
EG-eliminations as a tool for computing rational solutions

of linear q-di�erence systems of arbitrary order with

polynomial coe�cients

S. Abramov

Dorodnicyn Computing Center, Federal Research Center �Computer Science and Control� of

the Russian Academy of Sciences

Vavilov str. 40, CCAS, Moscow, 119333, Russia

S. Abramov rational solutions 1/25



We consider linear q-di�erence systems with coe�cients belonging to K[x ],
where K = K (q), K is a �eld of characteristic 0, and q is transcendental

over K . A system is of the form

Ar (x)y(qrx) + · · ·+ A1(x)y(qx) + A0(x)y(x) = b(x), (1)

where

A0(x),A1(x), . . . ,Ar (x) are m ×m-matrices, whose elements belong

to K[x ] (we write: A0(x), A1(x), . . . , Ar (x) ∈ Matm(K[x ])), it is
supposed that the matrices A0(x), Ar (x) are non-zero,

b(x) = (b1(x), . . . , bm(x))T ∈ K[x ]m is the right-hand side of the

system,

y(x) = (y1(x), . . . , ym(x))T is an unknown column.

r is the order of system (1).
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System (1) can be rewritten using the q-shift operator σq : σqy(x) = y(qx).
The matrices Ar (x) and A0(x) are called the leading and, resp., the trailing

matrices of system (1).

One of known computer algebra approaches to the search for solutions of

linear systems is the cyclic vector method, which transforms a system into

a scalar equation (a scalar equation can be considered as a system having

only one equation involving one unknown), which is equivalent in a certain

sense to the original system. Here the main problem is the overgrowth of

the coe�cients. This is the reason why this method works in general, for

systems of small orders. This stimulates elaborating of direct algorithms

which do not require preliminary cyclic vector method applying, or another

type of uncoupling of a system.
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In this talk we consider direct algorithms for constructing the solutions of a

system having the form (1) with y1(x), . . . , ym(x) belonging to the �eld

K(x) of rational functions of x over K. We call such solutions rational. If

y(x) ∈ K[x ]m, then this solution is polynomial (a particular case of rational

solutions). Rational solutions may be a building block for other types of

solutions, and more general, such algorithms may be a part of various

computer algebra algorithms.

We will also consider solutions

y(x) = (y1(x), y2(x), . . . , ym(x))T ∈ K((x))m whose components are

formal Laurent series (Laurent solutions).
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We will suppose that equations of the original system are independent over

K[x , σq , σ
−1
q

] (i.e., the system is of full rank).

Various questions related the search for rational solutions both for the

scalar equations and for systems were discussed earlier. For the q-di�erence
case, some algorithms were proposed in, e.g., Abramov, 1995, 2002 for

constructing all rational solutions of scalar linear equations and for

�rst-order linear normal systems, i.e., the systems of the form

y(qx) = A(x)y(x), (2)

where A(x) is a non-singular (invertible in Matm(K(x))) matrix.

The possible singularity of the leading or the trailing matrices of (1) gives

rise to interruptions of the search for solutions of a system (by the way, if

the system (2) is rewritten as Imy(qx)− A(x)y(x) = 0, where Im is the

identity m ×m-matrix then −A(x) is the trailing matrix of the system.
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The same can be said about the possible singularity of the leading or the

trailing matrices of the so called induced recurrent (di�erence) system: a

formal series
∑

anx
n, an ∈ Km, satis�es the original q-di�erence system if

and only if the sequence (an) of m-dimensional vectors satis�es the induced

recurrent system. Below, we discuss the algorithm of EG-eliminations which

allows to transform the original q-di�erence system and the induced

recurrent system into systems having a non-singular leading or trailing

matrix. After computing the determinant of the non-singular leading matrix

one can �nd a lower bound for valuations of formal Laurent series

solutions. An upper bound for degrees of polynomial solutions can be found

using the non-zero determinant of the trailing matrix.

