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An interior linearization method is described. Its convergence to the solution of
the convex programming problem is proved. Bounds are obtained for the rate
of convergence. A relation with internal modi�ed Lagrange functions methods
is established.

1. STATEMENT OF THE PROBLEM

Consider the convex programming problem

x∗ ∈ Argmin {f(x) : g(x) ≤ 0, x ∈ Q}, (1.1)

where f(x) and each component of the vector function g(x) is a convex scalar function, and
Q ⊆ Rn is a convex closed set in Rn.

There are several approaches to the solution of this problem. One of these, based on the
gradient method, has been used as the basis of very many modi�cations intended for the solution
of problem (1.1). We will be discussing modi�cations associated with the idea of linearization,
arrived at as follows: if x∗ is a minimum point of problem (1.1), then we have the necessary
and su�cient conditions

x∗ = πΩ[x∗ − α∇f(x∗)], (1.2)
where πΩ(·) is the projection of a certain vector on the admissible set Ω = {x : g(x) ≤ 0, x ∈ Q},
α > 0 is a parameter of the step length type, and ∇f(x) is the gradient of the function f(x) at
the point x. The geometric meaning of condition (1.2) is simple: a step along the antigradient
from the point x∗ after the projection operation again reaches the point x∗, that is, x∗ is a �xed
point, or a point of equilibrium. The discrepancy πΩ[x − α∇f(x)] − x can be regarded as a
transformation of space Rn into Rn. This transformation de�nes a vector �eld. The problem is
to �nd a trajectory whose tangent coincides with the �eld vector at that point. Formally, the
problem can be described by the system of di�erential equations

dx/dt + x = πΩ[x− α∇f(x)], x(t0) = x0. (1.3)

It follows from the general theorems that the continuous right-hand side of system (1.3) gua-
rantees the existence of a solution in a �nite interval. But if the Lipschitz condition holds
for the right-hand side (as it does in our case), existence and uniqueness of a trajectory in an
in�nite interval, that is, for all t ≥ t0, is guaranteed.
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The behaviour of the system as t → ∞ has been studied in detail in [1], where it was
established that, for convex f(x) and with certain constraints on the values of the parameter
α, the set of points of equilibrium of system (1.3) is asymptotically stable. Special cases of
the process (1.3), when the set Ω coincides with the space Rn, that is, πΩ(·) = I, the identity
operator, have been investigated in many publications [2]�[5].

Computational experience has shown that application of the projection operation is justi�ed
if Ω is a simple set, a positive orthant, parallelepiped or sphere. But if the admissible set has a
complicated structure of the type Ω = {x : g(x) ≤ 0, x ∈ Q}, projection becomes too complex
an operation, in which case it is better to approximate the set Ω by a family of simpler sets.
It seems natural to take approximating families of the admissible set as the family of polygons
for an exterior approximation, and the family of spheres for an interior approximation.

2. CONTINUOUS METHOD OF INTERIOR LINEARIZATION

Iterative linearization methods have long been used in non-linear programming and have
been investigated in detail. The numerous versions di�er mainly in the choice of the step length
[6]�[8].

Linearization methods generate trajectories which converge to the solution of the convex
programming problem from outside the admissible domain. In many cases, practical necessity
demands the construction of a trajectory in the admissible domain which converges to the
solution of the problem within that domain. In that case, the approximation obtained will
always be admissible and will be meaningful in some situation or other. For instance, admissible
components might be interpreted as the presence of necessary ingredients in a certain mixture.

To construct interior trajectories, we use the idea of the approximation of an admissible
set from inside by means of a family of intersecting spheres. We will explain the idea of the
approach [9, 10] using the example of problem (1.1) with inequality-type constraints. Assuming
that the initial condition x0 is a strictly admissible point, that is, g(x0) < 0, we determine the
trajectory x(t) by means of the process

dx/dt + x = πS(t)(x− α∇f(x)), x(t0) = x0,

S(t) = {z : 0.5|z − x|2e + α[∇g(x)(z − x) + g(x)] ≤ 0, z ∈ Q}. (2.1)

Here e = (1, . . . , 1) is a vector of dimensions m, all the components of which are one, the
parameter α > 0, ∇g(x) is a matrix, each row of which is the vector gradient of the corre-
sponding functional constraint. The set S(t) is non-empty (it contains the point x) and is the
intersection of m spheres and the simple set Q. The set S(t) is the intersection of spheres
{z : |z − [x − α∇gi(x)]|2 ≤ α[α|∇gi(x)|2 − 2gi(x)], i = 1, 2, . . . , m} with centres x − α∇gi(x)
and squares of radius α[α|∇gi(x)|2 − 2gi(x)]. A family of intersecting spheres is constructed
at each point of the trajectory x(t) and the gradient step x − α∇f(x) is projected onto it.
As t →∞, the family of intersecting spheres approaches closer and closer to the admissible set
of problem (1.1) at the minimum point.

It will be shown below that if, at time t, the point x(t) is strictly admissible, that is,
gi(x(t)) < 0 for all i = 1, 2, . . . , m, then when the point x(t) is shifted by the vector ẋ, the new
point x + ẋ, where ẋ = dx/dt, will also be strictly admissible.

