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1. INTRODUCTION

Let us consider an illustrating example. The problem is to minimize the Euclidean norm in a
�nite-dimensional space

x∗ ∈ Argmin{|x| : x ∈ Rn}, (1.1)
where the function f(x) = |x| = (x2

1 + x2
2 + . . . + x2

n)1/2 is di�erentiable everywhere except for the
origin and its gradient is ∇f(x) = x/|x| (this can easily be checked by direct di�erentiation of
the Euclidean norm). At the point x∗ = 0 the goal function has a sharp minimum. The gradient
∇f(x) generates a vector �eld at each point of which the unit vector is directed to the origin along
the radius vector. The subdi�erential at the point of minimum is the unit ball centered on the
origin. The vector �eld has a �nite jump at the point of minimum.

We pose a problem to �nd a trajectory such that at each time moment its tangent is parallel
to the corresponding vector of the �eld. In terms of di�erential equations this is equivalent to the
system

dx

dt
= −α

x

|x| , α > 0, x(t0) = x0. (1.2)

The trajectory of the process x(t) exists for all t ≥ t0. There is a question about its behavior as
t →∞ and, in particular, about its convergence to the point of minimum.

First notice that as it follows from (1.2) all tangent vectors to the trajectory have the same
length for all t ≥ t0, namely,

|dx/dt| = α. (1.3)
We take the inner product of Eq. (1.2) by dx/dt and �nd

∣∣∣∣∣
dx

dt

∣∣∣∣∣
2

= −α

〈
x

|x| ,
dx

dt

〉
= −α〈∇f(x), ẋ〉 = −α

df(x)

dt
, (1.4)

where ẋ = dx/dt. Comparing (1.3) and (1.4) we get

d(f(x)− f(x∗))
dt

+ α = 0. (1.5)
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We now integrate (1.5) from t0 to t and derive

f(x)− f(x∗) + α

t∫

t0

dτ = f(x0)− f(x∗),

or
f(x)− f(x∗) + α(t− t0) = f(x0)− f(x∗). (1.6)

Since f(x)− f(x∗) ≥ 0 as t− t0 →∞ and the right-hand side of Eq.(1.6) is a constant, we arrive
at a contradiction. The quantity f(x)− f(x∗) vanishes at the point t = t0 + α−1(f(x0)− f(x∗)),
therefore the trajectory x(t) passes through the point of minimum x∗. Thus the optimal value on
the trajectory is attained in a �nite time but unlike smooth processes the velocity at the optimal
point can take any value of the unit ball centered at the origin.

Since the velocity at the optimal point is nonzero, the trajectory does not terminate at the
point of minimum (like in smooth process) but leaves it in any direction. In this case the point of
minimum is unstable. Instability also appears when the time corresponding to the optimal point
of the process is computed not exactly. A small error in this time may lead to the case in which
process (1.2) passes through the optimal point. The divergence can be close to unity.

Hence, there are two characteristics of the problems with a sharp minimum. On one hand,
these problems are of interest because gradient, proximal, and other methods can converge to the
solution to such a problem in a �nite time. On the other hand, these processes are extremely
unstable, i.e., the trajectory of the solution in equilibrium can be chaotically deviated (we assume
that the velocity at a point of equilibrium can be either zero or take any other value from the unit
ball centered at the origin). To make the equilibrium state of process (1.2) rough it is useful to
use regularization, which is developed in [1, 2].

Considered example shows that if the gradient is bounded from below by a positive constant,
then the process comes to the equilibrium state in a �nite time. Another situation is much more
di�cult.

Consider the problem
x∗ ∈ Argmin{|x|1+ν : x ∈ Rn}, (1.7)

where 0 < ν < 1. The goal function is di�erentiable everywhere including the origin, and its
gradient is ∇f(x) = (1+ ν)|x|νx/|x| = (1+ ν)x/|x|1−ν . The goal function has a smooth minimum
at the point x∗ = 0, where the �rst derivative is sharp and the second derivative is discontinuous.
It is important to emphasize that the vector �eld generated by the gradient of this function
is smooth in a neighborhood of the minimum point although the second derivative of the �eld
is discontinuous. The intuition suggests that when moving along the gradient trajectory in a
neighborhood of the point of minimum the process in�nitely slows down because the gradient is
small and the trajectory comes to the point of equilibrium in an in�nite time.

