Deciding Summability via Residues in Theory and in Practice

Carlos E. Arreche The University of Texas at Dallas

VI International Conference on Computer Algebra Moscow - June 25, 2025

Motivation: Rational Integrability via Residues (1 of 2)

Let \mathbb{K} be a field of characteristic 0, and consider a rational function $f(x) \in \mathbb{K}(x)$. There is a complete partial fraction decomposition

$$f(x) = p(x) + \sum_{k \geqslant 1} \sum_{\alpha \in \overline{\mathbb{K}}} \frac{c_k(\alpha)}{(x - \alpha)^k} \tag{*}$$

where $p(x) \in \mathbb{K}[x]$ is a polynomial and $c_k(\alpha) \in \overline{\mathbb{K}}$ (almost all 0), and where $\overline{\mathbb{K}}$ denotes an algebraic closure of \mathbb{K} .

Then we know that f(x) is rationally integrable, i.e., there exists $g(x) \in \mathbb{K}(x)$ such that f(x) = g'(x), if and only if the residues

$$\operatorname{res}(f, \alpha, 1) := c_1(\alpha) = 0$$
 for every $\alpha \in \overline{\mathbb{K}}$.

<u>Problem</u>: the actual computation of the decomposition (*) is too expensive (or maybe impossible). How to compute the residues $\operatorname{res}(f,\alpha,1)=c_1(\alpha)$ without computing (*)?

Motivation: Rational Integrability via Residues (2 of 2)

Better question: how to efficiently compute a $\underline{\mathbb{K}}$ -rational representation of the (first-order) residues $c_1(\alpha)$ of $f(x) \in \mathbb{K}(x)$?

The so-called Hermite Reduction (first discovered by Ostrogradskii)

$$f(x) = g'(x) + h(x),$$

where $g(x), h(x) \in \mathbb{K}(x)$ such that h(x) is proper and has squarefree monic denominator (only simple poles).

For such $h(x) = a(x)/b(x) \neq 0$ the unique polynomial $r(x) \in \mathbb{K}[x]$ with $\deg(r(x)) < \deg(b(x))$ such that

$$r(x)b'(x) \equiv a(x) \pmod{b(x)}$$

satisfies $r(\alpha) = c_1(\alpha)$ for each root $\alpha \in \overline{\mathbb{K}}$ of $b(x) \in \mathbb{K}[x]$.

Thus we obtain the pair $(b(x), r(x)) \equiv \{(\alpha, c_1(\alpha)) \mid \alpha \in \overline{\mathbb{K}}\}$, using only linear algebra, differentiation, and gcd computations.

The Summability Problem in the Shift Case

Consider now the forward difference operator

$$\Delta_1: \mathbb{K}(x) \to \mathbb{K}(x): g(x) \mapsto g(x+1) - g(x).$$

This can be considered as a discretization of the differentiation $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$: set h = 1 instead of taking the limit.

The discrete analogue of the rational integrability problem is the rational summability problem: for a given $f(x) \in \mathbb{K}(x)$, decide whether (just yes/no) there exists $g(x) \in \mathbb{K}(x)$ such that

$$f(x) = g(x+1) - g(x).$$

If $f(x) \in \operatorname{im}(\Delta_1)$ as above, we say f(x) is rationally summable.

Discrete Residues in the Shift Case

Let us rearrange the partial fraction decomposition of $f(x) \in \mathbb{K}(x)$:

$$f(x) = p(x) + \sum_{k \geqslant 1} \sum_{\omega \in \overline{\mathbb{K}}/\mathbb{Z}} \sum_{\alpha \in \omega} \frac{c_k(\alpha)}{(x - \alpha)^k},$$

where \mathbb{K}/\mathbb{Z} is the set of *orbits* $\omega(\alpha)$ for α ranging over \mathbb{K} , where

$$\omega(\alpha) := \alpha + \mathbb{Z} = \{\alpha + n \mid n \in \mathbb{Z}\}.$$

The *discrete residue* of $f(x) \in \mathbb{K}(x)$ at the orbit $\omega \in \overline{\mathbb{K}}/\mathbb{Z}$ of order k is defined by the finite sum

$$\operatorname{dres}(f,\omega,k) := \sum_{\alpha \in \mathcal{C}} c_k(\alpha).$$

Proposition (Chen-Singer in Adv. Appl. Math.'12)

The rational function $f(x) \in \mathbb{K}(x)$ is rationally summable if and only if $\operatorname{dres}(f,\omega,k) = 0$ for each orbit $\omega \in \overline{\mathbb{K}}/\mathbb{Z}$ and order $k \in \mathbb{N}$.

