an

Соловьев Михаил Борисович

Разработка и исследование новых численных методов с расщеплением граничных условий решения нестационарной задачи Стокса

Специальность 01.01.07 — "Вычислительная математика"

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Учреждении Российской академии наук Вычислительный центр им. А.А. Дородницына РАН

Научный руководитель: доктор физико-математических наук,

профессор

Пальцев Борис Васильевич

Официальные оппоненты: доктор физико-математических наук,

старший научный сотрудник

Чарахчьян Александр Агасиевич

кандидат физико-математических наук,

старший научный сотрудник Жуков Виктор Тимофеевич

Ведущая организация: механико-математический факультет

Московского Государственного

Университета им. М.В. Ломоносова

B. Zydb

Защита состоится «27» января 2011 г. в 16 часов на заседании диссертационного совета Д 002.017.01 при Учреждении Российской академии наук Вычислительный центр им. А.А. Дородницына РАН, расположенном по адресу: 119333, г. Москва, ул. Вавилова, д. 40.

С диссертацией можно ознакомиться в библиотеке Учреждения Российской академии наук Вычислительный центр им. А.А. Дородницына РАН.

Автореферат разослан «_____» декабря 2010 г.

Ученый секретарь диссертационного совета доктор физико-математических наук, профессор

Зубов В.И.

Общая характеристика работы

Актуальность работы. В диссертационной работе осуществляется построение новых численных методов решения первой начально-краевой задачи для нестационарной системы Стокса (нестационарной задачи Стокса)

$$\partial_{t}\mathbf{u} - \nu \Delta_{x}\mathbf{u} + \nabla_{x}p = \mathbf{f}, \quad \operatorname{div}_{x}\mathbf{u} = 0, \qquad (t, x) \in (0, T) \times \Omega,$$

$$\mathbf{u}|_{(0,T)\times\Gamma} = \mathbf{g}, \qquad \int_{\Gamma} (\mathbf{g}, \mathbf{n}) \, ds = 0 \quad \forall t \in (0, T),$$

$$\mathbf{u}|_{t=0} = \mathbf{a}(x), \qquad \operatorname{div}_{x}\mathbf{a} = 0, \quad x \in \Omega,$$

$$\mathbf{g}|_{t=0} = \mathbf{a}|_{\Gamma}, \qquad \int_{\Omega} p \, dx = 0 \quad \forall t \in (0, T),$$

$$(1)$$

где Ω — область в \mathbb{R}^n , Γ — граница Ω , $x=(x_1,...,x_n)$, \mathbf{n} — единичный вектор внешней нормали к Γ , $\nu>0$ — коэффициент кинематической вязкости, $\mathbf{u}(t,x), p(t,x)$ — искомое решение (скорость и давление), $\mathbf{f}(t,x), \mathbf{g}(t,x)$ и $\mathbf{a}(x)$ — заданные вектор-функции (ВФ). Система уравнений Стокса представляет собой линеаризацию полной системы уравнений Навье-Стокса, получаемую отбрасыванием нелинейного конвективного члена в уравнении движения, и описывает течения вязкой несжимаемой жидкости при малых числах Рейнольдса.

Создание эффективных и надежных численных методов решения начально-краевых задач для системы Навье-Стокса, даже в случае линеаризованной начально-краевой задачи (1), и в настоящее время представляет собой весьма сложную и актуальную проблему, связанную с необходимостью преодоления целого ряда принципиальных трудностей. При непосредственном численном аппроксимировании начально-краевой задачи (1) в переменных "скорость—давление" требуется удовлетворять известным весьма трудно проверяемым условиям устойчивости — условиям Ладыженской-Бабушки-Брецци¹ (ЛББ-условиям). Разностных или конечно-элементных (КЭ) схем, удовлетворяющих ЛББ-условиям, на данный момент известно совсем немного, причем в ЛББ-устойчивых КЭ-аппроксимациях давление, как правило,

¹cm. Girault V., Raviart P. Finite element methods for Navier-Stokes equations. Berlin: Springer, 1986.

необходимо аппроксимировать с более низким, чем для скорости, порядком точности по шагу пространственной сетки². Кроме того, эффективное разрешение разностных схем, возникающих в результате таких аппроксимаций, представляет собой самостоятельную достаточно непростую проблему.

Ранее в работах Б.В. Пальцева с соавторами были разработаны и исследованы³ эффективные численные итерационные методы с расщеплением граничных условий (ГУ) решения стационарной обобщенной задачи Стокса

$$-\Delta \mathbf{u} + \mu^2 \mathbf{u} + \nabla p = \mathbf{f}, \quad \operatorname{div} \mathbf{u} = 0, \quad x \in \Omega,$$

$$\mathbf{u}|_{\Gamma} = \mathbf{g}, \quad \int_{\Gamma} (\mathbf{g}, \mathbf{n}) \, ds = 0,$$
(2)

с большим параметром $\mu^2 > 0$. Задачи вида (2) возникают, в частности, на временных слоях в результате неявных дискретизаций по времени нестационарной задачи Стокса (1). При этом обычно $\mu^2 \sim 1/(\nu \tau)$, где τ — шаг дискретизации по времени, и поэтому в реальных ситуациях параметр μ^2 , как правило, принимает очень большие значения. Эти методы достаточно просты алгоритмически (поскольку на их итерациях происходит расщепление на отдельные краевые задачи для приближений к скорости ${\bf u}$ и давлению p, по сложности численного решения эквивалентные задачам Дирихле и Неймана для скалярных уравнений Пуассона и Гельмгольца) и обладают высокими скоростями сходимости, не убывающими с возрастанием параметра μ^2 . Для аппроксимации и компонент скорости и давления используются одинаковые билинейные КЭ, и при этом для численных решений обеспечивается 2-й порядок точности по шагу сетки в норме максимума модуля, причем как для скорости, так и для давления, а удовлетворять каким-либо специальным условиям устойчивости типа ЛББ-условий не требуется. Тем не менее, оказалось, что методы численного решения нестационарной задачи Стокса (1), постро-

 $^{^{2}}$ см. Brezzi F., Fortin M. Mixed and hybrid finite element methods. New York: Springer, 1991.