Consider from this point of view the gradient method for the solution of problem (1.7). The
process has the form

dx

dt
= −α(1 + ν)

x

|x|1−ν
, α > 0, x(t0) = x0. (1.8)

We take the inner product of Eq. (1.8) by x and obtain
1

2

d

dt
|x|2 =

〈
dx

dt
, x

〉
= −α(1 + ν)|x|1+ν . (1.9)

We di�erentiate the latter equation and cancel |x| in both its sides to get
d

dt
|x|+ α(1 + ν)|x|ν = 0. (1.10)
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We separate the variables and single out the total derivative:

1

1− ν

d

dt
|x|1−ν + α(1 + ν) = 0. (1.11)

Let us integrate Eq. (1.11) from t0 to t and �nd

|x|1−ν + α(1− ν2)(t− t0) = c0. (1.12)

If one of the positive term in Eq. (1.12) is increasing, then the other must be decreasing. When
tf = t0 + [α(1 − ν2)]−1c0, then |x|1−ν vanishes. This implies that the trajectory comes to the
equilibrium state x(tf ) = x∗ at t = tf . This example shows that in vector �elds with the smooth
minimum but sharp derivative at the point of minimum the equilibrium state is attained in a �nite
time.

The equilibrium state in this problems has advantages of a smooth solution (the equilibrium
point is a �xed point) and those of a sharp solution (the equilibrium is attained in a �nite time).

If we set ν = 0 in Eq. (1.10), then we obtain the gradient method (1.2) for the solution of
problem (1.1) with a sharp minimum, namely,

d

dt
|x|+ α = 0. (1.13)

Comparing Eq. (1.10) with Eq. (1.13), we see that outside any neighborhood of the origin {x :
|x| ≥ ε, x ∈ Rn} the value of |x|ν is close to unity for small ν. This implies that the trajectory of
Eq. (1.10) is close to that of Eq. (1.13), and converges in a �nite time. Moreover, the fast drop of
|x|ν to zero in the ε-neighborhood of the point of minimum cannot make the process worse and it
remains �nite.

2. A SHARP MINIMUM AND A SMOOTH MINIMUM WITH A SHARP
DERIVATIVE

Consider the minimization problem for a function on a convex set

x∗ ∈ Argmin {f(x) : x ∈ Q}, (2.1)

where f(x) is a convex goal function, Q ⊂ Rn, Rn is the �nite-dimensional Euclidean space, and
Q is a convex closed set. Di�erent necessary conditions, depending on the smoothness of the goal
function, are satis�ed at the point of minimum. If the function is nondi�erentiable, then we can
formulate these conditions using a proximal operator

x∗ ∈ argmin {2−1|z − x∗|2 + αf(z) : z ∈ Q}. (2.2)

For a di�erentiable goal function necessary conditions of minimum can be formulated using a
projection operator

x∗ = πQ{x∗ − α∇f(x∗)}, (2.3)
where ∇f(x∗) is the gradient of f(x) at the point x∗, πQ{. . .} is the projection operator taking a
vector onto the set Q, and α > 0 is a parameter like the step length.

We introduce the concept of a sharp minimum and a smooth minimum with a sharp derivative.
Following [3], we de�ne the sharp minimum as a point where the inequality

f(x)− f(x∗) ≥ γ|x− x∗| (2.4)
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is satis�ed for all x ∈ Q and for a positive parameter γ. For example, the function f(x) = |x| has
a sharp minimum on Rn.

Following [4], we extend the concept of a sharp minimum to include the set of sharp minima.
The set of solutions to minimization problem is a set of sharp minima if the inequality

f(x)− f(πX∗(x)) ≥ γ|x− πX∗(x)| (2.5)

is satis�ed for all x ∈ Q, γ > 0, where X∗ is the set of solutions to the original problem, πX∗(x)
is the operator of projection of a vector x onto the set X∗.

Let us now show that if a system of linear equations Ax = b is solvable (i.e., there exists an
x∗ such that Ax∗ = b), then the function |Ax − b| satis�es Eq. (2.5). First, we consider the case
of a nonsingular matrix, in which

|Ax− b| = |A(x− x∗)| =
√
|A(x− x∗)|2 =

√
〈A>A(x− x∗), x− x∗〉 ≥

≥
√

µ|x− x∗|2 =
√

µ|x− x∗|. (2.6)

