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Motivation: Rational Integrability via Residues (1 of 2)

Let K be a field of characteristic 0, and consider a rational function
f pxq P Kpxq. There is a complete partial fraction decomposition

f pxq “ ppxq `
ÿ

kě1

ÿ

α PK

ckpαq

px ´ αqk
(˚)

where ppxq P Krxs is a polynomial and ckpαq P K (almost all 0),
and where K denotes an algebraic closure of K.

Then we know that f pxq is rationally integrable, i.e., there exists
gpxq P Kpxq such that f pxq “ g 1pxq, if and only if the residues

respf , α, 1q :“ c1pαq “ 0 for every α P K.

Problem: the actual computation of the decomposition (˚) is too
expensive (or maybe impossible). How to compute the residues
respf , α, 1q “ c1pαq without computing (˚)?



Motivation: Rational Integrability via Residues (2 of 2)

Better question: how to efficiently compute a K-rational
representation of the (first-order) residues c1pαq of f pxq P Kpxq?

The so-called Hermite Reduction (first discovered by Ostrogradskii)

f pxq “ g 1pxq ` hpxq,

where gpxq, hpxq P Kpxq such that hpxq is proper and has
squarefree monic denominator (only simple poles).

For such hpxq “ apxq{bpxq ‰ 0 the unique polynomial rpxq P Krxs

with deg
`

rpxq
˘

ă deg
`

bpxq
˘

such that

rpxqb1pxq ” apxq pmod bpxqq

satisfies rpαq “ c1pαq for each root α P K of bpxq P Krxs.

Thus we obtain the pair
`

bpxq, rpxq
˘

”

!

`

α, c1pαq
˘

ˇ

ˇ

ˇ
α P K

)

,

using only linear algebra, differentiation, and gcd computations.



The Summability Problem in the Shift Case

Consider now the forward difference operator

∆1 : Kpxq Ñ Kpxq : gpxq ÞÑ gpx ` 1q ´ gpxq.

This can be considered as a discretization of the differentiation
g 1pxq “ lim

hÑ0

gpx`hq´gpxq

h : set h “ 1 instead of taking the limit.

The discrete analogue of the rational integrability problem is the
rational summability problem: for a given f pxq P Kpxq, decide
whether (just yes/no) there exists gpxq P Kpxq such that

f pxq “ gpx ` 1q ´ gpxq.

If f pxq P imp∆1q as above, we say f pxq is rationally summable.



Discrete Residues in the Shift Case
Let us rearrange the partial fraction decomposition of f pxq P Kpxq:

f pxq “ ppxq `
ÿ

kě1

ÿ

ω PK{Z

ÿ

αPω

ckpαq

px ´ αqk
,

where K{Z is the set of orbits ωpαq for α ranging over K, where

ωpαq :“ α ` Z “ tα ` n |n P Zu.

The discrete residue of f pxq P Kpxq at the orbit ω P K{Z of
order k is defined by the finite sum

drespf , ω, kq :“
ÿ

αPω

ckpαq.

Proposition (Chen-Singer in Adv. Appl. Math.’12)

The rational function f pxq P Kpxq is rationally summable if and
only if drespf , ω, kq “ 0 for each orbit ω P K{Z and order k P N.



K-Rational Representations of Shift Discrete Residues
A set of pairs of polynomials

`

B1pxq,D1pxq
˘

, . . . ,
`

Bmpxq,Dmpxq
˘

P Krxs ˆ Krxs

is called a K-rational system of discrete residues for f pxq P Kpxq if:

1. f pxq has no poles of order greater than m;

2. for each α P K such that Bkpαq “ 0, the evaluation
Dkpαq “ dres

`

f , ωpαq, k
˘

; and

3. for each ω P K{Z and k P N such that drespf , ω, kq ‰ 0, there
exists precisely one α P ω such that Bkpαq “ 0.

In short, each polynomial B1pxq, . . . ,Bmpxq encodes where f pxq

has possibly non-zero residues, and the corresponding polynomials
D1pxq, . . . ,Dmpxq encode what these residues are.