As for rational solutions, the search for them consists of two steps:

1) constructing a so called universal denominator or, in another

terminology, a denominator bound, and

2) constructing the corresponding numerators of the components of the

solutions.
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The numerators mentioned in step 2 are the components of polynomial

solutions of the system obtained from the original system by means of a

special substitution on the base of the universal denominator constructed

on step 1. Using the leading and the trailing matrices of the original system

(possibly that after applying EG-eliminations) allows to construct the part

of the universal denominator that contains only the factors other than x .
Concerning the factors of the form xk , it is remarked in Abramov, 2002

that a bound for k can be obtained when one considers rational solutions

as Laurent series solutions at x = 0.

S. Abramov rational solutions 7/25



The �rst algorithm and an example of constructing polynomial solutions of

q-di�erence systems of arbitrary order were given in Abramov, 1999.

Concerning the universal denominators, note that strictly speaking the

paper Abramov, 2002 is dedicated to �rst-order systems. However, in that

paper, some general principals are formulated which allow to solve the

problem in the case of higher order systems, by modifying algorithms for

the di�erence case (such algorithms were published earlier). In Abramov,

2002, Abramov & Bronstein 2002 it is noted that for constructing the part

of the universal denominator that contains only the factors other than x , it
is reasonable to use the slightly modi�ed version (x + i → xqi ) of an
algorithm for the di�erence case (such an algorithm for higher order

di�erence systems was proposed in Abramov, Khmelnov, 2012). The

treatment of rational solutions as Laurent ones to work with the factors xk

was considered also in Abramov, 2002.
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In the present talk we follow this natural plan and obtain an algorithm for

constructing rational solutions of systems of the form (1) (we suppose that

the system is of full rank). More, we will mention another approach,

transferring to the q-di�erence case the approach which was discussed for

the di�erence case (Abramov, Ghe�ar, Khmelnov, 2010). For constructing

polynomial solutions the algorithms from Abramov, 1999, Abramov&

Bronstein, 2001, Khmelnov, 2004 can be used. Those algorithms are also

based on EG-eliminations.

J.Middeke shown in 2017 that the Popov normal form can also be used for

�nding bounds for the exponent k and the degrees of polynomial solutions.
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Embracing systems

Consideration of the so-called embracing systems allows us to avoid the

assumption of invertibility of the matrices Ar (x), A0(x).
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For any system S of the form (1) one can construct an l-embracing system

S̄
Ār (x)y(qrx) + · · ·+ Ā1(x)y(qx) + Ā0(x)y(x) = b̄(x), (3)

with the leading matrix Ār (x) being non-singular (invertible), and with the

set of solutions containing all the solutions of the system S . Similarly, one

can construct a t-embracing system ¯̄S

¯̄Ar (x)y(qrx) + · · ·+ ¯̄A1(x)y(qx) + ¯̄A0(x)y(x) = ¯̄b(x), (4)

whose trailing matrix is non-singular (invertible), and with the set of

solutions containing all the solutions of the system S . All the entries of the
matrices and of the right-hand sides of (1) are in K[x ]. It is possible that

the matrices Ā0(x), ¯̄Ar (x) are zero, either both or one of them.
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The construction of the embracing systems can be performed with the

algorithms EG (Abramov, 1999) or its improved version (Abramov&

Bronstein, 2001).

The algorithm EG is applicable also to di�erence (recurrent) systems.

Sequential solutions (i.e., solutions having the form of sequences) of such

systems are interesting for us.

S. Abramov rational solutions 12/25



Induced recurrent systems

A formal Laurent series
∑

anx
n, an ∈ Km satis�es original q-di�erence

system (1), if and only if the sequence (an) of m-dimensional vectors

satis�es the induced recurrent system

Pl(n)an+l + · · ·+ Pt(n)an+t = cn, (5)

where (cn) is the sequence of coe�cients of the Laurent series which is the

expansion of the right-hand side b(x) of the original q-di�erence system.

The induced system can be constructed in 3 steps:

1) rewrite the original system in the operator-matrix form My = b, where
M ∈ Matm(K[x , σq ]),
2) in the matrix M, replace σq → qn, x → σ−1, where σ is the

shift-operator: σfn = fn+1 for any double sided sequence (fn),
3) rewrite the obtained system in the form (5).
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Below, we will need the notion of the valuation of a series: for a non-zero

Laurent series f (x) =
∑

fix
i . The valuation of this series is

valf (x) = min{i ∈ Z | fi 6= 0},

and conventionally valf (x) =∞ for the zero series f (x). The valuation of

the vector whose components are series, is the minimal valuation of the

components.