Here µ is the least eigenvalue of the nonsingular matrix A>A. If the matrix A>A is singular, we
decompose the space Rn into the direct sum Rn = H1 + H2, where H1 is the kernel of the matrix
A>A and H2 is the orthogonal complement of H1. In this case each vector x − x∗ ∈ Rn has the
representation x− x∗ = h1 + h2, where h1 = πH1(x− x∗) and h2 = πH2(x− x∗) and, in addition,
A>Ah1 = 0, A>Ah2 ∈ H2. Taking this into account, we derive the bound (2.6) for the singular
situation:

|Ax− b| =
√
〈A>A(x− x∗), x− x∗〉 =

√
〈(A>A)1/2(x− x∗), (A>A)1/2(x− x∗)〉 =

=
√
〈(A>A)1/2(h1 + h2), (A>A)1/2(h1 + h2)〉 =

=
√
〈(A>A)1/2h2, (A>A)1/2h2〉 =

√
〈A>Ah2, h2〉 ≥

√
µ|h2|2 =

=
√

µ|h2| = √
µ|x− x∗ − h1| = √

µ|x− x∗ − πH1(x− x∗)| =
=

√
µ|x− x∗ − πH1(x) + πH1(x

∗)| = √
µ|x− πH1(x)|.

(2.7)

Here µ is the minimal nonzero eigenvalue of the singular matrix A>A. When deriving the bound
(2.7), we used the existence of a square root of the symmetric nonnegative matrix A>A and the
linearity of the projector operator πH1(x− x∗), moreover πH1(x

∗) = x∗.
Sharp minima occur in a lot of problem classes, e.g., in linear programming problems. For

example, condition (2.5) for the problem

x∗ ∈ Argmin {〈c, x〉 : Ax ≤ b, x ≥ 0} (2.8)

becomes
〈c, x〉 − 〈c, πX∗(x)〉 ≥ γ|x− πX∗(x)| (2.9)

for all x of the admissible set. It is proved [3] that inequality (2.9) holds. Some smooth problems
of convex programming also satisfy the sharpness condition [5].

Let us introduce a new concept of a smooth minimum with a sharp derivative. The set of
solutions to a minimization problem is called a set of smooth minima with a sharp derivative at a
point if the inequality

f(x)− f(πX∗(x)) ≥ γ|x− πX∗(x)|1+ν (2.10)
is satis�ed for all x ∈ Q, γ > 0, and 0 < ν < 1, where X∗ is the set of solutions to the original
problem (2.1) and πX∗(x) is the operator of projection of a vector x onto the set X∗.
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Repeating the reasoning of (2.7), we can show that function |Ax − b|1+ν satis�es inequality
(2.10), namely,

|Ax− b|1+ν ≥
√

(µ/(1 + ν)) |x− πH1(x)|1+ν (2.11)
for all x ∈ Q, provided the solvability condition for the equation Ax = b. Here µ is the minimal
nonzero eigenvalue of the singular matrix A>A and H1 is its kernel.

If the function f(x) is di�erentiable, then a smooth minimum with a sharp derivative can be
de�ned by the following inequalities

f(x)− f(πX∗(x))− 〈∇f(πX∗(x)), x− πX∗(x)〉 ≥ γ|x− πX∗(x)|1+ν , (2.12)
〈∇f(x)−∇f(πX∗(x)), x− πX∗(x)〉 ≥ γ|x− πX∗(x)|1+ν (2.13)

for all x ∈ Q, γ > 0, and 0 < ν < 1. Taking into account the convexity of f(x), it is easy to show
that (2.12) yields (2.10) and (2.13).

Now we verify, for example, that inequality (2.13) is satis�ed for the function of the form
f(x) = |Ax − b|1+ν . We write its gradient ∇f(x) = (1 + ν)|Ax − b|νA>(Ax − b)/|Ax − b| =
= (1 + ν)A>(Ax− b)/|Ax− b|1−ν , then we use (2.11) and get

〈∇f(x)−∇f(πX∗(x)), x− πX∗(x)〉 = (1 + ν)

〈
A>(Ax− b)

|Ax− b|1−ν
, x− x∗

〉
=

=
1 + ν

|Ax− b|1−ν
〈Ax− b, Ax− Ax∗〉 =

1 + ν

|Ax− b|1−ν
|Ax− b|2 =

= (1 + ν)|Ax− b|1+ν ≥
√

µ(1 + ν) |x− πH1(x)|1+ν

(2.14)

for all x ∈ Q. Here µ is the minimal nonzero eigenvalue of the singular matrix A>A and H1 is its
kernel.