One can prove theoretically, using Galois theory, that such
K-rational systems of discrete residues always exist.

But even better, we can compute them! (A.-Sitaula in ISSAC’24)



Reducing to Case of Simple Poles

Suppose f pxq P Kpxq is proper, with partial fraction decomposition

f pxq “
ÿ

kě1

ÿ

α PK

ckpαq

px ´ αqk
.

We wish to compute fkpxq P Kpxq such that

fkpxq “
ÿ

α PK

ckpαq

x ´ α
,

because then we immediately have

drespf , ω, kq “ drespfk , ω, 1q

for every ω P K, which allows us to reduce to the case where f has
only simple poles.



Iterated Hermite Reduction
Suppose f pxq P Kpxq is proper. Then recall

HermiteReductionpf q “ pg , hq

for the unique g , h P Kpxq such that h has only simple poles and

f “ g 1 ` h.

Our first step is to iterate this process to obtain HermiteListpf q:

Input: A proper rational function 0 ‰ f pxq P Kpxq.
Output: The list

`

f1pxq, . . . , fmpxq
˘

with fk “
ř

α ckpαq{px ´ αq.

Initialize loop: m Ð 0; g Ð f ;
while g ‰ 0 do

pg , f̂m`1q Ð HermiteReductionpgq;
m Ð m ` 1;

end while;
fk Ð p´1qk´1pk ´ 1q!f̂k ;
return pf1, . . . , fmq.



Simple Reduction (1 of 2)

Using HermiteList, we can assume the proper, reduced
f pxq “ apxq{bpxq has squarefree bpxq P Krxs.

Our next task is to compute a reduced form f̄ pxq P Kpxq having
precisely one pole α P K belonging to each orbit ω P K{Z such
that drespf , ω, 1q ‰ 0 (and poles nowhere else), and such that

f̄ pxq “
āpxq

b̄pxq
“
ÿ

α

drespf , ωpαq, 1q

x ´ α
.

Then we can take Bpxq “ b̄pxq, and obtain Dpxq “ rpxq for the
unique polynomial rpxq P Krxs with deg

`

rpxq
˘

ă
`

b̄pxq
˘

such that
rpxqb̄1pxq ” āpxq pmod b̄pxqq like before.

This
`

Bpxq,Dpxq
˘

is a K-rational representation of the discrete
residues of f pxq.



Interlude: Partial Partial Fraction Decompositions
Suppose f pxq P Kpxq is proper with squarefree denominator bpxq.
Computing the complete partial fraction decomposition

f pxq “
ÿ

α PK

c1pαq

x ´ α

is impossible in general, but only because we don’t know how to
compute the complete factorization bpxq “

śn
ℓ“1px ´ αℓq.

However, if we are already given a factorization bpxq “
ś

ℓ“1 bℓpxq

with bℓpxq P Krxs, it is easy and efficient to compute the unique
aℓpxq P Krxs with every deg

`

aℓpxq
˘

ă deg
`

bℓpxq
˘

such that

f pxq “

n
ÿ

ℓ“1

aℓpxq

bℓpxq
.

We write

ParFrac
`

f ; pb1, . . . , bnq
˘

:“ pa1, . . . , anq.



Interlude: Shift Set

For a non-constant polynomial bpxq P Krxs, it was observed by
Abramov in 1971 that the

ShiftSetpbq :“
␣

n P N
ˇ

ˇ gcdpbpxq, bpx ` nqq ‰ 1
(

is the set of positive integer roots of

Resx
`

bpx ` zq, bpxq
˘

“ Rpzq P Krzs.

We observe that this is also the set of positive integer roots of

R̃pzq “
Rpzq

z ¨ gcdpRpzq,R 1pzqq
.

Depending on K, there are now more efficient ways to compute
this set (see Gerhard-Giesbrecht-Storjohann-Zima in ISSAC’03 and
Man-Wright in ISSAC’94).