K-Rational Representations of Shift Discrete Residues

A set of pairs of polynomials

$$(B_1(x), D_1(x)), \ldots, (B_m(x), D_m(x)) \in \mathbb{K}[x] \times \mathbb{K}[x]$$

is called a \mathbb{K} -rational system of discrete residues for $f(x) \in \mathbb{K}(x)$ if:

- 1. f(x) has no poles of order greater than m;
- 2. for each $\alpha \in \overline{\mathbb{K}}$ such that $B_k(\alpha) = 0$, the evaluation $D_k(\alpha) = \operatorname{dres}(f, \omega(\alpha), k)$; and
- 3. for each $\omega \in \overline{\mathbb{K}}/\mathbb{Z}$ and $k \in \mathbb{N}$ such that $\operatorname{dres}(f, \omega, k) \neq 0$, there exists precisely one $\alpha \in \omega$ such that $B_k(\alpha) = 0$.

In short, each polynomial $B_1(x), \ldots, B_m(x)$ encodes where f(x) has possibly non-zero residues, and the corresponding polynomials $D_1(x), \ldots, D_m(x)$ encode what these residues are.

One can prove theoretically, using Galois theory, that such \mathbb{K} -rational systems of discrete residues always exist.

But even better, we can compute them! (A.-Sitaula in ISSAC'24)

Reducing to Case of Simple Poles

Suppose $f(x) \in \mathbb{K}(x)$ is proper, with partial fraction decomposition

$$f(x) = \sum_{k \geqslant 1} \sum_{\alpha \in \overline{\mathbb{K}}} \frac{c_k(\alpha)}{(x - \alpha)^k}.$$

We wish to compute $f_k(x) \in \mathbb{K}(x)$ such that

$$f_k(x) = \sum_{\alpha \in \overline{\mathbb{K}}} \frac{c_k(\alpha)}{x - \alpha},$$

because then we immediately have

$$\operatorname{dres}(f,\omega,k) = \operatorname{dres}(f_k,\omega,1)$$

for every $\omega \in \mathbb{K}$, which allows us to reduce to the case where f has only simple poles.

Iterated Hermite Reduction

Suppose $f(x) \in \mathbb{K}(x)$ is proper. Then recall

$$HermiteReduction(f) = (g, h)$$

for the unique $g, h \in \mathbb{K}(x)$ such that h has only simple poles and

$$f = g' + h$$
.

Our first step is to iterate this process to obtain HermiteList(f): **Input:** A proper rational function $0 \neq f(x) \in \mathbb{K}(x)$.

Output: The list $(f_1(x), \ldots, f_m(x))$ with $f_k = \sum_{\alpha} c_k(\alpha)/(x-\alpha)$.

```
Initialize loop: m \leftarrow 0; g \leftarrow f;

while g \neq 0 do

(g, \hat{f}_{m+1}) \leftarrow \text{HermiteReduction}(g);

m \leftarrow m+1;

end while;

f_k \leftarrow (-1)^{k-1}(k-1)!\hat{f}_k;

return (f_1, \dots, f_m).
```

Simple Reduction (1 of 2)

Using HermiteList, we can assume the proper, reduced f(x) = a(x)/b(x) has squarefree $b(x) \in \mathbb{K}[x]$.

Our next task is to compute a *reduced form* $\overline{f}(x) \in \mathbb{K}(x)$ having precisely one pole $\alpha \in \overline{\mathbb{K}}$ belonging to each orbit $\omega \in \overline{\mathbb{K}}/\mathbb{Z}$ such that $\operatorname{dres}(f,\omega,1) \neq 0$ (and poles nowhere else), and such that

$$\bar{f}(x) = \frac{\bar{a}(x)}{\bar{b}(x)} = \sum_{\alpha} \frac{\operatorname{dres}(f, \omega(\alpha), 1)}{x - \alpha}.$$

Then we can take $B(x) = \bar{b}(x)$, and obtain D(x) = r(x) for the unique polynomial $r(x) \in \mathbb{K}[x]$ with $\deg(r(x)) < (\bar{b}(x))$ such that $r(x)\bar{b}'(x) \equiv \bar{a}(x) \pmod{\bar{b}(x)}$ like before.

