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Motivation: Rational Integrability via Residues (1 of 2)

Let K be a field of characteristic 0, and consider a rational function
f(x) € K(x). There is a complete partial fraction decomposition

2 X oaF (+)

k=1 qeK

where p(x) € K[x] is a polynomial and cx(a) € K (almost all 0),
and where K denotes an algebraic closure of K.

Then we know that f(x) is rationally integrable, i.e., there exists
g(x) € K(x) such that f(x) = g’(x), if and only if the residues

res(f,a,1) = ci(a) =0 for every a € K.

Problem: the actual computation of the decomposition (x) is too
expensive (or maybe impossible). How to compute the residues
res(f,a,1) = c1(a) without computing ()?



Motivation: Rational Integrability via Residues (2 of 2)

Better question: how to efficiently compute a K-rational
representation of the (first-order) residues ¢ () of f(x) € K(x)?

The so-called Hermite Reduction (first discovered by Ostrogradskii)
f(x) = g'(x) + h(x),

where g(x), h(x) € K(x) such that h(x) is proper and has
squarefree monic denominator (only simple poles).

For such h(x) = a(x)/b(x) # 0 the unique polynomial r(x) € K[x]
with deg(r(x)) < deg(b(x)) such that

r(x)b'(x) = a(x) (mod b(x))
satisfies r(a) = c1(a) for each root a € K of b(x) € K[x].

Thus we obtain the pair (b(x), r(x)) = {(a,q(a)) ‘ a€ K},
using only linear algebra, differentiation, and gcd computations.



The Summability Problem in the Shift Case

Consider now the forward difference operator
Ay K(x) = K(x) : g(x) = g(x +1) — g(x).

This can be considered as a discretization of the differentiation
g (x) = ’!imow: set h = 1 instead of taking the limit.

The discrete analogue of the rational integrability problem is the
rational summability problem: for a given f(x) € K(x), decide
whether (just yes/no) there exists g(x) € K(x) such that

fx) =gx+1) —gx).

If f(x) € im(A;) as above, we say f(x) is rationally summable.



Discrete Residues in the Shift Case

Let us rearrange the partial fraction decomposition of f(x) € K(x):

SEDNB MW=

k=2l weK/z *€w
where K/Z is the set of orbits w(c) for a ranging over K, where
w(a)=a+Z={a+n|nelZ}.

The discrete residue of f(x) € K(x) at the orbit w € K/Z of
order k is defined by the finite sum

dres(f,w, k) := Z ck(@).
aEw
Proposition (Chen-Singer in Adv. Appl. Math.'12)

The rational function f(x) € K(x) is rationally summable if and
only if dres(f,w, k) = 0 for each orbit w € K/Z and order k € N.



K-Rational Representations of Shift Discrete Residues
A set of pairs of polynomials

(BI(X)7 Dl(X))7 R (Bm(x)7 Dm(X)) € K[X] X K[X]
is called a K-rational system of discrete residues for f(x) € K(x) if:

1. f(x) has no poles of order greater than m;

2. for each a € K such that By(a) = 0, the evaluation
Di(a) = dres(f,w(a), k); and

3. for each w € K/Z and k € N such that dres(f,w, k) # 0, there
exists precisely one « € w such that By(a) = 0.

In short, each polynomial Bi(x), ..., Bm(x) encodes where f(x)
has possibly non-zero residues, and the corresponding polynomials
Di(x), ..., Dm(x) encode what these residues are.

One can prove theoretically, using Galois theory, that such
K-rational systems of discrete residues always exist.

But even better, we can compute them! (A.-Sitaula in ISSAC'24)



Reducing to Case of Simple Poles

Suppose f(x) € K(x) is proper, with partial fraction decomposition

k=l qek X a O/
We wish to compute f(x) € K(x) such that

f(x) = Z Ck(@)’

-~ X— W«
acekK

because then we immediately have
dres(f,w, k) = dres(fx,w, 1)

for every w € K, which allows us to reduce to the case where f has
only simple poles.



lterated Hermite Reduction
Suppose f(x) € K(x) is proper. Then recall

HermiteReduction(f) = (g, h)
for the unique g, h € K(x) such that h has only simple poles and
f=g+h

Our first step is to iterate this process to obtain HermiteList(f):
Input: A proper rational function 0 # f(x) € K(x).
Output: The list (A(x),..., fm(x)) with fi = Y, ck(@)/(x — ).