³см. обзорную статью *Пальцев Б.В.*, *Белаш В.О.*, *Меллер Н.А.*, *Чечель И.И.*, *Хлюпина Е.Г.* О быстросходящихся итерационных методах с расщеплением граничных условий решения краевых задач для линеаризованных и нелинейной систем Навье-Стокса // Труды 2-й междунар. конф. "Функциональные пространства. Дифференциальные операторы. Проблемы математического образования", посв. 80-летию Л.Д. Кудрявцева. – М.: Физматлит. 2003. С. 286–301.

енные на пути дискретизации ее по времени по неявным разностным схемам с последующим разрешением возникающих на каждом временном слое обобщенных задач Стокса вида (2) с помощью указанных выше методов, могут приводить к катастрофическому возрастанию ошибки для давления при неограниченном уменьшении значений отношения $\tau/|h|$, где |h| — характерный шаг пространственной сетки⁴. Наличие этого дефекта делает такой, на первый взгляд естественный, подход практически непригодным для построения эффективных численных методов решения задачи (1), особенно при использовании сильно неравномерных по пространству сеток. В связи с этим возникла проблема создания таких численных методов решения нестационарной задачи Стокса (1), которые, с одной стороны, обладали бы теми же преимуществами, что и упомянутые выше численные итерационные методы с расщеплением ГУ решения стационарной обобщенной задачи Стокса (2), и, с другой стороны, не страдали бы отмеченным дефектом.

Б.В. Пальцевым недавно был предложен 5 на дифференциальном уровне быстросходящийся итерационный метод с расщеплением ГУ уже непосредственно для нестационарной задачи Стокса (1) и обоснован для случая, когда пространственная область — слой в \mathbb{R}^n , а задача периодическая в направлениях вдоль слоя. На каждой итерации метод приводит к решению последовательных задач: зависящей от времени как от параметра задачи Неймана для уравнения Пуассона для приближений к давлению и специальной векторной параболической начально-краевой задачи для приближений к скорости. Итерация завершается простой формулой пересчета на пространственновременной части границы. Расщепление на итерациях метода на существенно более простые (по сравнению с исходной), устойчиво численно аппроксимируемые краевые задачи обусловило перспективность его как основы для создания новых эффективных и устойчивых численных методов решения нестаци-

⁴см. *Пальцев Б.В.*, *Чечель И.И.* Конечно-элементные реализации итерационных методов с расщеплением граничных условий для систем Стокса и типа Стокса в шаровом слое, обеспечивающие 2-й порядок точности вплоть до оси симметрии // Ж. вычисл. матем. и матем. физ. 2005. Т. 45. №5. С. 846-889.

 $^{^{5}}$ см. *Пальцев Б.В.* Об одном итерационном методе с расщеплением граничных условий решения 1-й начально-краевой задачи для системы Стокса // Докл. РАН. 2010. Т. 432. №5. С. 597-603.

онарной задачи Стокса (1).

Цели диссертационной работы состоят в 1°) разработке новых численных итерационных методов решения нестационарной задачи Стокса (1) на пути построения численных реализаций итерационного процесса с расщеплением ГУ, предложенного и обоснованного на дифференциальном уровне Б.В. Пальцевым; 2°) численном изучении реальных свойств построенных численных методов; 3°) разработке приемов повышения их эффективности.

Разработка осуществлена для случаев:

- а) задачи (1) в полосе в \mathbb{R}^2 при условии периодичности задачи по направлению вдоль полосы;
- б) осесимметричной задачи (1) в зазоре между соосными цилиндрами при условии периодичности ее вдоль цилиндров.

Случай а) представляет интерес для проведения сравнений качеств создаваемых численных реализаций метода с соответствующими качествами уже изученной его дифференциальной версии. В случае б) обоснования метода на дифференциальном уровне пока не получено. Рассмотрение этого случая представляет интерес с точки зрения исследования возможности перенесения численных реализаций метода на случаи более общих областей и выяснения эффективности этих численных реализаций в указанном случае.

Используемые методы. Основу разработанных численных итерационных методов решения нестационарной задачи Стокса составляет итерационный процесс с расщеплением ГУ, предложенный и обоснованный на дифференциальном уровне Б.В. Пальцевым. Построенные в работе численные реализации этого итерационного процесса базируются на следующих дискретизациях по времени отщепленной параболической начально-краевой задачи для приближений к скорости: 1) по полностью неявной разностной схеме; 2) по разностной схеме Кранка-Николсон; 3) по неявной трехслойной разностной схеме 2-го порядка аппроксимации. Аппроксимация на временных слоях задач Неймана для приближений к давлению, а также краевых задач для приближений к скорости, возникающих при таких дискретизациях, осуществлялась с помощью билинейных КЭ. Для разрешения возникающих КЭ-схем использовался многосеточный метод Р.П. Федоренко (модификация для за-

дач вариационного типа). Модифицированные разностно-КЭ-аппроксимации формулы пересчета на границе, обеспечивающие такие же высокие скорости сходимости, как и у исходного метода на дифференциальном уровне, построены на основе конструкции, предложенной А.С. Лозинским⁶ для ускорения сходимости упомянутых выше численных итерационных методов с расщеплением ГУ решения стационарной обобщенной задачи Стокса (2).