We will now derive the dual of the process (2.1). We �rst recall that the projection operator
πS(b) of the vector b onto the set S is realized by the solution of the quadratic problem

πS(b) = argmin {0.5|z − b|2 : z ∈ S} (2.2)
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or the variational inequality

〈πS(b)− b, z − πS(b)〉 ≥ 0 ∀z ∈ S. (2.3)

We represent process (2.1) in the form (2.2):

x+ẋ ∈ Argmin {0.5|z−[x−α∇f(x)]|2 : 0.5|z−x|2e+α[∇g(x)(z−x)+g(x)] ≤ 0, z ∈ Q}. (2.4)

The projection of the vector x− α∇f(x) onto the set S(t) at the current time t reduces to the
minimization of a strongly convex quadratic function for strongly convex quadratic constraints.
The Lagrange function for this auxiliary problem has the form

L(z, y) = 0.5|z− [x−α∇f(x)]|2 + 〈y, 0.5|z−x|2e+α[∇g(x)(z−x)+ g(x)]〉 ∀ z ∈ Q and y ≥ 0.

The saddle point x + ẋ, p of this function satis�es the system of inequalities

L(x + ẋ, y) ≤ L(x + ẋ, p) ≤ L(z, p), (2.5)

which hold for all z ∈ Q and y ≥ 0. Here x + ẋ is the minimum of the quadratic programming
problem, and p is its dual solution (Lagrange multipliers).

We will make the simplifying assumption that Q = Rn. In that case, the minimum point
x + ẋ of the Lagrange function, according to the right-hand inequality of (2.5), is the solution
of the equation obtained by equating the gradient of the function to zero:

(1 + 〈e, y〉)(z − x) + α[∇f(x) +∇g>(x)y] = 0, (2.6)

or
z − x + α

∇f(x) +∇g>(x)y

1 + 〈e, y〉 = 0. (2.7)

We eliminate the variable z from L(z, y) with the help of the last equation, thereby obtaining
a function with respect to the dual variable y. Technically this can be done as follows. We �nd
the scalar product of both sides of Eq. (2.6) by the vector z − x; then

(1 + 〈e, y〉)|z − x|2 = −α〈∇f(x), z − x〉 − α〈y,∇g(x)(z − x)〉. (2.8)

We use this equation to transform the Lagrange function:

L(z, y) =
1

2
|z − x|2 + α〈∇f(x), z − x〉+

α2

2
|∇f(x)|2 +

+ 〈y,
1

2
|z − x|2e + α[∇g(x)(z − x) + g(x)]〉 =

=
1

2
|z − x|2 +

1

2
|z − x|2〈y, e〉+ α〈y, g(x)〉 − (1 + 〈e, y〉)|z − x|2 +

α2

2
|∇f(x)|2 =

= −1

2
(1 + 〈e, y〉)|z − x|2 + α〈y, g(x)〉+

α2

2
|∇f(x)|2.

Using Eq. (2.8), we eliminate the variable |z − x|2 from the last equation, and then

Ψ(y) = −α

2

|∇f(x) +∇g>(x)y|2
1 + 〈e, y〉 + 〈y, g(x)〉.

This function is fractional quadratic-linear with respect to the variable y. Maximizing it with
respect to y in the positive orthant, we can �nd the dual solution p (Lagrange multipliers) of
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the direct problem. It follows from (2.7) that, in terms of that function, the process dual to
(2.1) for Q = Rn takes the form

p = Argmax

{
−α

2

|∇f(x) +∇g>(x)y|2
1 + 〈e, y〉 + 〈y, g(x)〉 : y ≥ 0

}
, (2.9)

dx

dt
= −α

∇f(x) +∇g>(x)p

1 + 〈e, p〉 , x(t0) = x0. (2.10)

Unlike the direct process (2.1), which describes the direct trajectory x(t) in explicit form, the
dual process (2.9), (2.10) gives an explicit description of the direct trajectory x(t), as well as
the dual trajectory p(t), the trajectory of Lagrange multipliers.

The fractional quadratic-linear objective function Ψ(y) can be transformed to a quadratic
function by substitution. With this aim, we will interpret the function

1 + 〈e, y〉 = 1 +
m∑

i=1

yi = v2

as the square of the norm of the vector y, and (1/v)y as the normalized vector. In that notation,
the fractional function Ψ(y) takes the form

Ψ(y) = −α

2

∣∣∣∣∇f(x)
1

v
+∇g>(x)

1

v
y

∣∣∣∣
2

+ 〈y, g(x)〉.

Introducing the new variables 1/v = u and (1/v)y = w, we can represent the function Ψ(y) as:

Ψ(v, u, w) = −α

2
|∇f(x)u +∇g>(x)w|2 + v〈w, g(x)〉.

Thus, the problem of maximizing the fractional quadratic-linear objective function Ψ(y) in the
positive orthant y ≥ 0 reduces to the simplest quadratic programming problem of the form

v∗, u∗, w∗ ∈ Argmax{−α

2
|∇f(x)u+∇g>(x)w|2+v〈w, g(x)〉 : u+〈e, w〉 = w, v ≥ 0, u ≥ 0, w ≥ 0}.