The degree of the vector with polynomial components is the maximal

degree of the components. The degree of the zero polynomial is −∞.

If the induced system (5) is such that detPt(n) is a non-zero polynomial in

qn, then one can �nd a lower bound for valuations of formal Laurent series

solutions. An upper bound for degrees can be found using the non-zero

determinant of the trailing matrix. The following two theorems are from

Abramov, 2002.
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Theorem 1

Let recurrent system (5) be such that if a formal Laurent series
∑

anx
n, an ∈ Km

(in particular, it can be a polynomial over Km) satis�es the original q-di�erence
system (1), then the sequence (an) of m-dimensional vectors satis�es (5). Let
pl(n) = detPl(n), pt(n) = detPt(n) (thus, pl(n), pt(n) are polynomials in qn). In
this case
If the right-hand side b(x) is a Laurent series, and

pl(n) is a non-zero polynomial in qn,

Nl is the set (possibly empty) of all integer roots of the equation pl(n) = 0,

the number β does not exceed the valuation of the right-hand side of the
original q-di�erence system (β =∞, when the right-hand side b(x) is the
zero column vector),

then the valuation of any Laurent solution of system (1) cannot be less than

min(Nl ∪ {β}) + l .
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Theorem 2

If the right-hand side b(x) is polynomial, and

pt(n) is a non-zero polynomial in qn,

Nt is the set (possibly empty) of all integer roots of the equation pt(n) = 0,

the number γ does not exceed the degree of the right-hand side of the
original q-di�erence system (γ = −∞, when the right-hand side b(x) is the
zero column vector),

then the degree of any polynomial solution of system (1) cannot be bigger than

max(Nt ∪ {γ}) + t.
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If the leading or, resp., the trailing matrix of the induced system is singular

then one can apply the corresponding version of the algorithm EG and with

Theorems above �nd the needed bounds, this gives a key to construct

Laurent and polynomial solutions.
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Rational solutions

First, we �nd U(x) ∈ K(x) (U(0) 6= 0) and k ∈ Z such that any rational

solution y(x) can be written as

y(x) =
xk

U(x)
z(x), (6)

where z(x) ∈ K[x ]m. Then we produce the substitution (6) for y(x), and
after cleaning denominators we apply an algorithm for �nding polynomial

solutions. The dissimilarity between x and other irreducible polynomials is

such that if p(x) ∈ K[x ] is irreducible and p(0) 6= 0, then p(qhx) is also

irreducible and relatively prime with p(x) for any h ∈ Z, and di�erent

values of h give di�erent irreducible polynomials. However this does not

take place for the polynomial x , which is not relatively prime with qx . This
gives the polynomial x a special status, which is not the case for the

di�erence equations, when any irreducible p(x) (in particular, p(x) = x) is
relatively prime with p(x + 1)).
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We have stated that any rational solution can be considered as a Laurent

solution. Thus Theorem 2 gives an opportunity to de�ne k for the factor

xk . As for the polynomial U(x), we �nd it in accordance with our scheme,

using the �di�erence� algorithm with the replacement of the shift σ by the

q-shift σq . We give some de�nitions and then describe the algorithm.

If F (x) is a rational function then we denote by denF (x) the denominator

of F (x), i.e. a monic polynomial such that F (x) = f (x)
denF (x) for a polynomial

f (x) which is co-prime with denF (x). If F (x) is a vector with rational

function components F1(x), . . . ,Fm(x) then denF (x) is the least common

multiple (lcm) of denF1(x), . . . ,denFm(x).
We write f (x) ⊥ g(x) for relatively prime f (x), g(x) ∈ K[x ], and
f (x) 6⊥ g(x), when the polynomials have a common divisor of positive

degree.
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Each polynomial f (x) ∈ K(x) \ {0} can be represented as f (x) = xv s(x),
where v ∈ Z>0 and the polynomial s(x) is not divisible by x , i.e., s(0) 6= 0.
In this case we will call s(x) the stem of f (x), we will use the notation
ν(f (x)) for v . If ν(f (x)) = ν(g(x)) = 0, then we can introduce the

q-dispersion set of the polynomials f (x) and g(x):

qds(f (x), g(x)) = {h ∈ Z>0 | f (x) 6⊥ g(qhx)}

and their q-dispersion:

qdis(f (x), g(x)) = max(qds(f (x), g(x)) ∪ {−∞}).

