 2b − 2k−1 for k = 1, 2, . . . , b.
Example: When b = 4,

[1111(2), 1110(2), 1100(2), 1000(2)]

2. ek = 2b−1 + 2b−k−1 for k = 1, 2, . . . , b − 1 and eb = 2b−1.
Example: When b = 4,

[1100(2), 1010(2), 1001(2), 1000(2)]



Selecting better blocks of Fermat type moduli

Also a valid set:

[1100(2), 1010(2), 1011(2), 1000(2)]

Greedy schemes are not optimal.



Selecting better blocks of Fermat type moduli

Number of terms in inverses:
Given f (x) = xn + 1, g(x) = xm + 1 with gcd(f (x), g(x)) = 1, the
numbers of terms in s(x), t(x), where s(x)f (x) + t(x)g(x) = 1,
are m/ gcd(m, n) and n/ gcd(m, n).
The numbers of terms in p(x), q(x) (polynomials whose
evaluations are scaled inverses) are m/ gcd(m, n) + 1 and
n/ gcd(m, n) + 1.



Selecting better blocks of Fermat type moduli

Comparing the total support of Bézout cofactors:
When b = 6:

Scheme Moduli Exponents Total Supports

Greedy1 {63, 62, 60, 56, 48, 32} 289

Greedy2 {48, 40, 36, 34, 33, 32} 233

Best {63, 56, 48, 42, 36, 32} 141

It is worth noting that the total support of Bézout cofactors
influences the time of reconstruction.



Selecting better blocks of Fermat type moduli
Exhaustive search with back-tracking to find a set of b exponents
with the least total support of Bézout cofactors.
Search results show that the total support of optimal choice grows
much slower than the total support of greedy schemes.

b Best Greedy1 Greedy2

6 141 289 233

7 279 937 576

8 534 1962 1227

9 1026 4740 3290

10 1935 9479 6433

11 3779 27923 15052

12 7273 46184 30771

13 14441 136310 76090

14 28153 254909 149839

15 55718 510173 339918

Table: Selective Results of Total Support of Different Schemes



Implementation and Benchmark

Integer matrices multiplication

Dim Bitsize M Mult M Overh M Total F Mult F Overh F Total
8 218 0.124 0.282 0.407 0.114 0.093 0.207
- 219 0.287 0.693 0.980 0.297 0.188 0.485
- 220 0.768 1.583 2.351 0.783 0.376 1.167
16 218 0.931 1.056 1.988 0.887 0.387 1.274
- 219 2.229 2.742 4.972 2.271 0.786 3.058
- 220 5.970 6.338 12.308 6.004 1.571 7.613
32 218 7.376 4.305 11.683 7.165 1.542 8.709
- 219 14.882 8.980 23.864 16.124 2.781 18.908
- 220 39.726 20.806 60.536 39.887 5.652 45.675
64 218 49.410 14.472 63.890 47.457 5.460 52.925
- 219 119.274 36.020 155.304 120.622 11.566 132.199
- 220 318.661 83.032 401.706 318.602 22.857 341.985

Table: Dim - matrix dimension, Bitsize - bitsize of elements of matrices,
M - Mersenne-type moduli, F - Fermat-type moduli
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In this highlighted row, the total bitlength of the inverses is about
220 = 1, 048, 576 while only about 150 bits are set in total in all
scaled-up inverses.



Implementation and Benchmark

Dim Bitsize M Mult M Overh M Total F Mult F Overh F Total
32 218 7.376 4.305 11.683 7.165 1.542 8.709
- 219 14.882 8.980 23.864 16.124 2.781 18.908
- 220 39.726 20.806 60.536 39.887 5.652 45.675

Table: Dim - matrix dimension, Bitsize - bitsize of elements of matrices,
M - Mersenne-type moduli, F - Fermat-type moduli

The overhead in Fermat numbers grows linearly as the inverses
have the same number of bits set. Doubling the size means
doubling the work. (Reduction and Reconstruction)



Implementation and Benchmark

Dim Bitsize M Mult M Overh M Total F Mult F Overh F Total
32 218 7.376 4.305 11.683 7.165 1.542 8.709
- 219 14.882 8.980 23.864 16.124 2.781 18.908
- 220 39.726 20.806 60.536 39.887 5.652 45.675

Table: Dim - matrix dimension, Bitsize - bitsize of elements of matrices,
M - Mersenne-type moduli, F - Fermat-type moduli

For Mersenne numbers, the amount of overhead for reduction is
doubled, but the reconstruction is not (computing extended
Euclidean algorithm naively is O(n2) where n is the number of bits
in the number, also the inverse can be dense with bitlength
doubled)



Implementation and Benchmark

Comments:

▶ Mersenne type moduli and Fermat type moduli have similar
performance in terms of multiplication.

▶ Fermat type moduli outperforms Mersenne type moduli due to
the scalability and the sparsity of the inverses.
▶ It is also possible to precompute and store the inverses of

Mersenne type moduli, but such inverses cannot be
dynamically scaled like Fermat type moduli.

▶ Even if inverses are pre-computed for Mersenne type moduli –
Fermat type moduli reconstruction is still faster.

▶ Sparse inverses also lead to huge memory savings.



Conclusion and open question

Block Fermat-type moduli

▶ Scale up a given moduli set without recomputation

▶ The moduli being only slightly unbalanced

▶ Significant reduction in the overhead compared to
Mersenne-type moduli

▶ Drawback: the size of moduli grows exponentially with block
size b, which makes only ”small” sets of moduli practical
▶ Best suited for situations where only a few large moduli are

needed. For example, a two-layer modular arithmetic
implementation. (Chen, Li, and Zima [2])



Conclusion and open question

Finding Fermat-type moduli

▶ Exhaustive search with pruning

▶ Greedy schemes of constructing exponents provide sets with
reasonably good characteristics

Open question: Is there a better algorithm to find close-to-optimal
blocks of balanced-in-size exponents that guarantees pairwise
relative primality of the moduli?
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