Теоретическая и практическая ценность результатов. Построенные в диссертационной работе численные итерационные методы решения нестационарной задачи Стокса обладают достаточной алгоритмической простотой, поскольку на их итерациях происходит расщепление на существенно более простые (по сравнению с исходной) краевую и начально-краевую задачи, соответственно, для приближений к давлению и к скорости, и эти приближения возможно аппроксимировать по пространству одинаковыми билинейными КЭ. При этом методы, основанные на упомянутых выше конечноразностных дискретизациях 2-го и 3-го видов, обеспечивают для численных решений 2-й порядок точности по шагу пространственно-временной сетки в норме максимума модуля, причем и для скорости и для давления (методы, основанные на простейшей конечно-разностной дискретизации 1-го вида, обеспечивают 1-й порядок точности по времени при сохранении 2-го порядка точности по пространству), чего обычно не в состоянии обеспечить аппроксимации всей задачи (1) в целом, удовлетворяющие ЛББ-условиям. Кроме того, важно подчеркнуть, что построенные методы не страдают потерей точности для давления при неограниченном уменьшении величины $\tau/|h|$, как это происходит для методов, основанных на первоначальной дискретизации по времени задачи (1) по неявным разностным схемам с последующим решением возникающих на каждом временном слое стационарных обобщенных задач Стокса вида (2) при помощи разработанных ранее численных итерационных методов с расщеплением ГУ (как это отмечалось выше). Скорости сходимости построенных численных итерационных методов так же высоки, как и у исходного итерационного процесса на дифференциальном уровне (ошибка

 $^{^6}$ Лозинский А.С. Об ускорении конечно-элементных реализаций итерационных процессов с расщеплением граничных условий для системы типа Стокса // Ж. вычисл. матем. и матем. физ. 2000. Т. 40. №9. С. 1339-1363.

уменьшается приблизительно в 7 раз за одну итерацию).

Построенные в работе численные методы решения нестационарной задачи Стокса (1) в случае б) (в зазоре между соосными цилиндрами) имеют также и прикладную ценность, поскольку они могут служить основой (при развитии их на случай нелинейной системы Навье-Стокса) для численного исследования классической гидродинамической задачи о механизме образования вихрей Тейлора.

Построенные в работе численные методы представляются перспективными для перенесения их на случаи более общих областей, а также для разработки на их основе новых методов численного решения нелинейной нестационарной задачи Навье-Стокса.

Научная новизна работы. Построенные в работе численные итерационные методы решения нестационарной задачи Стокса являются новыми и не имеют аналогов.

Достоверность полученных в работе результатов обеспечена

- использованием в качестве основы для построенных в работе численных методов итерационного процесса с расщеплением ГУ, получившего обоснование на дифференциальном уровне в случае слоя в \mathbb{R}^n при условии периодичности задачи в направлениях вдоль слоя;
- проведенными численными исследованиями.

На защиту выносятся следующие результаты и положения:

- 1. Разработаны и численно исследованы новые эффективные численные итерационные методы с расщеплением ГУ решения нестационарной задачи Стокса в случае, когда пространственная область представляет собой полосу в \mathbb{R}^2 , а задача периодическая по направлению вдоль полосы.
- 2. Разработаны и численно исследованы аналогичные численные итерационные методы с расщеплением ГУ решения осесимметричной нестационарной задачи Стокса в зазоре между соосными цилиндрами при условии периодичности ее по направлению вдоль цилиндров.
- 3. Численными исследованиями установлено, что методы, основанные на упомянутых выше конечно-разностных дискретизациях 2-го и 3-го видов, обеспечивают для численных решений 2-й порядок точности по ша-

гу пространственно-временной сетки в норме максимума модуля как для скорости, так и для давления. Методы же, основанные на простейшей конечно-разностной дискретизации 1-го вида, обеспечивают 1-й порядок точности по времени и 2-й порядок точности по пространству. Разработанные численные методы являются устойчивыми и не страдают потерей точности для давления при неограниченном уменьшении отношения $\tau/|h|$.

4. Найдены эффективные способы модификации аппроксимаций формулы пересчета на границе, обеспечивающие такие же высокие скорости сходимости разработанных численных методов, как и у исходного итерационного метода на дифференциальном уровне, а именно уменьшение ошибки приблизительно в 7 раз за 1 итерацию.

Публикации по теме диссертации. По теме диссертации опубликовано 3 статьи [1–3] в изданиях, входящих в перечень ВАК РФ, и 5 работ в сборниках тезисов докладов [4–8].

Личный вклад автора. Все вынесенные на защиту результаты получены лично автором.

Апробация работы. Основные результаты работы докладывались и обсуждались на научно-исследовательском семинаре МГУ по аэромеханике и газовой динамике под руководством акад. Г.Г. Черного, семинаре ИВМ РАН "Вычислительная математика, математическая физика, управление" под руководством Г.М. Кобелькова и А.В. Фурсикова, научном семинаре кафедры вычислительной математики механико-математического факультета МГУ, а также на следующих научных конференциях: Международной конференции "Современные проблемы математики, механики и их приложений", посвященной 70-летию ректора МГУ академика В.А. Садовничего (г. Москва, 30 марта — 2 апреля 2009 г.); XVI Международной конференции по вычислительной механике и современным прикладным программным системам (г. Алушта, 25—31 мая 2009 г.); Международной конференции "Современные проблемы вычислительной математики и математической физики" (г. Москва, МГУ имени М.В. Ломоносова, 16–18 июня 2009 г.); Всероссийской конференции "Математика в приложениях", приуроченной к 80-летию академика С.К. Го-

дунова (г. Новосибирск, 20–24 июля 2009 г.); Международной научной конференции "Современные проблемы математики, механики, информатики" (г. Тула, 23–27 ноября 2009 г.); Международной конференции по прикладной математике и информатике, посвященной 100-летию со дня рождения академика А.А. Дородницына (г. Москва, ВЦ РАН, 7–11 декабря 2010 г.).

Структура и объем диссертации. Диссертация состоит из введения, двух глав, заключения и списка цитируемой литературы из 65 наименований. Диссертация содержит 15 таблиц. Общий объем диссертации составляет 89 страниц.