My attention was drawn to this substitution by A.I. Golikov.
If the dimensions of the vector x in the original convex programming problem (1.1) is low

and there are su�ciently many constraints, it is preferable to use the direct process (2.1), while
conversely, if x is large and the number of constraints is small, the dual process (2.9), (2.10) is
more e�cient.

Processes (2.1) and (2.9), (2.10) can be examined independently of one another, without
regard to the intrinsic relation between them. In particular, their convergence will be proved
separately. For this purpose, we derive some relations which hold for both.

We consider the auxiliary optimization problem in (2.9), (2.10) and represent it in the
equivalent form of a variational inequality:

〈−α∇g(x)[∇f(x) +∇g>(x)p]

1 + 〈e, p〉 +
α|∇f(x) +∇g>(x)y|2

2(1 + 〈e, y〉)2
e + g(x), p− y

〉
≥ 0 ∀ y ≥ 0. (2.11)

We convert (2.11) with the help of Eq. (2.10) to the form

〈∇g(x)ẋ +
1

2α
|ẋ|2e + g(x), p− y〉 ≥ 0 ∀ y ≥ 0. (2.12)
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Hence, inequality (2.11) is equivalent to the relations

α∇g(x)ẋ + 0.5|ẋ|2e + αg(x) ≤ 0, (2.13)
〈α∇g(x)ẋ + 0.5|ẋ|2e + αg(x), p〉 = 0. (2.14)

The di�erential equation of (2.9), (2.10) can also be represented in the form of a variational
inequality:

〈(1 + 〈e, p〉)ẋ + α[∇f(x) +∇g>(x)p], z − x− ẋ〉 ≥ 0 ∀ z ∈ Q. (2.15)
Thus, the system of inequalities (2.12) and (2.15) (or, what amounts to the same thing, (2.13),
(2.14) and (2.15)) fully characterizes the process (2.9), (2.10).

We will show that the procedure (2.1) is subject to the same system of inequalities. All that
is needed is to represent the right-hand and left-hand inequalities of (2.5) in variational form:

〈(1 + 〈e, p〉)ẋ + α[∇f(x) +∇g>(x)p], z − x− ẋ〉 ≥ 0 ∀ z ∈ Q, (2.16)
〈y − p, 0.5|ẋ|2e + α[∇g(x)ẋ + g(x)]〉 ≤ 0 ∀ y ≥ 0. (2.17)

It is obvious that inequalities (2.16) and (2.17) are identical to (2.12) and (2.15).
We will show that both processes, (2.1) and (2.9), (2.10) are admissible, or interior processes,

by showing that if x(t) is a strictly interior point at time t, then it remains strictly interior when
that point is displaced by the length of the vector ẋ. For this purpose, we use the Lipschitz
inequality

g(z)− g(x)−∇g(x)(z − x) ≤ L

2
|z − x|2 (2.18)

for all x and z of Q, where L is a vector constant with components Li, i = 1, 2, . . . , m. Each ith
component is the Lipschitz constant for the ith functional constraint. From (2.13) and (2.18)
we have

g(x) ≤ −∇g(x)(x + ẋ− x)− 1

2α
|ẋ|2e ≤ g(x)− g(x + ẋ) +

L

2
|ẋ|2 − 1

2α
|ẋ|2e.

This yields
g(x + ẋ) ≤ 0.5

(
L− 1

α
e
)
|ẋ|2 < 0. (2.19)

Thus, if α < 1/Li, i = 1, 2, . . . , m, then g(x + ẋ) < 0, that is, after a small displacement of the
point x along the trajectory x(t) in the direction ẋ, the point x + ẋ remains strictly inside for
any t ≥ t0.

As the process (2.1) evolves over time, generally speaking, the family of spheres S(t) = {z :
0.5|z−x|2e+α[∇g(x)(z−x)+g(x)] ≤ 0, z ∈ Q} approaches the boundary of the admissible set
(if the optimum lies on the boundary) and approximates this set from inside. It is important
to note that the spheres {z : |z − [x − α∇gi(x)]|2 ≤ α[α|∇gi(x)|2 − 2gi(x)], i = 1, 2, . . . , m}
do not degenerate over time and do not contract to a point, since their radii do not tend
to zero. In fact, in order for the square of the radius to be equal to zero at the limit point
x′ : α|∇gi(x

′)|2 − 2gi(x
′) = 0, we must have ∇gi(x

′) = 0 and g(x′) = 0. If the point x′ lies on
the boundary of the ith constraint, g(x′) = 0, but then ∇gi(x

′) 6= 0, since Slater's condition,
which the initial problem satis�es by assumption, would be violated if the gradient ∇gi(x

′)
were equal to zero. If x′ is a strictly interior point, we have g(x′) < 0.

Since the diameter of spheres of the family S(t) does not contract to zero over time, the
spheres do not degenerate, and generally speaking the Lagrange multipliers p(t) corresponding
to those spheres as if to constraints do not tend to in�nity, and so the assumption that they
are bounded can be regarded as completely justi�ed.