3. CONVERGENCE OF THE PROXIMAL CONTINUOUS METHOD IN A
FINITE TIME

We can consider a residual argmin {2−1|z − x|2 + αf(z) : z ∈ Q} − x as a transformation of
Rn into itself. This transformation generates a vector �eld in the space Rn. We start at any point
x0 and draw a trajectory along the directions of this �eld, which is described by the system of
di�erential equations

dx

dt
+ x = argmin {2−1|z − x|2 + αf(z) : z ∈ Q} x(t0) = x0. (3.1)

Since the proximal operator is non-expanding, the trajectory x(t) exists for all t ≥ t0.
Before we discuss asymptotic stability of method (3.1) for the solution of problem (2.1), let

us prove a very useful inequality, used below in the proof of convergence of the proximal method,
namely [6],

2−1|zx − x|2 + αf(zx) ≤ 2−1|z − x|2 + αf(z)− 2−1|z − zx|2, (3.2)
where z ∈ Q and zx is the point of minimum of the function ϕx(x) = 2−1|z−x|2 +αf(z) on Q for
a �xed vector x. This inequality can simply be proved. Indeed, let zx be the point of minimum of
ϕx(x) on Q. Then, by the necessary condition, the subdi�erential ∂ϕx(z) at the point of minimum
zx contains a positive subgradient

〈zx − x + α∇f(zx), z − zx〉 ≥ 0 (3.3)
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for all z ∈ Q. We combine the inequality

f(z) ≥ f(zx) + 〈∂ϕ(zx), z − zx〉, (3.4)

which implies that f(z) is a convex function, and the identity

2−1|z − x|2 = 2−1|z − zx|2 + 〈z − zx, zx − x〉+ 2−1|zx − x|2. (3.5)

According to (3.3), we get inequality (3.2).
Let us represent Eq. (3.1) as an inequality (3.2), namely,

2−1|x + ẋ− x|2 + αf(x + ẋ) ≤ 2−1|z − x|2 + αf(z)− 2−1|x + ẋ− z|2 (3.6)

for all z ∈ Q. Now we show that process (3.1) allows us to �nd the solution to the original problem
in a �nite time t = tf , moreover, the solution has the form x(tf ) + ẋ(tf ) = x∗ ∈ X∗.

Theorem 1. If the set of solutions to problem (2.1) is nonempty and satis�es sharpness
condition (2.5) or (2.10), the goal function f(x) is convex, and the set Q is convex and closed,
then the trajectory x(t) of proximal process (3.1) with a parameter α > 0 converges to the solution
in a �nite time, i.e., there exists tf such that x(tf ) + ẋ(tf ) = x∗ ∈ X∗.

Proof. We put z = x∗ in (3.6) and obtain

2−1|x + ẋ− x|2 + αf(x + ẋ) ≤ 2−1|x∗ − x|2 + αf(x∗)− 2−1|x + ẋ− x∗|2, (3.7)

where x∗ is an arbitrary point of the solution set X∗. Hence,

2−1|x− x∗|2 + 2−1|ẋ|2 + 〈ẋ, x− x∗〉+ 2−1|ẋ|2 + αf(x + ẋ) ≤ 2−1|x− ẋ|2 + αf(x∗),

or
2−1 d

dx
|x− x∗|2 + |ẋ|2 + α{f(x + ẋ)− f(x∗)} ≤ 0. (3.8)

Since the third term in the left-hand side of (3.8) is nonnegative, we can integrate it from t0 to t
to get

|x− x∗|2 + 2

t∫

t0

|ẋ|2dτ ≤ (x0 − x∗)2. (3.9)

It follows from (3.9) that lim
t→∞ |ẋ(t)| = 0. Indeed, if this were not the case, i.e., |ẋ(t)|2 ≥ ε for all

t ≥ t0, then we arrived at a contradiction with convergence of the integral. Hence there exists a
subsequence of time moments ti →∞ such that |ẋ(ti)| → 0. This implies

lim
t→∞ |ẋ(t)| = 0, ti →∞. (3.10)

We return to the inequality (3.8) and rewrite it as

〈ẋ, x + ẋ− x∗〉+ α{f(x + ẋ)− f(x∗)} ≤ 0 (3.11)

for all x∗ ∈ X∗. In particular, this inequality holds for x∗ = πX∗(x + ẋ), whence, because of
sharpness condition (2.5) or (2.10), we derive

〈ẋ, x + ẋ− πX∗(x + ẋ)〉+ αγ|x + ẋ− πX∗(x + ẋ)|1+ν ≤ 0,
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where probably ν = 0 (a sharp minimum). Therefore,