Краткое содержание работы

Во введении обосновывается актуальность работы, формулируются ее цели, практическая значимость полученных результатов и положения, выносимые на защиту.

В первой главе построены для случая задачи в полосе в \mathbb{R}^2 при условии периодичности задачи по направлению вдоль полосы и численно изучены численные реализации предложенного и обоснованного на дифференциальном уровне Б.В. Пальцевым нового итерационного метода с расщеплением ГУ решения нестационарной задачи Стокса (1).

В разделе 1.1 приведена формулировка алгоритма итерационного метода с расщеплением ГУ решения нестационарной задачи Стокса (1) на дифференциальном уровне для случая полосы в \mathbb{R}^2 при условии периодичности задачи по направлению вдоль полосы. В рассматриваемом в данной главе случае $x=(x_1,x_2)$, под областью Ω в (1) понимается "ячейка периодичности" — прямоугольник $(0,L_1)\times(0,L_2)$, под Γ — "существенная" граница Ω : $\Gamma=\Gamma_-\cup\Gamma_+$, где $\Gamma_-=[0,L_1]\times\{0\}$, $\Gamma_+=[0,L_1]\times\{L_2\}$. При этом решение $\mathbf{u}=(u^1(t,x_1,x_2),u^2(t,x_1,x_2))$ и $p(t,x_1,x_2)$ и данные $\mathbf{f}=(f^1(t,x_1,x_2),f^2(t,x_1,x_2))$, $\mathbf{g}=(g^1(t,x_1,x_2),g^2(t,x_1,x_2))$ и $\mathbf{a}=(a^1(x_1,x_2),a^2(x_1,x_2))$ предполагаются периодическими по переменной x_1 с периодом L_1 . Все определенные на Γ и $(0,T)\times\Gamma$ скалярные функции и ВФ, встречающиеся далее в периодических по x_1 краевых задачах и формулах

пересчета, представляют собой сужения на эти множества соответствующих периодических по x_1 функций и $B\Phi$.

Итерационный процесс начинается с задания начального приближения $\varphi_0(t,x),\,(t,x)\in(0,T) imes\Gamma,\,$ к неизвестной функции

$$\varphi(t,x) \stackrel{\text{def}}{=} \{\partial p/\partial \mathbf{n} - (\mathbf{f}, \mathbf{n})\}|_{(0,T)\times\Gamma}, \tag{3}$$

где $\partial/\partial \mathbf{n}$ — производная по направлению \mathbf{n} .

В качестве начального приближения $\varphi_0(t,x)$ может быть взята, например, любая непрерывная функция, периодическая по переменной x_1 с периодом L_1 , удовлетворяющая условию

$$\int_{\Gamma} \varphi_N(t, x) ds = 0 \quad \forall t \in (0, T)$$
(4)

при N=0.

Если N-е приближение $\varphi_N(t,x)$, удовлетворяющее условию (4), уже найдено, то (N+1)-е приближение $\varphi_{N+1}(t,x)$ и вместе с ним N-е приближения $\mathbf{u}_N(t,x)$ и $p_N(t,x)$ к скорости и давлению соответственно находятся следующим образом.

1. Решается зависящая от t как от параметра периодическая по переменной x_1 с периодом L_1 задача Неймана

$$\Delta_x p_N = \operatorname{div}_x \mathbf{f}, \ x \in \Omega, \quad \frac{\partial p_N}{\partial \mathbf{n}} \Big|_{\Gamma} = \varphi_N + (\mathbf{f}, \mathbf{n})|_{\Gamma}, \quad \int_{\Omega} p_N dx = 0,$$
 (5)

 $t \in (0,T)$. Необходимое условие разрешимости этой задачи, имеющее вид (4), выполнено.

2. Решается периодическая по переменной x_1 с периодом L_1 векторная начально-краевая задача

$$\partial_{t}\mathbf{u}_{N} - \nu \Delta_{x}\mathbf{u}_{N} = \mathbf{f} - \nabla_{x}p_{N}, \quad (t, x) \in (0, T) \times \Omega,$$

$$\{\mathbf{u}_{N} - (\mathbf{u}_{N}, \mathbf{n})\mathbf{n}\}|_{(0, T) \times \Gamma} = \{\mathbf{g} - (\mathbf{g}, \mathbf{n})\mathbf{n}\}|_{(0, T) \times \Gamma},$$

$$\operatorname{div}_{x} \mathbf{u}_{N}|_{(0, T) \times \Gamma} = 0,$$

$$\mathbf{u}_{N}|_{t=0} = \mathbf{a}(x), \quad x \in \Omega,$$
(6)

решения которой автоматически оказываются соленоидальными по x В Φ .

3. Новое приближение φ_{N+1} вычисляется с помощью формулы пересчета

$$\varphi_{N+1} = \varphi_N + \varkappa \left(\partial_t - 2\nu \Delta' \right) \left(\mathbf{u}_N - \mathbf{g}, \mathbf{n} \right) |_{(0,T) \times \Gamma}, \tag{7}$$

где Δ' — оператор Лапласа-Бельтрами на Γ , \varkappa — релаксационный параметр, оптимальное значение которого для случая задачи (1) в слое в \mathbb{R}^n при условиях периодичности задачи в ортогональных направлениях вдоль слоя равно ~ 1.14285 .