5



We will now give a theorem on the convergence of methods (2.1) and (2.9), (2.10).
Theorem 1. If problem (2.1) satis�es Slater's regularity condition, f(x), g(x) = (g1(x), . . . ,

. . . , gm(x)) are convex di�erentiable functions, the gradients of all of which satisfy the Lipschitz
condition with constants L0, L = (L1, . . . , Lm), Q is a convex closed set (in (2.9), (2.10) the
set Q = Rn), the parameter α in (2.1) and (2.9), (2.10) is chosen from the condition

α < min{2/L0, 1/L1, . . . , 1/Lm},

the trajectory p(t) is bounded by a constant: |p(t) ≤ C, then the set of equilibrium points X∗ of
systems (2.1) and (2.9), (2.10) is asymptotically stable, that is, x(t) → x∗ ∈ X∗ as t → ∞ for
all x0 and the trajectory is strictly interior for all t ≥ t0.

The proof of Theorem 1 is given in Appendix 1. If the objective function of problem (2.1) is
strongly convex, bounds can be found for the rate of convergence of processes (2.1) and (2.9),
(2.10).

Theorem 2. If, in addition to the conditions of Theorem 1, the objective function is strongly
convex, then the only point of equilibrium of systems (2.1) and (2.9), (2.10) is exponentially
stable, that is, |x(t)− x∗|2 ≤ C exp[−2a(α)t], where

a(α) =





α`(2− α`/2)

1 + 〈e, C〉 , if α <
4

L0 + `
,

αL0(2− αL0/2)

1 + 〈e, C〉 , if α >
4

L0 + `
,

and C is the vector constant bounding the trajectory: 0 ≤ p(t) ≤ C.
The proof of Theorem 2 is given in Appendix 1.

3. AN ITERATIVE METHOD OF INTERIOR LINEARIZATION

By approximating the derivative dx(t)/dt by the �nite di�erence (xn+1 − xn)/∆t, we can
obtain a discrete trajectory which is a good approximation to the continuous trajectory for
su�ciently small ∆t. But since it is not the trajectory itself, but its limit point as t →∞ that
is the required solution, it is reasonable to use large time steps to reach the goal (∆t = 1).
However, the convergence of the iteration must be examined separately in that case.

Thus, consider the iterative analogues of the direct process (2.1):

xn+1 = πS(n)[x
n − α∇f(xn)], (3.1)

S(n) = {z : 0.5|z − xn|2e + α[∇g(xn)(z − xn) + g(xn)] ≤ 0 x ∈ 0}, (3.2)

where e = (1, . . . , 1) is an m-dimensional vector, all the elements of which are equal to one, the
parameter α > 0, and of the dual process (2.9), (2.10):

pn = Argmax

{
−α

2

|∇f(xn) +∇g>(xn)y|2
1 + 〈e, y〉 + 〈y, g(xn)〉 : y ≥ 0

}
, (3.3)

xn+1 = xn − α
∇f(xn) +∇g>(xn)pn

1 + 〈e, pn〉 . (3.4)

In the process (3.1), (3.2) the gradient step is projected onto a set which is the intersection of
spheres. This is a quadratic programming problem with quadratic constraints. The justi�cation
for posing this auxiliary problem was given in the last section, where it was also shown that it
reduces to a quadratic programming problem.
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The process (3.1), (3.2) is e�cient if the dimensions of x are low and there are many
constraints. If the dimensions of x are su�ciently high and there is a relatively small number
of constraints, that is, the dimensions of the dual vector y are small enough, it is sensible to
use the dual process (3.3), (3.4).

We will now write out the iterative analogues of relations (2.12) � (2.15) characterizing
processes (3.1), (3.2) and (3.3), (3.4):

〈(1 + 〈e, pn〉)(xn+1 − xn) + α[∇f(xn) +∇g>(xn)pn], z − xn+1〉 ≥ 0 ∀ z ∈ Q, (3.5)
〈0.5|xn+1 − xn|2e + α[∇g(xn)(xn+1 − xn) + g(xn)], pn − y〉 ≥ 0 ∀ y ≥ 0. (3.6)

This inequality, in turn, is equivalent to the relations

0.5|xn+1 − xn|2e + α[∇g(xn)(xn+1 − xn) + αg(xn)] ≤ 0, (3.7)
〈0.5|xn+1 − xn|2e + α[∇g(xn)(xn+1 − xn) + αg(xn)], pn〉 = 0. (3.8)

Inequalities (3.5) and (3.6) are equivalent to processes (3.1), (3.2) and (3.3), (3.4) . As in
the case of continuous processes, this fact can be proved using the Lagrange function L(z, y) =
= 0.5|z − [xn − α∇f(xn)]|2 + 〈y, 0.5|z − xn|2e + α[∇g(xn)(z − xn) + g(xn)]〉 for all z ∈ Q and
y ≥ 0, associated with the system of inequalities

L(xn+1, y) ≤ L(xn+1, pn) ≤ L(z, pn),

valid for all z ∈ Q and y ≥ 0.
We will show that processes (3.1), (3.2) and (3.3), (3.4) are admissible (interior processes).