Initialize loop: m < 0; g « f;

while g # 0 do
(g, fmi1) < HermiteReduction(g);
m<—m+1;

end while;

fio — (1% (k — Dl

return (fi,...,fy).



Simple Reduction (1 of 2)

Using HermiteList, we can assume the proper, reduced
f(x) = a(x)/b(x) has squarefree b(x) € K[x].

Our next task is to compute a reduced form f(x) e K(x) having
precisely one pole « € K belonging to each orbit w € K/Z such
that dres(f,w, 1) # 0 (and poles nowhere else), and such that

7o) — a(x) _ dres(f,w(a),1)

o = 33 = D e
Then we can take B(x) = b(x), and obtain D(x) = r(x) for the
unique polynomial r(x) € K[x] with deg(r(x)) < (b(x)) such that
r(x)b'(x) = a(x) (mod b(x)) like before.

This (B(x), D(x)) is a K-rational representation of the discrete
residues of f(x).



Interlude: Partial Partial Fraction Decompositions

Suppose f(x) € K(x) is proper with squarefree denominator b(x).
Computing the complete partial fraction decomposition

foy= 3 2l

X —

aek

is impossible in general, but only because we don't know how to
compute the complete factorization b(x) = [ [;j_;(x — ap).

However, if we are already given a factorization b(x) = [[,_; be(x)
with by(x) € K[x], it is easy and efficient to compute the unique
ar(x) € K[x] with every deg(as(x)) < deg(b¢(x)) such that

e alx)
f(x) = ; he);
We write

ParFrac(f; (b,..., b,,)) = (a1,...,an).



Interlude: Shift Set

For a non-constant polynomial b(x) € K[x], it was observed by
Abramov in 1971 that the

ShiftSet(b) := {n e N | ged(b(x), b(x + n)) # 1}
is the set of positive integer roots of
Resy (b(x + 2), b(x)) = R(z) € K[z].
We observe that this is also the set of positive integer roots of

. R(z)
R = (R, R

Depending on K, there are now more efficient ways to compute
this set (see Gerhard-Giesbrecht-Storjohann-Zima in ISSAC'03 and
Man-Wright in ISSAC'94).



Simple Reduction (2 of 2)

Input: Proper f(x) = a(x)/b(x) € K(x) with squarefree b(x).

Output: Reduced form f(x) of f(x).
S <« ShiftSet(b);
if S = J then
fF(x) < f(x);
else
for /€ S do
gi(x) — ged(b(x), b(x — 0));
end for;
bo(x) « b(x)/lem(gi(x) | L€ S);
for /€S do
be(x) « ged (bo(x — £), b(x));
end for;

(a¢ | L€ S) « ParFrac(f; (b | L€ S));

x+£)

F(x) — Spen 22224
end if; B
return f.

> Exact division.



Complete Algorithm to Compute Shift Discrete Residues

Input: A proper rational function 0 # f € K(x).
Output: A K-rational system of discrete residues
(B1(x), D1(x)), ..., (Bm(x), Dm(x)) € K[x] x K[x] for f(x).

(f,...,fn) < HermiteList(f);
for k =1..m do
fi < SimpleReduction(fy);
(Bk, Di) < FirstResidues(fy);
end for;

return ((By, D1),...,(Bm, Dm)).



Example (1 of 3)

fo 1 _ 231 ck (@) .

x3(x +2)3(x +3)(x2 4+ 1)(x2 + 4x + 5)?

HermiteList(f) = (f, f, f3); certified: f = >, ck(a)(x —a)~ L.
Explicitly:

_ 787x° + 4803x* + 9659x> + 9721x? + 9502x + 5008
YT 18000(x2 + 1) (x + 3)(x2 + 4x + 5)(x + 2)x

B 787x3 + 3372x% 4 4696x + 1030

f —

2 18000(x2 + 4x + 5)x(x + 2)
P x—1

37 7300(x + 2)x

We do the rest of the algorithm on f; only; the rest are easier.