Simple Reduction (2 of 2)

Input: Proper f pxq “ apxq{bpxq P Kpxq with squarefree bpxq.
Output: Reduced form f̄ pxq of f pxq.

S Ð ShiftSetpbq;
if S “ H then

f̄ pxq Ð f pxq;
else

for ℓ P S do
gℓpxq Ð gcd

`

bpxq, bpx ´ ℓq
˘

;
end for;
b0pxq Ð bpxq{lcmpgℓpxq | ℓ P Sq; Ź Exact division.
for ℓ P S do

bℓpxq Ð gcd
`

b0px ´ ℓq, bpxq
˘

;
end for;
paℓ | ℓ P Sq Ð ParFrac

`

f ; pbℓ | ℓ P Sq
˘

;

f̄ pxq Ð
ř

ℓPN
aℓpx`ℓq
bℓpx`ℓq ;

end if;
return f̄ .



Complete Algorithm to Compute Shift Discrete Residues

Input: A proper rational function 0 ‰ f P Kpxq.
Output: A K-rational system of discrete residues
`

B1pxq,D1pxq
˘

, . . . , pBmpxq,Dmpxq
˘

P Krxs ˆ Krxs for f pxq.

pf1, . . . , fmq Ð HermiteListpf q;
for k “ 1..m do

f̄k Ð SimpleReductionpfkq;
pBk ,Dkq Ð FirstResiduespf̄kq;

end for;
return

`

pB1,D1q, . . . , pBm,Dmq
˘

.



Example (1 of 3)

f :“
1

x3px ` 2q3px ` 3qpx2 ` 1qpx2 ` 4x ` 5q2
“

3
ÿ

k“1

ÿ

α PK

ckpαq

px ´ αqk
.

HermiteListpf q “ pf1, f2, f3q; certified: fk “
ř

α ckpαqpx ´ αq´1.

Explicitly:

f1“
787x5 ` 4803x4 ` 9659x3 ` 9721x2 ` 9502x ` 5008

18000px2 ` 1qpx ` 3qpx2 ` 4x ` 5qpx ` 2qx
;

f2 “ ´
787x3 ` 3372x2 ` 4696x ` 1030

18000px2 ` 4x ` 5qxpx ` 2q
;

f3 “ ´
7x ´ 1

300px ` 2qx
.

We do the rest of the algorithm on f1 only; the rest are easier.



Example (2 of 3)

f1 “
787x5 ` 4803x4 ` 9659x3 ` 9721x2 ` 9502x ` 5008

18000px2 ` 1qpx ` 3qpx2 ` 4x ` 5qpx ` 2qx
.

Denominator: bpxq “ px2 ` 1qpx ` 3qpx2 ` 4x ` 5qpx ` 2qx has

ShiftSetpbq “ t1, 2, 3u.

b0pxq “ px ` 3qpx2 ` 4x ` 5q; leftmost zeros

b1pxq “ x ` 2; zeros one step right

b2pxq “ x2 ` 1; zeros two steps right

b3pxq “ x . rightmost zeros

Then f1pxq “
a0
b0

`
a1
b1

`
a2
b2

`
a3
b3
, and the reduced form

f̄1pxq “
a0pxq

b0pxq
`

a1px ` 1q

b1px ` 1q
`

a2px ` 2q

b2px ` 2q
`

a3px ` 3q

b3px ` 3q

“
273x ` 1387

20000px ` 3qpx2 ` 4x ` 5q



Example (3 of 3)

Our algorithm produces pB1,D1q in lieu of the first-order discrete
residues of f , with

B1pxq “ px ` 3qpx2 ` 4x ` 5q; and

D1pxq “ 59
16000x

2 ` 33
40000x ´ 1321

80000 .

One can check that

c1pf , 0q “ 313
33750 ; c1pf ,´2q “ 1

250 ; c1pf ,´3q “ 1
1080 ;

c1pf ,˘
?

´1
˘

“
˘

?
´1´7

16000 ; c1
`

f ,˘
?

´1 ´ 2
˘

“
¯1119

?
´1´533

80000 .