From (3.7) and the Lipschitz condition (2.18) we have

g(xn) ≤ ∇g(xn)(xn − xn+1)− 1

2α
|xn+1 − xn|2e ≤

≤ g(xn)− g(xn+1) +
L

2
|xn+1 − xn|2 − 1

2α
|xn+1 − xn|2e.

Thus
g(xn+1) ≤ 1

2

(
L− 1

α
e
)
|xn+1 − xn|2. (3.9)

Since α < 1/Li, i = 1, 2, . . . , m, we have g(xn+1) ≤ 0, that is, if xn is an admissible point, the
following approximation will also be admissible.

Theorem 3. If problem (2.1) satis�es Slater's regularity condition, f(x), g(x) = (g1(x), . . .,
. . . , gm(x)) are convex di�erentiable functions, the gradients of all the functions satisfy the
Lipschitz condition with constants L0, L = (L1, . . . , Lm), Q is a convex closed set (in (3.3),
(3.4) the set Q = Rn), and the parameter α in processes (3.1), (3.2) and (3.3), (3.4) can be
chosen from the condition

α < min{2/L0, 1/L1, . . . , 1/Lm},
the trajectory p(t) being bounded by the constant |p(t)| ≤ C, then x(t) → x∗ ∈ X∗ as t → ∞
for all x0. The trajectory x(t) is an interior one.

The proof of Theorem 3 is given in Appendix 2. If the objective function of problem (1.1) is
strongly convex, bounds can be found for the rate of convergence of processes (3.1), (3.2) and
(3.3), (3.4).

Theorem 4. If, in addition to the conditions of Theorem 3, the objective function is
strongly convex, processes (3.1), (3.2) and (3.3), (3.4) converge to a unique solution at the rate
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of a geometric progression (at a linear rate), that is, |xn+1 − x∗|2 ≤ q(α)|xn − x∗|2, where

q(α) =





1− α`(2− α`)

1 + 〈e, C〉 , if α <
2

L0 + `
,

1− αL0(2− αL0)

1 + 〈e, C〉 , if α >
2

L0 + `
,

and pn ≤ C is a vector constant.
The proof of Theorem 4 is given in Appendix 2.

4. OTHER POINTS OF VIEW

The method under discussion has been interpreted as a method of interior linearization,
but there are alternative ways of looking at it. In the process (2.9), (2.10) at each time t, the
function

Φ(x, y) = f(x) + 〈y, g(x)〉 − α

2

|∇f(x) +∇g>(x)y|2
1 + 〈e, y〉 (4.1)

is maximized in the positive orthant of the dual variables y for �xed x. The addition of the
constant f(x) to the expression Φ(x, y) has no e�ect on the optimization, since the latter is
carried out with respect to the dual variables. It is now clear, however, that the optimized
function has a precise structure: it consists of the Lagrange function L(x, y) = f(x) + 〈y, g(x)〉
plus (or minus, in this case) the square of the discrepancy of the linear equation (necessary
conditions of the original problem (1.1)) ∇f(x) +∇g>(x)y, multiplied by the reciprocal of the
square of the �norm� of the dual variable α/(1 + 〈e, y〉). The fact that the function Φ(x, y)
contains the square of the discrepancy of a certain equation makes it akin to the Lagrange
functions modi�ed with respect to dual variables studied in [8, 11]; the fact that the expression
Φ(x, y) contains the inverse of the norm of the dual variable makes the function similar to
barrier penalty functions of the form g−1(y), which have been investigated in detail in [12]. All
this justi�es us in regarding the function Φ(x, y) as an interior modi�ed Lagrange function.
Accordingly, the process (2.9), (2.10) can be regarded as the method of an interior modi�ed
Lagrange function.

There is a considerable di�erence between interior penalty function methods and interior
modi�ed Lagrange function methods. In the former, the conditionality of the auxiliary problems
deteriorates as the penalty parameter increases, while it remains constant in the latter.

In [13]�[15], in which interior modi�ed Lagrange functions are considered, the modi�cation
is made with respect to the direct variables x, unlike the modi�cation with respect to the dual
variable y considered here.

A di�erent standpoint is o�ered by the theory of control of computational methods [16, 17].
On this view, process (2.9), (2.10) can be regarded as a controlled interior gradient method

dx/dt = −β[∇f(x) +∇g>(x)p], x(t0) = x0, (4.2)

where the dual and parametric controls are taken, respectively, by the dual variable p and
parametric variable β. Control with respect to the dual variable is realized by feedback of the
form

p = Argmax

{
−α

2

|∇f(x) +∇g>(x)y|2
1 + 〈e, y〉 + 〈y, g(x)〉 : y ≥ 0

}
, (4.3)

and the parametric control by feedback of the type

β =
α

1 + 〈e, p〉 . (4.4)
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Feedbacks (4.3) and (4.4) in combination guarantee that the trajectory is admissible and the
set of equilibrium points of the initial problem (1.1) is asymptotically stable.

On this interpretation, method (4.2) and its direct form (2.1), even more so, belongs to the
class of methods of feasible directions [18].