This (B(x), D(x)) is a \mathbb{K} -rational representation of the discrete residues of f(x).

Interlude: Partial Partial Fraction Decompositions

Suppose $f(x) \in \mathbb{K}(x)$ is proper with squarefree denominator b(x). Computing the complete partial fraction decomposition

$$f(x) = \sum_{\alpha \in \overline{\mathbb{K}}} \frac{c_1(\alpha)}{x - \alpha}$$

is impossible in general, but only because we don't know how to compute the complete factorization $b(x) = \prod_{\ell=1}^{n} (x - \alpha_{\ell})$.

However, if we are already given a factorization $b(x) = \prod_{\ell=1} b_\ell(x)$ with $b_\ell(x) \in \mathbb{K}[x]$, it is easy and efficient to compute the unique $a_\ell(x) \in \mathbb{K}[x]$ with every $\deg \left(a_\ell(x)\right) < \deg \left(b_\ell(x)\right)$ such that

$$f(x) = \sum_{\ell=1}^{n} \frac{a_{\ell}(x)}{b_{\ell}(x)}.$$

We write

$$\mathtt{ParFrac}\big(f;(b_1,\ldots,b_n)\big):=(a_1,\ldots,a_n).$$

Interlude: Shift Set

For a non-constant polynomial $b(x) \in \mathbb{K}[x]$, it was observed by Abramov in 1971 that the

$$ShiftSet(b) := \{ n \in \mathbb{N} \mid \gcd(b(x), b(x+n)) \neq 1 \}$$

is the set of positive integer roots of

$$\operatorname{Res}_{x}(b(x+z),b(x))=R(z)\in\mathbb{K}[z].$$

We observe that this is also the set of positive integer roots of

$$\tilde{R}(z) = \frac{R(z)}{z \cdot \gcd(R(z), R'(z))}.$$

Depending on \mathbb{K} , there are now more efficient ways to compute this set (see Gerhard-Giesbrecht-Storjohann-Zima in ISSAC'03 and Man-Wright in ISSAC'94).

Simple Reduction (2 of 2)

```
Input: Proper f(x) = a(x)/b(x) \in \mathbb{K}(x) with squarefree b(x).
Output: Reduced form \bar{f}(x) of f(x).
   S \leftarrow \text{ShiftSet}(b);
   if S = \emptyset then
         \bar{f}(x) \leftarrow f(x):
   else
         for \ell \in S do
              g_{\ell}(x) \leftarrow \gcd(b(x), b(x-\ell));
         end for:
         b_0(x) \leftarrow b(x)/\mathrm{lcm}(g_{\ell}(x) \mid \ell \in S):
                                                                             for \ell \in S do
              b_{\ell}(x) \leftarrow \gcd(b_0(x-\ell),b(x));
         end for:
         (a_{\ell} \mid \ell \in S) \leftarrow \text{ParFrac}(f; (b_{\ell} \mid \ell \in S));
         \bar{f}(x) \leftarrow \sum_{\ell \in N} \frac{a_{\ell}(x+\ell)}{b_{\ell}(x+\ell)};
   end if:
   return \bar{f}.
```

Complete Algorithm to Compute Shift Discrete Residues

```
Input: A proper rational function 0 \neq f \in \mathbb{K}(x).

Output: A \mathbb{K}-rational system of discrete residues (B_1(x), D_1(x)), \ldots, (B_m(x), D_m(x)) \in \mathbb{K}[x] \times \mathbb{K}[x] for f(x).

(f_1, \ldots, f_m) \leftarrow \text{HermiteList}(f);

for k = 1..m do

\bar{f}_k \leftarrow \text{SimpleReduction}(f_k);

(B_k, D_k) \leftarrow \text{FirstResidues}(\bar{f}_k);

end for;

return ((B_1, D_1), \ldots, (B_m, D_m)).
```

Example (1 of 3)

$$f := \frac{1}{x^3(x+2)^3(x+3)(x^2+1)(x^2+4x+5)^2} = \sum_{k=1}^{3} \sum_{\alpha \in \mathbb{K}} \frac{c_k(\alpha)}{(x-\alpha)^k}.$$

HermiteList(f) = (f_1 , f_2 , f_3); certified: $f_k = \sum_{\alpha} c_k(\alpha)(x - \alpha)^{-1}$.