αγ|x + ẋ− πX∗(x + ẋ)|1+ν ≤ |ẋ| |x + ẋ− πX∗(x + ẋ)|. (3.12)

Assume that |x + ẋ− πX∗(x + ẋ)| 6= 0 for all t ≥ t0, i.e., x + x 6= πX∗(x + x). Then (3.12) yields

αγ|x + ẋ− πX∗(x + ẋ)|ν ≤ |ẋ|. (3.13)

In particular, if ν = 0 (a sharp minimum), we have

αγ ≤ |ẋ|. (3.14)

We compare inequalities (3.10) and (3.14) and arrive at a contradiction. If the parameter ν
belongs to the interval (0, 1), we transform inequality (3.13) as follows:

αγ ≤ |ẋ|1−ν |ẋ|ν
|x + ẋ− πX∗(x + ẋ)|ν = |ẋ|1−ν

∣∣∣∣∣
x− x∗

|ẋ| +
ẋ

|ẋ|

∣∣∣∣∣
−ν

,

where x∗ = πX∗(x+ ẋ). In the latter inequality the expression in parentheses is bounded and does
not depend on the behavior of (x − x∗)/|ẋ| as t → ∞ and |ẋ|1−ν → 0 as ti → ∞. Consequently,
we also arrive at a contradiction.

To get out of this, we should not require the condition |x+ ẋ−πX∗(x)(x+ ẋ)| 6= 0 for all t ≥ t0.
Consequently, the condition x(tf ) + ẋ(tf ) = πX∗(x(tf ) + ẋ(tf )) = x∗ ∈ X∗ is satis�ed with some
tf . In other words, process (3.1) allows us to �nd the solution to the problem in a �nite time (in
the sense of the quantity of x(tf ) + ẋ(tf )). The theorem is proved.

4. CONVERGENCE OF THE CONTINUOUS METHOD OF GRADIENT
PROJECTION IN A FINITE TIME

We consider the residual πQ(x−α∇f(x))−x as a transformation of the space Rn to Rn. This
transformation de�nes a vector �eld. We pose a problem to �nd a trajectory such that its tangent
vector coincides with the �eld vector at the same point. Formally, this problem is described by
the system of di�erential equations

dx

dt
+ x = πQ(x− α∇f(x)), x(t0) = x0. (4.1)

The continuous right-hand side of system (4.1) provides existence and uniqueness of a trajectory
on an in�nite interval, i.e., for all t ≥ t0, as it follows from general theorems.

Recall that the operator πQ(b) projecting a vector b onto the set Q satis�es the inequality

〈πQ(b)− b, z − πQ(b)〉 ≥ 0 (4.2)

for all z ∈ Q.
We represent Eq. (4.1) as an inequality (4.2), namely,

〈ẋ + x− (x− α∇f(x)), z − ẋ− x〉 ≥ 0 (4.3)

for all z ∈ Q.
We also represent the original problem (2.1) as a variational inequality

〈∇f(x∗), z − x∗〉 ≥ 0 (4.4)
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for all z ∈ Q and all x∗ ∈ X∗.
We now cite a theorem on �nite convergence of the gradient projection method, assuming that

f(x) is a convex function di�erentiable everywhere in its domain. Moreover, the gradient of this
function satis�es the H�older condition [7]

|∇f(y)−∇f(x)| ≤ L|y − x|κ (4.5)

for all x and y of some set, where L is a constant and 0 < κ ≥ 1. When κ = 1, we have the
Lipschitz condition. The class of function with a sharp minimum whose gradients satisfy the
Lipschitz condition is narrow. The H�older condition allows us to consider a wider class.

Theorem 2. Assume that the set of solutions to problem (2.1) is nonempty and satis�es the
sharpness condition (2.5) or (2.10), f(x) is a convex and di�erentiable function whose gradient
satis�es H�older condition (4.5), where κ > ν, and Q is a convex closed set. Then the trajectory
x(t) of the gradient projection method (4.1) with a parameter α > 0 converges to the solution to
the problem in a �nite time, i.e., there exists tf such that x(tf ) + ẋ(tf ) = x∗ ∈ X∗.

Proof. We put z = x∗ in (4.3) and z = x + ẋ in (4.4) and combine the resultants. Then we
get

〈ẋ + α(∇f(x)−∇f(x∗), x∗ − x− ẋ)〉 ≥ 0 (4.6)
for all x∗ ∈ X∗. We represent (4.6) as

〈ẋ, x∗ − x〉+ α〈∇f(x)−∇f(x∗), x∗ − x〉 − |ẋ|2 − α〈∇f(x)−∇f(x∗), ẋ〉 ≥ 0.