В разделе 1.2 построена *первая* (простейшая) *численная реализация* итерационного метода (5)–(7) решения задачи (1). В основе этой численной реализации лежит дискретизация по времени отщепленной векторной параболической начально-краевой задачи (6) для приближений к скорости по полностью неявной разностной схеме⁷

$$(\mathbf{u}_{m,N} - \mathbf{u}_{m-1,N}) / \tau - \nu \Delta \mathbf{u}_{m,N} = \mathbf{f}_m - \nabla p_{m,N}, \quad x \in \Omega,$$

$$\{\mathbf{u}_{m,N} - (\mathbf{u}_{m,N}, \mathbf{n})\mathbf{n}\} |_{\Gamma} = \{\mathbf{g}_m - (\mathbf{g}_m, \mathbf{n})\mathbf{n}\} |_{\Gamma},$$

$$\operatorname{div} \mathbf{u}_{m,N}|_{\Gamma} = 0, \qquad m = 1, ..., N_{\tau},$$

$$\mathbf{u}_{0,N} = \mathbf{a}(x),$$

$$(8)$$

где $\tau = T/N_{\tau}$ — шаг дискретизации по времени, $N_{\tau} \in \mathbb{N}$, $\mathbf{u}_{m,N}(x)$ — приближения к $\mathbf{u}_{N}(t_{m},x)$, $\mathbf{f}_{m} = \mathbf{f}(t_{m},x)$, $\mathbf{g}_{m}(x) = \mathbf{g}(t_{m},x)$, $t_{m} = m\tau$. Функции $p_{m,N}(x)$ в (8) суть приближения к $p_{N}(t_{m},x)$, вычисляемые в результате решения серии задач Неймана

$$\Delta p_{m,N} = \operatorname{div} \mathbf{f}_{m}, \quad x \in \Omega, \qquad \frac{\partial p_{m,N}}{\partial \mathbf{n}} \Big|_{\Gamma} = \varphi_{m,N} + (\mathbf{f}_{m}, \mathbf{n})|_{\Gamma},$$

$$\int_{\Omega} p_{m,N} dx = 0, \qquad m = 1, ..., N_{\tau},$$
(9)

где $\varphi_{m,N}(x)$ — приближения к $\varphi_N(t_m,x)$.

Введены соответствующие функциональные пространства и построены для рассматриваемого случая периодичности по переменной x_1 билинейные КЭ-аппроксимации задачи Неймана для уравнения Пуассона вида (9) и век-

 $^{^{7}}$ Все встречающиеся в дальнейшем изложении краевые задачи являются периодическими по переменной x_{1} с периодом L_{1} .

торной краевой задачи

$$-\Delta \mathbf{u} + \mu^2 \mathbf{u} = \mathbf{f} - \nabla p, \quad x \in \Omega,$$

$$\{\mathbf{u} - (\mathbf{u}, \mathbf{n})\mathbf{n}\}|_{\Gamma} = \{\mathbf{g} - (\mathbf{g}, \mathbf{n})\mathbf{n}\}|_{\Gamma}, \quad \operatorname{div} \mathbf{u}|_{\Gamma} = 0, \quad \mu^2 > 0,$$
(10)

возникающей на временных слоях в результате неявной дискретизации по времени (8) начально-краевой задачи (6).

Для формулы пересчета (7) вначале используется непосредственная разностно-КЭ-аппроксимация, построенная на основе полностью неявной дискретизации по времени:

$$\varphi_{m,N+1;h} = \varphi_{m,N;h} + \varkappa \left[(\xi_{m,N;h} - \xi_{m-1,N;h}) / \tau - 2\nu \Delta_h' \xi_{m,N;h} \right],$$

$$m = 1, ..., N_{\tau}.$$
(11)

Здесь $\xi_{m,N;h} = (\mathbf{u}_{m,N;h} - \mathbf{g}_{m;h}, \mathbf{n})|_{\Gamma}$, $\varphi_{m,N;h}$, $\mathbf{u}_{m,N;h}$ и $\mathbf{g}_{m;h}$ — КЭ-приближения к $\varphi_N(t_m,x)$, $\mathbf{u}_N(t_m,x)$ и $\mathbf{g}(t_m,x)$ соответственно, Δ'_h — линейная КЭ-аппроксимация оператора Лапласа-Бельтрами Δ' . Вычисление действия оператора Δ'_h сводится к решению линейной системы с трехдиагональной циклической матрицей и реализуется экономичным образом с помощью метода циклической прогонки.

В разделе 1.3 представлены результаты численных исследований скоростей сходимости первой численной реализации и точности вычисляемых с ее помощью численных решений задачи (1). Оказывается, что первоначальный (основанный на использовании непосредственной аппроксимации (11) формулы пересчета (7)) вариант первой численной реализации страдает значительным падением (по сравнению с исходным итерационным методом на дифференциальном уровне) скоростей сходимости на высокочастотных дискретных гармониках по переменной x_1 . В связи с этим автором диссертационной работы предложен прием, позволяющий повысить скорости сходимости разрабатываемых численных реализаций на всех дискретных гармониках до уровня исходного итерационного метода для дифференциальной задачи. Суть предложенного приема состоит в специальном модифицировании непосредственных разностно-КЭ-аппроксимаций формулы пересчета (7), осуществляемым на основе упомянутой выше конструкции, предложенной А.С. Лозинским для ускорения сходимости изучавшихся ранее билинейных

КЭ-реализаций итерационных методов с расщеплением ГУ решения обобщенной задачи Стокса (2). Так, построена следующая модификация аппроксимации (11) формулы пересчета (7):

$$\varphi_{m,N+1;h} = \varphi_{m,N;h} + \varkappa \left[(\eta_{m,N;h} - \eta_{m-1,N;h}) / \tau - \nu \Delta_h' \zeta_{m,N;h} \right],$$

$$m = 1, ..., N_{\tau},$$
(12)

где $\eta_{m,N;h} = \xi_{m,N;h} - (h_2^2/6)\Delta_h'\xi_{m,N;h}$, $\zeta_{m,N;h}$, $\zeta_{m,N;h} = \eta_{m,N;h} + \xi_{m,N;h}$, h_2 — шаг сетки по переменной x_2 , обозначения $\xi_{m,N;h}$ и Δ_h' те же, что и в (11). Проведенные численные эксперименты показывают, что использование модифицированной аппроксимации (12) формулы пересчета (7) вместо непосредственной ее аппроксимации (11) позволяет повысить скорости сходимости первой численной реализации на всех дискретных гармониках (по переменной x_1) до уровня исходного итерационного процесса для дифференциальной задачи, а именно, обеспечивает уменьшение ошибки приблизительно в 7 раз за 1 итерацию.