Explicitly:

$$f_1 = \frac{787x^5 + 4803x^4 + 9659x^3 + 9721x^2 + 9502x + 5008}{18000(x^2 + 1)(x + 3)(x^2 + 4x + 5)(x + 2)x};$$

$$f_2 = -\frac{787x^3 + 3372x^2 + 4696x + 1030}{18000(x^2 + 4x + 5)x(x + 2)};$$

$$f_3 = -\frac{7x - 1}{300(x + 2)x}.$$

We do the rest of the algorithm on f_1 only; the rest are easier.

Example (2 of 3)

$$f_1 = \frac{787x^5 + 4803x^4 + 9659x^3 + 9721x^2 + 9502x + 5008}{18000(x^2 + 1)(x + 3)(x^2 + 4x + 5)(x + 2)x}.$$

Denominator: $b(x) = (x^2 + 1)(x + 3)(x^2 + 4x + 5)(x + 2)x$ has ShiftSet $(b) = \{1, 2, 3\}.$

$$b_0(x) = (x+3)(x^2+4x+5);$$
 leftmost zeros $b_1(x) = x+2;$ zeros one step right $b_2(x) = x^2+1;$ zeros two steps right $b_3(x) = x.$

Then
$$f_1(x) = \frac{a_0}{b_0} + \frac{a_1}{b_1} + \frac{a_2}{b_2} + \frac{a_3}{b_3}$$
, and the reduced form
$$\bar{f}_1(x) = \frac{a_0(x)}{b_0(x)} + \frac{a_1(x+1)}{b_1(x+1)} + \frac{a_2(x+2)}{b_2(x+2)} + \frac{a_3(x+3)}{b_3(x+3)}$$

$$\frac{273x + 1387}{20000(x+3)(x^2 + 4x + 5)}$$

Example (3 of 3)

Our algorithm produces (B_1, D_1) in lieu of the first-order discrete residues of f, with

$$B_1(x) = (x+3)(x^2+4x+5);$$
 and $D_1(x) = \frac{59}{16000}x^2 + \frac{33}{40000}x - \frac{1321}{80000}.$

One can check that

$$c_1(f,0) = \frac{313}{33750}; \quad c_1(f,-2) = \frac{1}{250}; \quad c_1(f,-3) = \frac{1}{1080};$$

$$c_1(f,\pm\sqrt{-1}) = \tfrac{\pm\sqrt{-1}-7}{16000}; \quad c_1\big(f,\pm\sqrt{-1}-2\big) = \tfrac{\mp1119\sqrt{-1}-533}{80000}.$$

And indeed:

$$\begin{split} \operatorname{dres}(f,\omega(0),1) &= 71/5000 = D_1(-3);\\ \operatorname{dres}(f,\omega(\pm\sqrt{-1}),1) &= \frac{\mp 557\sqrt{-1}-284}{40000} = D_1(\pm\sqrt{-1}-2). \end{split}$$

General Summability Problem and Obstructions

A difference field is a pair (\mathcal{M}, σ) consisting of a field \mathcal{M} equipped with an endomorphism σ such that the subfield of σ -invariants $\mathbb{K} := \mathcal{M}^{\sigma} = \{c \in \mathcal{M} \mid \sigma(c) = c\}$ is relatively algebraically closed inside of \mathcal{M} .

The corresponding forward difference operator is $\Delta := \sigma - \mathrm{id}_{\mathcal{M}}$, so that $\Delta(g) = \sigma(g) - g$ for $g \in \mathcal{M}$.

The summability problem for (\mathcal{M}, σ) is to be able to decide, for a given $f \in \mathcal{M}$, whether (just yes/no) there exists $g \in \mathcal{M}$ such that $f = \sigma(g) - g = \Delta(g)$. If so, we say f is summable (in \mathcal{M}).

Since Δ is a \mathbb{K} -linear endomorphism of the \mathbb{K} -vector space \mathcal{M} , there exist many (abstract) \mathbb{K} -linear maps ρ from \mathcal{M} to other \mathbb{K} -vector spaces such that $\ker(\rho) = \operatorname{im}(\Delta)$. We call any such map a (complete) \mathbb{K} -linear obstruction to summability.