Since the gradient is monotonic, the latter inequality yields

d

dt
|x− x∗|2 + |ẋ|2 + α

d

dt
(f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉) ≤ 0. (4.7)

Let us integrate inequality (4.7) from t0 to t. Since f(x) is a convex function, i.e., (f(x)− f(x∗)−
−〈∇f(x∗), x− x∗〉) ≥ 0, the latter inequality can be rewritten as

|x− x∗|2 +

t∫

t0

|ẋ|2dτ ≤ C0. (4.8)

As shown in Theorem 1, inequality (4.8) implies that

lim
t→∞ |ẋ(t)| = 0. (4.9)

We return to the inequality (4.3), put in it z = x∗, and then rewrite it in the form

〈ẋ, x + ẋ− x∗〉+ α〈∇f(x), x + ẋ− x∗〉 ≤ 0.

We add and subtract∇f(x+ẋ) to the left-hand side of this inequality and then set x∗ = πX∗(x+ẋ).
This is possible because the inequality holds for all x∗ ∈ X∗. As a result, we obtain

〈ẋ, x + ẋ− πX∗(x + ẋ)〉+ α〈∇f(x + ẋ) +∇f(x)−∇f(x + ẋ), x + ẋ− πX∗(x + ẋ)〉 ≤ 0. (4.10)

On the other hand, using the sharpness condition for the minimum (2.5) or (2.10) and convexity
of the function f(x) we write

γ|x + ẋ− πX∗(x + ẋ)|1+ν ≤ f(x + ẋ)− f(πX∗(x + ẋ)) ≤ 〈∇f(x + ẋ), x + ẋ− πX∗(x + ẋ)〉, (4.11)
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where probably ν = 0 (a sharp minimum). We compare (4.10) and (4.11) and use the condition
(4.5) to derive

〈ẋ, x + ẋ− πX∗(x + ẋ)〉+ αγ|x + ẋ− πX∗(x + ẋ)|1+ν ≤ αL|ẋ|κ|x + ẋ− πX∗(x + ẋ)|.

Therefore,

αγ|x + ẋ− πX∗(x + ẋ)|1+ν ≤ |ẋ| |x + ẋ− πX∗(x + ẋ)|+ αL|ẋ|κ|x + ẋ− πX∗(x + ẋ)|. (4.12)

Assume that |x + ẋ− πX∗(x + ẋ)| 6= 0 for all t ≥ t0, then from (4.12) we have

αγ|x + ẋ− πX∗(x + ẋ)|ν ≤ |ẋ|+ αL|ẋ|κ. (4.13)

In particular, if ν = 0 (a sharp minimum), we obtain

αγ ≤ |ẋ|+ αL|ẋ|κ. (4.14)

Comparing inequalities (4.9) and (4.14), we arrive at a contradiction. If the parameter ν belongs
to the interval (0, 1), then we transform (4.13) in the following way

αγ ≤ |ẋ|1−ν |ẋ|ν
|x + ẋ− πX∗(x + ẋ)|ν + αL|ẋ|κ−ν |ẋ|ν

|x + ẋ− πX∗(x + ẋ)|ν =

= (|ẋ|1−ν + αL|ẋ|κ−ν)

∣∣∣∣∣
x− x∗

|ẋ| +
ẋ

|ẋ|

∣∣∣∣∣
−ν

,

where x∗ = πX∗(x + ẋ). The second factor in the obtained inequality is always bounded and does
not depend on the behavior of (x− x∗)/|ẋ| as t →∞. Since |ẋ| → 0 as ti →∞, we also arrive at
a contradiction in this case.

The latter implies that our assumption is false, i.e., there exists a moment tf such that x(tf )+
+ẋ(tf ) = πX∗(x(tf )+ẋ(tf )) = x∗ ∈ X∗. In other words, process (4.1) allows us to �nd the solution
to the problem in a �nite time. Theorem is proved.

The gradient method can be applied to optimize a convex function if this function is di�eren-
tiable. In the general case, it is necessary to use the generalized di�erential equation

dx

dt
∈ πQ(x− α∇f(x))− x, x(t0) = x0, (4.15)

to �nd the minimum, where ∇f(x) is any subgradient which belongs to the subdi�erential. It is
di�cult to examine convergence of this process. We note works [8, 9] for more detail. The method
of subgradient projection [3] is an iterative analog of (4.15). Advantages and disadvantages of the
proximal method are clearly seen in the above example. The proximal method is more universal
for complicated situations and that is why it is perspective for the solution of large-scale problems.
The gradient method is e�cient in simple (smooth) situations.