Appendix 1

Theorem 1. For convenience, we will repeat relations (2.13) � (2.15), which completely
characterize processes (2.1) and (2.9), (2.10):

α∇g(x)ẋ + 0.5|ẋ|2e + αg(x) ≤ 0, (A1.1)
〈α∇g(x)ẋ + 0.5|ẋ|2e + αg(x), p〉 = 0, (A1.2)
〈(1 + 〈e, p〉)ẋ + α[∇f(x) +∇g>(x)p], z − x− ẋ〉 ≥ 0 ∀ z ∈ Q. (A1.3)

In addition, we give the necessary and su�cient conditions for a solution of problem (2.1) to
exist:

〈∇f(x∗) +∇g>(x∗)p∗, z − x∗〉 ≥ 0 ∀ z ∈ Q, (A1.4)
〈y − p∗, g(x∗)〉 ≤ 0 ∀ y ≥ 0. (A1.5)

We put z = x∗ in (A1.3) and z = x + ẋ in (A1.4); we add the two inequalities, obtaining

〈(1 + 〈e, p〉)ẋ + α[∇f(x)−∇f(x∗) +∇g>(x)p−∇g>(x∗)p∗], x∗ − x− ẋ〉 ≥ 0. (A1.6)

We transform the separate components of (A1.6), using the convexity of g(x) and Eq. (A1.2):

〈∇g>(x)p, x∗ − x− ẋ〉 = 〈p,∇g(x)(x∗ − x− ẋ)〉 =

= 〈p,∇g(x)(x∗ − x)〉 − 〈p,∇g(x)ẋ〉 ≤ 〈p, g(x∗)− g(x)〉+
〈
p, g(x) +

1

2α
|ẋ|2e

〉
=

= 〈p, g(x∗)〉+
1

2α
〈e, p〉|ẋ|2 ≤ 1

2α
〈e, p〉|ẋ|2.

(A1.7)

Then, using the convexity of g(x) and the inequality (2.19), together with (A1.5), we obtain

〈∇g(x∗)p∗, x∗ − x− ẋ〉 ≥ 〈p∗, g(x∗)− g(x + ẋ)〉 ≥
≥ − 〈p∗, g(x + ẋ)〉 ≥ −1

2

〈
p∗,

(
L− 1

α
e
)〉

|ẋ|2 > 0.
(A1.8)

In this chain of inequalities, the last value is positive, and so, by the condition,

α < min{1/L1, . . . , 1/Lm} (A1.9)

A bound can be found for the second term of (A1.6) using the inequality (see [8])

〈∇f(x1)−∇f(x3), x3 − x2〉 ≥ L0

4
|x1 − x2|2, (A1.10)

which is true for all x1, x2, x3 of Q, where L0 is the Lipschitz constant for ∇f(x) on Q. Then

〈∇f(x)−∇f(x∗), x∗ − x− ẋ〉 ≤ L0

4
|ẋ|2. (A1.11)

From the resulting inequalities we obtain (A1.6) in the form

〈(1 + 〈e, p〉)ẋ, x− x∗ + ẋ〉 − α
L

4
|ẋ|2 − 1

2
〈e, p〉|ẋ|2 ≤ 0.
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Thus
1

2
(1 + 〈e, p〉) d

dt
|x− x∗|2 +

(
1 +

1

2
〈e, p〉

)
|ẋ|2 − α

L0

4
|ẋ|2 ≤ 0, (A1.12)

or
1

2
(1 + 〈e, p〉) d

dt
|x− x∗|2 +

(
1 +

1

2
〈e, p〉 − α

4
L0

)
|ẋ|2 ≤ 0. (A1.13)

Then from (A1.13) we have

d

dt
|x− x∗|2 +

(
1 +

1− αL0/2

1 + 〈e, p〉

)
|ẋ|2 ≤ 0. (A1.14)

If α < 1/L0, then 1− αL0/2 > 0, and thus

1 +
1− αL0/2

1 + 〈e, p〉 ≥ 1.

From this inequality it follows that (A1.13) can be put in the form

d

dt
|x− x∗|2 + |ẋ|2 ≤ 0. (A1.15)

Inequality (A1.15) holds, provided that α < 2/L0, to which we add the condition α <
< min{1/L1, . . . , 1/Lm} previously obtained. Combining the two, we have α < min{2/L0, 1/L1,
. . . , 1/Lm}.

We integrate inequality (A1.15) from t0 to t:

|x− x∗|2 +

t∫

t0

|ẋ|2dτ ≤ |x0 − x∗|2, (A1.16)

where x0 = x(t0). It follows from (A1.16) that the trajectory is bounded: |x(t)−x∗|2 ≤ |x0−x∗|2,
that is, the set of equilibrium points of the system is Lyapunov stable and the integral is
convergent:

t∫

t0

|ẋ|2dτ < ∞ as t →∞.

Assuming ε > 0 exists such that |ẋ| ≥ ε for all t ≥ t0, we obtain a contradiction with
convergence of the integral. Thus there is a subsequence of times ti → ∞ such that |ẋ| → 0.
Since x(t) and p(t) are bounded, we once more select a subsequence of times, which we also
denote by ti, such that x(ti) → x′, p(ti) → p′ and ẋ(ti) → 0.