Examples of Difference Fields Arising in Practice

shift:
$$\mathcal{M} = \mathbb{K}(x)$$
; and $\sigma : g(x) \mapsto g(x+1)$.

q-dilation: $\mathcal{M} = \mathbb{K}(x)$; and $\sigma : g(x) \mapsto g(qx)$, where $q \in \mathbb{K}$ is not 0 and not a root of unity.

Mahler:
$$\mathcal{M} = \mathbb{K}(x)$$
; and $\sigma : g(x) \mapsto g(x^m)$, where $m \in \mathbb{Z}_{\geq 2}$.

elliptic shift: \mathcal{M} is the field of rational functions on an elliptic curve \mathcal{E} over \mathbb{K} ; and $\sigma: g(x) \mapsto g(x \oplus t)$, where $t \in \mathcal{E}(\mathbb{K})$ is a non-torsion point, and \oplus denotes the elliptic group law.

elliptic Mahler: \mathcal{M} is the field of rational functions on an elliptic curve \mathcal{E} over \mathbb{K} ; and $\sigma: g(x) \mapsto g(m.x)$, where $m \in \mathbb{Z}_{\geqslant 2}$, and m.x is the multiplication-by-m map under the elliptic group law.

Discrete Residues in the q-Dilation Case

Let us rewrite the partial fraction decomposition of $f(x) \in \mathbb{K}(x)$:

$$f(x) = \ell(x) + \sum_{k \geqslant 1} \sum_{\omega \in \overline{\mathbb{K}}^{\times}/\mathbf{g}^{\mathbb{Z}}} \sum_{\alpha \in \omega} \frac{c_k(\alpha)}{\left(1 - \alpha^{-1}x\right)^k},$$

where $\ell(x) = \sum_{j \in \mathbb{Z}} \ell_j x^j \in \mathbb{K}[x, x^{-1}]$ is a Laurent polynomial, and $\overline{\mathbb{K}}^{\times}/q^{\mathbb{Z}}$ is the set of *orbits* $\omega(\alpha)$ for α ranging over $\overline{\mathbb{K}}^{\times}$, where

$$\omega(\alpha) := \alpha \cdot \mathbf{q}^{\mathbb{Z}} = \{\alpha \mathbf{q}^{\mathbf{n}} \mid \mathbf{n} \in \mathbb{Z}\}.$$

The *q*-discrete residue of $f(x) \in \mathbb{K}(x)$ at the orbit $\omega \in \overline{\mathbb{K}}^{\times}/q^{\mathbb{Z}}$ of order k is defined by the finite sum

$$q ext{-}\mathrm{dres}(f,\omega,k) := \sum_{\alpha\in\omega} c_k(\alpha); \qquad ext{and} \qquad q ext{-}\mathrm{dres}(f,\infty) := \ell_0.$$

Proposition (Chen-Singer in Adv. Appl. Math.'12)

The rational function $f(x) \in \mathbb{K}(x)$ is rationally q-summable if and only if $\operatorname{dres}(f,\omega,k) = 0$ for every $\omega \in \overline{\mathbb{K}}^{\times}/q^{\mathbb{Z}}$ and every $k \in \mathbb{N}$ and $q\text{-}\mathrm{dres}(f,\infty) = 0$.

Obstructions to Summability in the Other Cases

In recent years, analogous obstructions to summability have been developed in other cases (but requiring a few more technical details to state precisely).

- In the Mahler case, *Mahler discrete residues* were developed (A.-Zhang in ISSAC'22), giving a complete obstruction to $f(x) = g(x^m) g(x)$ for some $g(x) \in \mathbb{K}(x)$.
- ▶ Still in the Mahler case, for given $\lambda \in \mathbb{Z}$, more general λ -twisted Mahler discrete residues were developed (A.-Zhang in IMRN'24), giving a complete obstruction to $f(x) = m^{\lambda}g(x^m) g(x)$ for some $g \in \mathbb{K}(x)$.
- In the elliptic shift case, *orbital residues* were developed (Dreyfus-Hardouin-Roques-Singer in Inventiones'18), giving a partial obstruction to $f(x) = g(x \oplus t) g(x)$.
- Still in the elliptic case, a pair of panorbital residues were introduced (Babbitt, UT Dallas Ph.D. thesis '25), completing the orbital residue obstruction introduced by DHRS in 2018.