5. ITERATIVE PROCESSES

In this section we consider iterative analogs of the above continuous processes. It is necessary
to emphasize that we consider iterative analogs rather than discrete approximations of conti-
nuous processes. There is an essential di�erence between them. The latter have a small step
of discretization with respect to time and, therefore, they approximate continuous trajectories
well. However, a small time step causes a low speed of the process outside a neighborhood of the
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solution to the problem. Processes with large time steps (∆t = 1) converge fast to a neighborhood
of the solution, but their convergence should be established separately.

We �rst consider an iterative proximal method described by the recursion relations

xn+1 = argmin {2−1|z − xn|2 + αf(z) : z ∈ Q}. (5.1)

Many authors investigated this approach applied in various situations. Of most interest are works
by Rockafellar and Ferris [10, 4] who proved �nite convergence of the proximal method for the
minimization problem for a convex function with a sharp minimum. Let us prove this using a
technique for deriving bounds we developed in a series of works.

We �rst represent process (5.1) in the form of inequality (3.2), namely,

2−1|xn+1 − xn|2 + αf(xn+1) ≤ 2−1|z − xn|2 + αf(z)− 2−1|z − xn+1|2 (5.2)

for all z ∈ Q.

Theorem 3. If the set of solutions to problem (2.1) is nonempty and satis�es the sharpness
condition (2.5) or (2.10), the goal function f(x) is convex, and set Q is convex and closed, then the
sequence xn of the proximal process (5.1) with a parameter α > 0 converges to the solution to the
problem in a �nite number of iterations, i.e., there exists a number nf such that xnf+1 = x∗ ∈ X∗.

Proof. We set z = x∗ in (5.2) to get

2−1|xn+1 − xn|2 + αf(xn+1) ≤ 2−1|x∗ − xn|2 + αf(x∗)− 2−1|x∗ − xn+1|2 (5.3)

for all z ∈ Q, where x∗ is an arbitrary point of the solution set X∗. We take into account the
estimate f(xn+1)− f(x∗) ≥ 0 and sum up (5.3) from n = 0 to n = N to obtain

|xN+1 − x∗|2 +
k=N∑

k=0

|xk+1 − xk|2 ≤ |x0 − x∗|2. (5.4)

The partial sums in the left-hand side of inequality (5.4) are bounded for all N . Consequently,
the series

∞∑
k=0

|xk+1 − xk|2 converges, which implies that

|xn+1 − xn|2 → 0, n →∞. (5.5)

Let us transform the sum of squares in (5.3) to an inner product using identity (3.5). We thus
derive

〈xn+1 − xn, xn+1 − x∗〉+ α(f(xn+1)− f(x∗)) ≤ 0.

Since the latter inequality holds for all x∗ ∈ X∗, we put x∗ = πX∗(xn+1) and use the sharpness
condition for minimum (2.5) or (2.10), i.e.,

〈xn+1 − xn, xn+1 − πX∗(xn+1)〉+ αγ|xn+1 − πX∗(xn+1)|1+ν ≤ 0,

where the parameter ν is probably zero (a sharp minimum). As a result we get

αγ|xn+1 − πX∗(xn+1)|1+ν ≤ |xn+1 − xn| |xn+1 − πX∗(xn+1)|. (5.6)

Assume that |xn+1 − πX∗(xn+1)| 6= 0 for all n, then inequality (5.6) yields

αγ|xn+1 − πX∗(xn+1)|ν ≤ |xn+1 − xn|. (5.7)
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In particular, when ν = 0 (a sharp minimum), we obtain

αγ ≤ |xn+1 − xn|. (5.8)

Clearly, inequalities (5.5) and (5.8) contradict each other.
If the parameter ν belongs to the interval (0, 1), we transform (5.7) in the following way:

αγ ≤ |xn+1 − xn|1−ν |xn+1 − xn|ν
|xn+1 − πX∗(xn+1)|ν = |xn+1 − xn|1−ν

∣∣∣∣∣
xn − πX∗(xn+1)

|xn+1 − xn| +
xn+1 − xn

|xn+1 − xn|

∣∣∣∣∣
−ν

.