Численные решения задачи (1), получаемые с помощью первой численной реализации, обладают 2-м порядком точности по шагу h пространственной сетки и 1-м порядком точности по шагу τ дискретизации по времени в норме максимума модуля, причем как для скорости, так и для давления.

Проведен сравнительный анализ точности численных решений нестационарной задачи Стокса (1), вычисляемых двумя различными методами: (i) с помощью первой численной реализации и (ii) с помощью непосредственной дискретизации по времени задачи (1) по полностью неявной разностной схеме

$$\frac{\mathbf{u}_{m} - \mathbf{u}_{m-1}}{\tau} - \nu \Delta \mathbf{u}_{m} + \nabla p_{m} = \mathbf{f}_{m}, \quad \operatorname{div} \mathbf{u}_{m} = 0, \quad x \in \Omega,$$

$$\mathbf{u}_{m}|_{\Gamma} = \mathbf{g}_{m}, \quad \int_{\Omega} p_{m} dx = 0, \quad m = 1, ..., N_{\tau}, \quad \mathbf{u}_{0} = \mathbf{a}(x),$$
(13)

с последующим решением возникающих на каждом временном слое стационарных обобщенных задач Стокса вида (13) при помощи билинейной КЭреализации первого итерационного процесса с неполным расщеплением ГУ⁸.

⁸см. *Пальцев Б.В.*, *Чечель И.И.* Алгоритмы численных реализаций на основе билинейных конечных элементов итерационных методов с расщеплением граничных условий для системы типа Стокса в полосе при условии периодичности // Ж. вычисл. матем. и матем. физ. 1997. Т. 37. №7. С. 799-815.

Приведены примеры, показывающие, что при использовании подхода (ii) может происходить катастрофическая потеря точности для давления (при сохранении при этом достаточно высокой точности для скорости), когда шаг τ дискретизации по времени становится значительно меньше характерного шага |h| пространственной сетки (численные эксперименты обнаруживают обратно пропорциональное по отношению к τ возрастание ошибки для давления). Для первой численной реализации подобной потери точности не происходит.

В разделе 1.4 построена *вторая численная реализация* итерационного метода (5)–(7), основанная на дискретизации по времени отщепленной параболической начально-краевой задачи (6) для приближений к скорости по разностной схеме Кранка–Николсон

$$\left(\mathbf{u}_{m,N} - \mathbf{u}_{m-1,N}\right)/\tau - 0.5\nu \left(\Delta \mathbf{u}_{m,N} + \Delta \mathbf{u}_{m-1,N}\right) = \mathbf{f}_{m-0.5} - \nabla p_{m-0.5,N}, \quad x \in \Omega,$$

$$\left\{\mathbf{u}_{m,N} - (\mathbf{u}_{m,N}, \mathbf{n})\mathbf{n}\right\}|_{\Gamma} = \left\{\mathbf{g}_{m} - (\mathbf{g}_{m}, \mathbf{n})\mathbf{n}\right\}|_{\Gamma}, \qquad (14)$$

$$\operatorname{div} \mathbf{u}_{m,N}|_{\Gamma} = 0, \quad m = 1, ..., N_{\tau},$$

$$\mathbf{u}_{0,N} = \mathbf{a}(x).$$

Здесь $\mathbf{f}_{m-0.5}(x) = \mathbf{f}(t_{m-0.5}, x), \ \mathbf{g}_m(x) = \mathbf{g}(t_m, x), \ t_\alpha = \alpha \tau, \ функции \ p_{m-0.5,N}(x)$ вычисляются в результате решения серии задач Неймана

$$\Delta p_{m-0.5,N} = \operatorname{div} \mathbf{f}_{m-0.5}, \quad x \in \Omega,$$

$$\frac{\partial p_{m-0.5,N}}{\partial \mathbf{n}} \Big|_{\Gamma} = \varphi_{m-0.5,N} + (\mathbf{f}_{m-0.5}, \mathbf{n})|_{\Gamma}, \qquad \int_{\Omega} p_{m-0.5,N} dx = 0, \qquad (15)$$

$$m = 1, ..., N_{\tau},$$

где $\varphi_{m-0.5,N}(x)$ — приближения к $\varphi_N(t_{m-0.5},x)$. Краевые задачи, возникающие на временных слоях после дискретизации по времени, аппроксимируются с помощью билинейных КЭ-схем, построенных в разделе 1.2. Модифицированная аппроксимация формулы пересчета (7), обеспечивающая для второй численной реализации такие же высокие скорости сходимости, как и у исходного итерационного метода на дифференциальном уровне, построена на основе дискретизации по времени, согласованной с дискретизацией (14), используемой для начально-краевой задачи (6), и имеет вид

$$\varphi_{m-0.5,N+1;h} = \varphi_{m-0.5,N;h} + \varkappa \left[(\eta_{m,N;h} - \eta_{m-1,N;h}) / \tau - 0.5\nu \Delta_h' (\zeta_{m,N;h} + \zeta_{m-1,N;h}) \right], \quad m = 1, ..., N_\tau. \quad (16)$$

Здесь используются те же обозначения, что и в (12).