Consider relations (A1.1) � (A1.3) for all times ti → ∞ (remember that the �rst two
relations are equivalent to the variational inequality (A1.14)). Taking the limit and writing out
the limiting relations:

〈∇f(x′) +∇g>(x′)p′, z − x′〉 ≥ 0, 〈y − p′, g(x′)〉 ≤ 0

for all z ∈ Q and y ≥ 0. These inequalities are obviously the same as (A1.4) and (A1.5), which
means that x′, p′ are, respectively, the direct and dual solutions of the initial problem (1.1).

From the fact that the value |x(t) − x∗|2 is monotone decreasing and any limit point is a
solution of the problem, it follows that the limit point is unique, that is, the trajectory converges
monotonically to a certain solution of the initial problem. This proves the theorem.

10



Proof of Theorem 2. Allowing for the inequalities (A1.7) and (A1.8), we represent inequality
(A1.6) in the form

〈(1 + 〈e, y〉)ẋ, x− x∗〉 + (1 + 〈e, p〉)|ẋ|2 + α〈∇f(x)−∇f(x∗), x− x∗〉+

+ α〈∇f(x)−∇f(x∗), ẋ〉 − 1

2
〈e, p〉|ẋ| ≤ 0,

or

(1 + 〈e, p〉) d

dt
|x− x∗|2 + c|ẋ|2 + 2α〈∇f(x)−∇f(x∗), ẋ〉+ 2α〈∇f(x)−∇f(x∗), x− x∗〉 ≤ 0,

where c = 2 + 〈e, p〉.
We complete the square in the second and third terms:

(1 + 〈e, p〉) d

dt
|x− x∗|2 + |√cẋ + (α/

√
c)[∇f(x)−∇f(x∗)]|2 −

− (α2/c)|∇f(x)−∇f(x∗)|2 + 2α〈∇f(x)−∇f(x∗), x− x∗〉 ≤ 0.

We now drop the second term, and for the third use the inequality [8]

|∇f(x1)−∇f(x2)|2 + L0`|x1 − x2|2 ≤ (L0 + `)〈∇f(x1)−∇f(x2), x1 − x2〉, (A1.17)

which is true for all x1 and x2 of Q, where ` is the strong convexity constant of the objective
function, and L0 is the Lipschitz constant for the gradient ∇f(x),

(1+〈e, p〉) d

dt
|x−x∗|2+α2L0`

c
|x−x∗|2+α

(
2− α

L0 + `

c

)
〈∇f(x)−∇f(x∗), x−x∗〉 ≤ 0. (A1.18)

If α < 2c/(L0 + `), then 2− α(L0 + `)/c > 0; the last term of (A1.18) satis�es the inequality

`|x− x∗|2 ≤ 〈∇f(x)−∇f(x∗), x− x∗〉.

Otherwise, for α > 2c/(L0 + `), 2− α(L0 + `)/c < 0, and so we use the inequality

〈∇f(x)−∇f(x∗), x− x∗〉 ≤ L0|x− x∗|2.

Then (A1.18) takes the form

d

dt
|x− x∗|2 + a1(α)|x− x∗|2 ≤ 0, (A1.19)

where

a1(α) =





α`(2− α`/c)

1 + 〈e, C〉 , if α <
2c

L0 + `
,

αL0(2− αL0/c)

1 + 〈e, C〉 , if α >
2c

L0 + `
,

and c = 2 + 〈e, p〉, and p(t) ≤ C is the vector constant bounding the trajectory 0 ≤ p(t) ≤ C.
Since 1/c = 1/(2 + 〈e, p〉) ≤ 1/2, α1(t) ≥ α(t); then

a(α) =





α`(2− α`/c)

1 + 〈e, C〉 , if α <
4

L0 + `
,

αL0(2− αL0/c)

1 + 〈e, C〉 , if α >
4

L0 + `
.
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Thus, (A1.19) can be rewritten once more as:

d

dt
|x− x∗|2 + a(α)|x− x∗|2 ≤ 0. (A1.20)

Integrating (A1.20), we have

|x(t)− x∗|2 ≤ C exp[−2a(α)t],

where C = |x0 − x∗|2. A necessary condition for the trajectory to be exponentially convergent
is that a(α) > 0, that is, α < min{4/`, 4/L0} = 4/L0. The optimum value of α is equal to
αopt = 4/(L0 + `), when a(αopt) = 8L0`/(L0 + `)2. This proves the theorem.

Appendix 2

Proof of Theorem 3. We put z = x∗ in (3.3) and z = xn+1 in (3.4); then

〈(1+〈e, pn〉)(xn+1−xn)+α[∇f(xn)−∇f(x∗)+∇g>(xn)pn−∇g>(x∗)p∗], x∗−xn+1〉 ≥ 0. (A2.1)

We transform the terms of (A2.1) separately. We use the convexity of g(x) and Eq. (3.4). Then

〈∇g>(xn)pn, x∗ − xn+1〉 = 〈pn,∇g(xn)(x∗ − xn+1)〉 =

= 〈pn,∇g(xn)(x∗ − xn)〉 − 〈pn,∇g(xn)(xn+1 − xn)〉 ≤

≤ 〈pn, g(x∗)− g(xn)〉+ 〈pn,∇g(xn) +
1

2α
|xn+1 − xn|2e〉 =

= 〈pn, g(x∗)〉+
1

2α
〈e, pn〉|xn+1 − xn|2 ≤ 1

2α
〈e, pn〉|xn+1 − xn|2.