Example (2 of 3)
_ 787x° + 4803x* + 9659x> + 9721x% + 9502x + 5008
LT 18000(x2 + 1) (x + 3)(x2 + 4x + 5) (x + 2)x

Denominator: b(x) = (x? + 1)(x + 3)(x? + 4x + 5)(x + 2)x has
ShiftSet(b) = {1,2,3}.

bo(x) = (x + 3)(x? + 4x + 5); leftmost zeros
bi(x) =x+2; zeros one step right
by(x) = x* + 1; zeros two steps right
bs(x) = x. rightmost zeros
Then fi(x) = £ + 21 + £ + £, and the reduced form
_ 1 2
fi(x) = ap(x) N ai(x+1) N a(x +2) N az(x + 3)
bo(X) bl(X + 1) bz(X + 2) b3(X + 3)

273x + 1387

~20000(x + 3)(x2 + 4x + 5)



Example (3 of 3)

Our algorithm produces (B, D1) in lieu of the first-order discrete
residues of f, with

Bi(x) = (x + 3)( 2 4 4x +5); and

59 _ 1321
Di(x) = 16000X + 4ooooX 80000

One can check that
al(f,0) = 383 o (f,=2) = 52;  af,—3) = 1s;

33750 250" 1080
7 F11194/—1-533
al(f, +v- ) 007' Cl(f7iV_1_2):+ 8?)/();5 ‘
And indeed:

dres(f

(f,w(0),1) = 71/5000 = Dy(—3);
dres(f,w(+v—1),1) = W Y



General Summability Problem and Obstructions

A difference field is a pair (M, o) consisting of a field M equipped
with an endomorphism ¢ such that the subfield of o-invariants
K:= M? ={ce M | o(c) = c} is relatively algebraically closed
inside of M.

The corresponding forward difference operator is A := o — id, so
that A(g) = o(g) — g for g e M.

The summability problem for (M, o) is to be able to decide, for a
given f € M, whether (just yes/no) there exists g € M such that
f=o0(g)—g=A(g). If so, we say f is summable (in M).

Since A is a K-linear endomorphism of the K-vector space M,
there exist many (abstract) K-linear maps p from M to other
K-vector spaces such that ker(p) = im(A). We call any such map
a (complete) K-/inear obstruction to summability.



Examples of Difference Fields Arising in Practice

shift: M =K(x); and 0 : g(x) — g(x + 1).

g-dilation: M = K(x); and o : g(x) — g(gx), where g € K is not
0 and not a root of unity.

Mahler: M = K(x); and o : g(x) — g(x™), where m € Z>».

elliptic shift. M is the field of rational functions on an elliptic
curve £ over K; and o : g(x) — g(x @ t), where t € £(K) is a
non-torsion point, and @ denotes the elliptic group law.

elliptic Mahler. M is the field of rational functions on an elliptic
curve € over K; and o : g(x) — g(m.x), where m € Z=», and m.x
is the multiplication-by-m map under the elliptic group law.



Discrete Residues in the g-Dilation Case
Let us rewrite the partial fraction decomposition of f(x) e K(x):

NP IV

k=1 weR / 7 OEW

where £(x) = >z ¢ x/ € K[x,x™1] is a Laurent polynomial, and

K”/q” is the set of orbits w(a) for o ranging over K, where
w(a) :=a-q% = {aq" |nec Z}.

The g-discrete residue of f(x) € K(x) at the orbit w € K" /g% of
order k is defined by the finite sum

g-dres(f,w, k) := Z ck(@); and g-dres(f, 0) := {y.
acw
Proposition (Chen-Singer in Adv. Appl. Math.'12)
The rational function f(x) € K(x) is rationally g-summable if and

only if dres(f,w, k) = 0 for every w € K /g% and every k € N and
g-dres(f,o0) = 0.



Obstructions to Summability in the Other Cases

In recent years, analogous obstructions to summability have been
developed in other cases (but requiring a few more technical
details to state precisely).

> In the Mahler case, Mahler discrete residues were developed
(A.-Zhang in ISSAC'22), giving a complete obstruction to
f(x) = g(x™) — g(x) for some g(x) € K(x).

» Still in the Mabhler case, for given A\ € Z, more general
A-twisted Mahler discrete residues were developed (A.-Zhang
in IMRN'24), giving a complete obstruction to
f(x) = m*g(x™) — g(x) for some g € K(x).

> In the elliptic shift case, orbital residues were developed
(Dreyfus-Hardouin-Roques-Singer in Inventiones'18), giving a
partial obstruction to f(x) = g(x@® t) — g(x).

» Still in the elliptic case, a pair of panorbital residues were
introduced (Babbitt, UT Dallas Ph.D. thesis '25), completing
the orbital residue obstruction introduced by DHRS in 2018.