The expression in brackets in this inequality is bounded and does not depend on the behavior of
(xn − πX∗(xn+1))/|xn+1 − xn| as n →∞, moreover |xn+1 − xn|1−ν → 0 as n →∞. We also arrive
at a contradiction in this case.

Consequently, the assumption |xn+1 − πX∗(xn+1)| 6= 0 for all n is false, and there exists a
number nf such that xnf+1 = πX∗(xnf+1) = x∗ ∈ X∗. The theorem is proved.

Now we investigate the behavior of the iterative method of gradient projection

xn+1 = πQ(xn − α∇f(xn)), x0 ∈ Rn, (5.9)

applied to problems with a sharp minimum. We write this method in the variational form as

〈xn+1 − xn + α∇f(xn), z − xn+1〉 ≥ 0 (5.10)

for all z ∈ Q.
Let us formulate a theorem on �nite convergence of the gradient projection method, assuming

that f(x) is a convex function di�erentiable everywhere in its domain whose gradient satis�es the
Lipschitz condition. A special case of this theorem was proved in [3].

Theorem 4. Assume that the set of solutions to problem (2.1) is nonempty and satis�es
the sharpness condition (2.5), f(x) is a convex di�erentiable function whose gradient satis�es the
Lipschitz condition with a constant L, and Q is a convex closed set. Then the sequence xn of
the gradient projection method (5.9) with a parameter α < 2/L converges to the solution to the
problem in a �nite number of iterations, i.e., there exists a number nf such that xnf+1 = x∗ ∈ X∗.

Proof. We set z = x∗ in (5.10) and z = xn+1 in (4.4) and sum up both inequalities to �nd

〈xn+1 − xn + α(∇f(xn)−∇f(x∗)), x∗ − xn+1〉 ≥ 0. (5.11)

Hence,
〈xn+1 − xn, xn+1 − x∗〉+ α〈∇f(xn)−∇f(x∗), xn+1 − x∗〉 ≤ 0. (5.12)

We transform the �rst term in (5.12) using identity (3.5) and transform the second one using the
inequality [11]

〈∇f(x1)−∇f(x3), x3 − x2〉 ≤ (L/4)|x1 − x2|2, (5.13)
which holds for all x1, x2, and x3 in Q, where L is the Lipschitz constant. Then

|xn+1 − x∗|2 + d|xn+1 − xn|2 ≤ |xn − x∗|2, (5.14)

where d = (1 − αL/2) > 0 because α < 2/L. Let us sum up inequality (5.14) from n = 0 to
n = N . We thus obtain

|xN+1 − x∗|2 + d
N∑

k=0

|xk+1 − xk|2 ≤ |x0 − x∗|2. (5.15)

11



The partial sums in the left-hand side of (5.15) are bounded for all N . Consequently, the series
∞∑

k=0
|xk+1 − xk|2 converges, whence we conclude that |xk+1 − xk|2 → 0 as n →∞.
We again consider inequality (5.10) and set z = x∗. The inequality becomes 〈xn+1−xn, xn+1−

−x∗〉+ α〈∇f(xn), xn+1 − x∗〉 ≤ 0. Therefore,

〈xn+1 − xn, xn+1 − x∗〉+ α〈∇f(xn+1) +∇f(xn)−∇f(xn+1), xn+1 − x∗〉 ≤ 0. (5.16)

On the other hand, condition (2.5) and convexity of f(x) yield

γ|xn+1 − πX∗(xn+1)| ≤ f(xn+1)− f(πX∗(xn+1)) ≤ 〈∇f(xn+1), xn+1 − πX∗(xn+1)〉. (5.17)

Since inequality (5.16) holds for all x∗ ∈ X∗, we put x∗ = πX∗(x)(xn+1) and compare (5.16) and
(5.17). According to the Lipschitz condition we obtain

αγ|xn+1 − πX∗(xn+1)| ≤ (1 + αL)|xn+1 − xn| |xn+1 − πX∗(xn+1)|. (5.18)

Assuming that |xn+1 − πX∗(xn+1)| 6= 0 for all n in (5.18), we deduce

αγ ≤ (1 + αL)|xn+1 − xn|. (5.19)

Since |xk+1 − xk|2 → 0 as n →∞, inequality (5.19) leads to a contradiction.
Consequently, the assumption |xn+1 − πX∗(xn+1)| 6= 0 for all n is false, and there exists a

number nf such that xnf+1 = πX∗(xnf+1) = x∗ ∈ X∗. The theorem is proved.

The author is grateful to F.P. Vasiliev for a fruitful discussion of this work.
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