And indeed:

drespf , ωp0q, 1q “ 71{5000 “ D1p´3q;

drespf , ωp˘
?

´1q, 1q “
¯557

?
´1´284

40000 “ D1p˘
?

´1 ´ 2q.



General Summability Problem and Obstructions

A difference field is a pair pM, σq consisting of a field M equipped
with an endomorphism σ such that the subfield of σ-invariants
K :“ Mσ “ tc P M | σpcq “ cu is relatively algebraically closed
inside of M.

The corresponding forward difference operator is ∆ :“ σ ´ idM, so
that ∆pgq “ σpgq ´ g for g P M.

The summability problem for pM, σq is to be able to decide, for a
given f P M, whether (just yes/no) there exists g P M such that
f “ σpgq ´ g “ ∆pgq. If so, we say f is summable (in M).

Since ∆ is a K-linear endomorphism of the K-vector space M,
there exist many (abstract) K-linear maps ρ from M to other
K-vector spaces such that kerpρq “ imp∆q. We call any such map
a (complete) K-linear obstruction to summability.



Examples of Difference Fields Arising in Practice

shift: M “ Kpxq; and σ : gpxq ÞÑ gpx ` 1q.

q-dilation: M “ Kpxq; and σ : gpxq ÞÑ gpqxq, where q P K is not
0 and not a root of unity.

Mahler: M “ Kpxq; and σ : gpxq ÞÑ gpxmq, where m P Zě2.

elliptic shift: M is the field of rational functions on an elliptic
curve E over K; and σ : gpxq ÞÑ gpx ‘ tq, where t P EpKq is a
non-torsion point, and ‘ denotes the elliptic group law.

elliptic Mahler: M is the field of rational functions on an elliptic
curve E over K; and σ : gpxq ÞÑ gpm.xq, where m P Zě2, and m.x
is the multiplication-by-m map under the elliptic group law.



Discrete Residues in the q-Dilation Case
Let us rewrite the partial fraction decomposition of f pxq P Kpxq:

f pxq “ ℓpxq `
ÿ

kě1

ÿ

ω PKˆ
{qZ

ÿ

αPω

ckpαq
`

1 ´ α´1x
˘k

,

where ℓpxq “
ř

jPZ ℓjx
j P Krx , x´1s is a Laurent polynomial, and

Kˆ
{qZ is the set of orbits ωpαq for α ranging over Kˆ

, where

ωpαq :“ α ¨ qZ “ tαqn |n P Zu.

The q-discrete residue of f pxq P Kpxq at the orbit ω P Kˆ
{qZ of

order k is defined by the finite sum

q-drespf , ω, kq :“
ÿ

αPω

ckpαq; and q-drespf ,8q :“ ℓ0.

Proposition (Chen-Singer in Adv. Appl. Math.’12)

The rational function f pxq P Kpxq is rationally q-summable if and

only if drespf , ω, kq “ 0 for every ω P Kˆ
{qZ and every k P N and

q-drespf ,8q “ 0.



Obstructions to Summability in the Other Cases

In recent years, analogous obstructions to summability have been
developed in other cases (but requiring a few more technical
details to state precisely).

§ In the Mahler case, Mahler discrete residues were developed
(A.-Zhang in ISSAC’22), giving a complete obstruction to
f pxq “ gpxmq ´ gpxq for some gpxq P Kpxq.

§ Still in the Mahler case, for given λ P Z, more general
λ-twisted Mahler discrete residues were developed (A.-Zhang
in IMRN’24), giving a complete obstruction to
f pxq “ mλgpxmq ´ gpxq for some g P Kpxq.

§ In the elliptic shift case, orbital residues were developed
(Dreyfus-Hardouin-Roques-Singer in Inventiones’18), giving a
partial obstruction to f pxq “ gpx ‘ tq ´ gpxq.

§ Still in the elliptic case, a pair of panorbital residues were
introduced (Babbitt, UT Dallas Ph.D. thesis ’25), completing
the orbital residue obstruction introduced by DHRS in 2018.