В разделе 1.5 построена третья численная реализация итерационного метода (5)–(7), основанная на дискретизации по времени отщепленной параболической начально-краевой задачи (6) по неявной трехслойной разностной схеме

$$\frac{3\mathbf{u}_{m,N} - 4\mathbf{u}_{m-1,N} + \mathbf{u}_{m-2,N}}{2\tau} - \nu \Delta \mathbf{u}_{m,N} = \mathbf{f}_m - \nabla p_{m,N}, \quad x \in \Omega,
\{\mathbf{u}_{m,N} - (\mathbf{u}_{m,N}, \mathbf{n})\mathbf{n}\} \mid_{\Gamma} = \{\mathbf{g}_m - (\mathbf{g}_m, \mathbf{n})\mathbf{n}\} \mid_{\Gamma},
\operatorname{div} \mathbf{u}_{m,N} \mid_{\Gamma} = 0, \quad m = 2, ..., N_{\tau},
\mathbf{u}_{0,N} = \mathbf{a}(x),$$
(17)

где $\mathbf{f}_m(x) = \mathbf{f}(t_m, x)$, $\mathbf{g}_m(x) = \mathbf{g}(t_m, x)$, функции $p_{m,N}(x)$ суть решения задач Неймана (9), отвечающих моментам времени t_m , $m = 2, ..., N_{\tau}$, векторфункция $\mathbf{u}_{1,N}$ находится с помощью разностной схемы (14). В отличие от разностной схемы Кранка—Николсон (14) разностная схема (17) обеспечивает достаточно быстрое затухание по времени высокочастотных пространственных возмущений в получаемом разностном решении задачи (6). В основе модифицированной аппроксимации формулы пересчета (7), используемой в третьей численной реализации, лежит трехслойная конечно-разностная дискретизация по времени того же вида, что и в (17):

$$\varphi_{m,N+1;h} = \varphi_{m,N;h} + \varkappa \left(\frac{3\eta_{m,N;h} - 4\eta_{m-1,N;h} + \eta_{m-2,N;h}}{2\tau} - \nu \Delta_h' \zeta_{m,N;h} \right),$$

$$m = 2, ..., N_{\tau}.$$
(18)

Здесь используются те же обозначения, что в (16) и (12).

В разделе 1.6 представлены результаты численных исследований второй и третьей численных реализаций. В отношении показателей скоростей сходимости этих численных реализаций обнаружены те же явления, что и для первой численной реализации. А именно, выявлено значительное падение скоростей сходимости исследуемых численных реализаций на высокочастотных дискретных гармониках по переменной x_1 , возникающее при использовании непосредственного аппроксимирования формулы пересчета (7). При

использовании же модифицированных аппроксимаций (16) и (18) формулы пересчета (7) (для второй и третьей численных реализаций соответственно) скорости сходимости этих численных реализаций оказываются такими же высокими, как и у исходного итерационного метода на дифференциальном уровне.

Проведенные численные эксперименты обнаруживают 2-й порядок точности по шагу пространственно-временной сетки в норме максимума модуля численных решений задачи (1), вычисляемых с помощью второй и третьей численных реализаций, причем как для скорости, так и для давления.

Во второй главе построены и численно изучены численные реализации итерационного метода (5)–(7), перенесенного на случай осесимметричной нестационарной задачи Стокса (1) в зазоре между соосными цилиндрами при условии периодичности ее вдоль цилиндров (в данном случае обоснования метода на дифференциальном уровне пока не получено).

В разделе 2.1 уточнена постановка задачи (1) для рассматриваемого в данной главе случая. А именно, под областью Ω в (1) в данном случае понимается ячейка периодичности

$$\Omega = \{x = (x_1, x_2, x_3) : r < \sqrt{x_1^2 + x_2^2} < R, \ 0 < x_3 < L\}, \quad R > r > 0,$$

а под Γ — существенная граница Ω :

$$\Gamma = \Gamma_r \cup \Gamma_R, \qquad \Gamma_\rho = \{x : \sqrt{x_1^2 + x_2^2} = \rho, \ 0 \le x_3 \le L\}, \quad \rho = r, R.$$

При этом заданные ВФ

$$\mathbf{f}=(f^1(t,x),f^2(t,x),f^3(t,x)),\quad \mathbf{g}=(g^1(t,x),g^2(t,x),g^3(t,x))$$
и
$$\mathbf{a}=(a^1(x),a^2(x),a^3(x)),$$

а также искомая ВФ $\mathbf{u} = (u^1(t,x), u^2(t,x), u^3(t,x))$ и искомая скалярная функция p(t,x) предполагаются осесимметричными и периодическими по переменной x_3 с периодом L. Определенные на Γ и $(0,T) \times \Gamma$ скалярные функции и ВФ понимаются в том же смысле, что и в первой главе.

В разделе 2.2 приведена формулировка алгоритма итерационного метода (5)–(7) на дифференциальном уровне для рассматриваемого в данной

главе случая. В этом случае отщепленные задачи (5) и (6) являются осесимметричными и периодическими по переменной x_3 с периодом L, как и итерационные приближения $\varphi_N(t,x)$.

В разделе 2.3 описаны используемые пространственно-временные дискретизации отщепленных задач (5) и (6), полагаемые в основу разрабатываемых численных реализаций итерационного метода с расщеплением ГУ. Для отщепленной параболической начально-краевой задачи (6) для приближений к скорости используются те же дискретизации по времени, что использовались в первой главе, а именно полностью неявная дискретизация (8), дискретизация по разностной схеме Кранка-Николсон (14) и неявная трехслойная дискретизация (17), соответственно, для первой, второй и третьей численных реализаций.

Введены соответствующие пространства осесимметричных скалярных функций и ВФ и даны для рассматриваемого в данной главе случая вариационные формулировки краевых задач (5) и (10), возникающих после дискретизации по времени на временных слоях. На основе приведенных вариационных формулировок построены билинейные КЭ-аппроксимации этих задач на равномерных прямоугольных сетках в цилиндрических координатах (ρ, z) .

В разделе 2.4 сформулированы алгоритмы первой, второй и третьей численных реализаций итерационного метода (5)–(7) в рассматриваемом случае. Приведены модифицированные разностно-КЭ-аппроксимации формулы пересчета (7), построенные на основе той же конструкции, что использовалась для этого в первой главе.