Similarly to the di�erence case, the q-dispersion is either a non-negative

integer, or is equal to −∞, the latter takes place if and only if

f (x)⊥g(qhx) for all h ∈ Z>0.
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As we have already said, if a polynomial p(x) ∈ K[x ] is irreducible and
ν(p(x)) = 0, then the polynomial p(qhx), h ∈ Z>0, is also irreducible, and

such polynomials are relatively prime for di�erent values of h. This implies

that if ν(f (x)) = ν(g(x)) = 0, then qds(f (x), g(x)) is a �nite set. This set

can be found, e.g., by computing all the roots having the form λ = qh,
h ∈ Z>0, of the equation R(λ) = 0, where R(λ) = Resx(f (x), g(λx)), or
by an analog of the algorithm of Y.Man & F.Wright, 1994, which is

originally for the di�erence case. (In Abramov& Bronstein, 2002, an

algorithm was proposed which is applicable also in the case where q is

algebraic number which is not a root of 1.)
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Thus, when k is found, we have to construct such a polynomial U(x) that

possess the following properties

(a) ν(U(x)) = 0,

(b) if the original system has a rational solution having the denominator

u(x), then U(x) is divisible by the stem of u(x).

When k and U(x) are known we can use substitution (6).

One can �nd U(x) similarly to the universal denominator in the di�erence

case (Abramov, 2012). In the algorithm, we use the notation

gcd(f (x), g(x)) for the greatest common divisor of polynomials f (x), g(x).
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A(x) = (det Ār (q−rx))/xar , B(x) = (det ¯̄A0(x))/xa0 ,
where

ar = ν (det Ār (x)), a0 = ν (det ¯̄A0(x)).
Compute H = qds(A(x),B(x)). If H = ∅ then stop with U(x) = 1 (in the

sequel we suppose that H = {h1, h2, . . . , hs} with h1 > h2 > · · · > hs ,
s > 1).
Set U(x) = 1.
for i=1 to s do

N(x) = gcd(A(x),B(qhi x))
A(x) = A(x)/N(x)
B(x) = B(x)/N(q−hi x)
U(x) = U(x)

∏hi
j=0N(q−jx).

od.

Return U(x) and stop.
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Theorem 3

Let each solution of the original q-di�erence system of the form (1) be also

a solution of systems (3), (4), and det Ār (x), det ¯̄A0(x) be non-zero. Then

the polynomial U(x) computed by the latter algorithm possesses properties

(a), (b) formulated above.

The main idea of the proof is similar to the idea used for the di�erence

case. First of all, if f (x), p(x) are polynomials and p(x) is irreducible then

the valuation valp(x)f (x) is de�ned to be the greatest n ∈ Z>0 such that

f (x) is divisible by p(x)n (valp(x)0 =∞, and

valp(x)
f (x)
g(x) = valp(x)f (x)− valp(x)g(x)).

The valuation of a vector whose components are polynomials or rational

functions is the minimal of the component valuations.
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The following statement can be proven: For any rational solution y(x) of

(1) and any irreducible p(x) we have

valp(x)y(x) > max

−∑
n∈Z>0

valp(qnx)A(x), −
∑

n∈Z>0

valp(q−nx)B(x)

 , (7)

and valp(x)U(x) does not exceed the valuation of the right-hand side

of (7).

Remark that similarly to the di�erence case (Abramov, Ghe�ar, Khmelnov,

2010), inequality (7) can be taken as a base for another algorithm for

constructing the polynomial U(x). That algorithm uses the full

factorization of A(x),B(x) which is used also for the dispersion

computation by the q-version of the Man & Wright algorithm. However the

algorithm given above is more convenient for implementation.
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