В разделе 2.5 приведены результаты численных исследований построенных в данной главе численных реализаций. Установлено, что эти численные реализации обладают фактически теми же качествами, что и построенные в первой главе аналогичные численные реализации для случая задачи (1) в полосе при условии периодичности задачи вдоль полосы. Так же, как и в случае, рассмотренном в первой главе, скорости сходимости построенных численных реализаций (при использовании модифицированных аппроксимаций формулы пересчета (7)) хорошо согласуются с аналогичными показателями для исходного итерационного метода на дифференциальном уровне: ошибка

уменьшается приблизительно в 7 раз за одну итерацию. При этом построенные численные реализации обеспечивают для численных решений такие же порядки точности, что и аналогичные численные реализации, построенные в первой главе.

В заключении сформулированы основные результаты и выводы диссертационной работы.

Основные результаты работы

В диссертационной работе разработаны и численно изучены новые эффективные численные итерационные методы с расщеплением ГУ решения нестационарной задачи Стокса в случаях: а) задачи в полосе в \mathbb{R}^2 при условии периодичности задачи по направлению вдоль полосы; б) осесимметричной задачи в зазоре между соосными цилиндрами при условии периодичности ее вдоль цилиндров. Разработанные численные методы созданы на пути построения численных реализаций итерационного метода с расщеплением ГУ, предложенного и обоснованного на дифференциальном уровне Б.В. Пальцевым, и обладают следующими важными достоинствами.

- 1. В силу того, что на итерациях методов происходит расщепление на существенно более простые (по сравнению с исходной) краевые задачи для приближений к скорости и давлению, и эти приближения возможно аппроксимировать по пространству одинаковыми билинейными КЭ, методы обладают достаточной алгоритмической простотой.
- 2. Проведенными численными исследованиями установлено, что численные методы, основанные на конечно-разностной дискретизации по схеме Кранка-Николсон и неявной трехслойной конечно-разностной дискретизации, обеспечивают для численных решений 2-й порядок точности по шагу пространственно-временной сетки в норме максимума модуля, причем и для скорости и для давления, чего обычно не в состоянии обеспечить аппроксимации всей задачи (1) в целом, удовлетворяющие ЛББ-условиям. Методы же, основанные на простейшей полностью неявной конечно-разностной дискретизации по времени, обеспечивают для численных решений 1-й порядок точности по времени при сохранении 2-го

порядка точности по пространству.

- 3. Методы не страдают потерей точности для давления при неограниченном уменьшении величины шага дискретизации по времени по сравнению с характерным шагом пространственной сетки, как это происходит для методов, основанных на первоначальной дискретизации по времени задачи (1) по неявным разностным схемам с последующим решением возникающих на каждом временном слое стационарных обобщенных задач Стокса вида (2) при помощи разработанных ранее численных итерационных методов с расщеплением ГУ.
- 4. Методы обладают такими же высокими скоростями сходимости, как и у исходного итерационного процесса на дифференциальном уровне, а именно, обеспечивают уменьшение ошибки приблизительно в 7 раз за одну итерацию.
- 5. Благодаря использованию многосеточного метода для разрешения КЭ-задач, возникающих на временных слоях, построенные численные итерационные методы оказываются реально высокоэффективными.

Благодарности

Автор выражает глубокую благодарность своему научному руководителю Б.В. Пальцеву за постановку задачи и многие ценные советы.

Публикации по теме диссертации

- 1. Соловьев М.Б. О численных реализациях нового итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса // Докл. РАН. 2010. Т. 432. № 6. С. 741–745.
- 2. Соловьев М.Б. О численных реализациях нового итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса в полосе при условии периодичности // Ж. вычисл. матем. и матем. физ. 2010. Т. 50. № 10. С. 1771–1792.
- 3. Соловьев М.Б. Численные реализации итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса в зазоре между коаксиальными цилиндрами // Ж. вычисл. матем. и матем. физ. 2010. Т. 50. № 11. С. 1998—2016.
- 4. Пальцев Б.В., Соловьев М.Б. О численных реализациях нового итерационного метода с расщеплением граничных условий решения первой начально-краевой задачи для нестационарной системы Стокса // Материалы междунар. конф. "Современные проблемы математики, механики и их приложений", посв. 70-летию ректора МГУ академика В.А. Садовничего. М.: Изд-во "Университетская книга". 2009. С. 332.
- 5. Соловьев М.Б. Новый итерационный метод с расщеплением граничных условий решения первой начально-краевой задачи для нестационарной системы Стокса и его параллельная реализация // Материалы XVI Междунар. конф. по вычислительной механике и современным прикладным программным системам (ВМСППС'2009), 25-31 мая 2009 г., Алушта. М.: Изд-во МАИ-ПРИНТ, 2009. С. 663–666.

- 6. Соловьев М.Б. О численной реализации с распараллеливанием нового итерационного метода с расщеплением граничных условий решения первой начально-краевой задачи для системы Стокса // Современные проблемы вычислительной математики и математической физики: Междунар. конф., Москва, МГУ им. М.В. Ломоносова, 16-18 июня 2009 г.: Тезисы докладов. М.: Издательский отдел факультета ВМК МГУ имени М.В. Ломоносова; МАКС Пресс, 2009. С. 94–95.
- 7. Пальцев Б.В., Соловьев М.Б. Об одном итерационном методе с расщеплением граничных условий решения первой начально-краевой задачи для нестационарной системы Стокса и его численных реализациях // Математика в приложениях. Всероссийская конференция, приуроченная к 80-летию академика С.К. Годунова (Новосибирск, 20-24 июля 2009 г.): тезисы докладов. Ин-т математики СО РАН. Новосибирск, 2009. С. 201–202.
- 8. Соловьев М.Б. Построение, оптимизация и распараллеливание численных реализаций нового итерационного метода с расщеплением граничных условий решения первой начально-краевой задачи для системы Стокса // Материалы междунар. научн. конф. "Современные проблемы математики, механики, информатики". Тула: Изд-во ТулГУ. 2009. С. 277–279.