(A2.2)

Then, once again using the convexity of g(x) and inequality (3.7), we have

〈∇g>(x∗)p∗, x∗ − xn+1〉 ≥ 〈p∗, g(x∗)− g(xn+1)〉 ≥
≥ −〈p∗, g(xn+1)〉 ≥ −1

2

〈
p∗,

(
L− 1

α
e
)〉

|xn+1 − xn|2 > 0.
(A2.3)

The last expression in (A2.3) is positive since, by the condition of the theorem, α < 1/Li,
i = 1, 2, . . . ,m. The second term of (A2.1), by (A1.10), satis�es the inequality

〈∇f(xn)−∇f(x∗), x∗ − xn+1〉 ≤ L0

4
|xn+1 − xn|2,

where L0 is the Lipschitz constant for ∇f(x) on Q.
Using the inequalities thus obtained, we represent (A2.1) in the form

〈(1 + 〈e, pn〉)(xn+1 − xn), x∗ − xn+1〉 − α
L0

4
|xn+1 − xn|2 − 1

2
〈e, pn〉|xn+1 − xn|2 ≤ 0.

A bound for the �rst term can be found with the help of the identity

|x1 − x2|2 = |x1 − x3|2 + 2〈x1 − x3, x3 − x2〉+ |x3 − x2|2, (A2.4)

then
1

2
(1 + 〈e, pn〉)|xn+1 − x∗|2 +

1

2
(1 + 〈e, pn〉)|xn+1 − xn|2−

− 1

2
〈e, pn〉|xn+1 − xn|2 − α

L0

4
|xn+1 − xn|2 ≤ 1

2
(1 + 〈e, pn〉)|xn − x∗|2.
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or
(1 + 〈e, pn〉)|xn+1 − x∗|2 + (1/αL0/2)|xn+1 − xn|2 ≤ (1 + 〈e, pn〉)|xn − x∗|2.

Thus,
|xn+1 − x∗|2 +

1

2

2− αL0

1 + 〈e, pn〉 |x
n+1 − xn|2 ≤ |xn − x∗|2.

Since |pn| ≤ C and the �xed parameter α < 2/L0, we have

2− αL0

1 + 〈e, pn〉 ≥
2− αL0

1 + 〈e, C〉 = c.

Finally,
|xn+1 − x∗|2 + c|xn+1 − xn|2 ≤ |xn − x∗|2. (A2.5)

We sum (A2.5) from n = 0 to n = N , and then

|xN+1 − x∗|2 + c
n=N∑

n=0

|xn+1 − xn|2 ≤ |x0 − x∗|2.

It follows from (A2.5) that the series
∞∑

n=0
|xn+1 − xn|2 < ∞ and the value |xn+1 − xn|2 tends to

zero as n →∞.
Let xn → x′, pn → p′; then the limit inequalities for (3.3) and (3.4) will have the form

〈∇f(x′) +∇g>(x′)p′, z − x′〉 ≥ 0, 〈y − p′, g(x′)〉 ≤ 0

for all z ∈ Q and y ≥ 0. It is obvious that this system of inequalities is identical with (A1.4)
and (A1.5), and so x′ = x∗ ∈ Q, p′ = p∗ ≥ 0. Thus, on the one hand, all the limit points
of the trajectory are solutions of problem (1.1), and on the other, by the monotonicity of
|xn+1 − x∗|2 ≤ |xn − x∗|2, there can only be one limit point. It follows that the trajectory
converges to a solution of the initial problem. This proves the theorem.

Proof of Theorem 4. Using inequalities (A2.2) and (A2.3), we write (A2.1) in the form

〈(1 + 〈e, pn〉)(xn+1 − xn), xn+1 − x∗〉+ α〈∇f(xn)−∇f(x∗), xn − x∗〉+
+ α〈∇f(xn)−∇f(x∗), xn+1 − xn〉 − 0.5〈e, pn〉|xn+1 − xn|2 ≤ 0.

(A2.6)

Using identity (A2.1), we expand the �rst term of (A2.6) in the sum of squares

(1 + 〈e, pn〉)|xn+1 − x∗|2 + |xn+1 − xn|2 + 2α〈∇f(xn)−∇f(x∗), xn+1 − xn〉+
+ 2α〈∇f(xn)−∇f(x∗), xn − x∗〉 ≤ (1 + 〈e, pn〉)|xn − x∗|2,

completing the square in the second and third terms:

(1 + 〈e, pn〉)|xn+1 − x∗|2 + |xn+1 − xn + α[∇f(xn)−∇f(x∗)]|2−
− α2|∇f(xn)−∇f(x∗)|2 + 2α〈∇f(xn)−∇f(x∗), xn − x∗〉 ≤ (1 + 〈e, pn〉)|xn − x∗|2.

We now omit the second term, and use inequality (A1.17) to obtain a bound for the third; then

(1 + 〈e, pn〉)|xn+1 − x∗|2 + α2L0`|xn − x∗|2+
+ α[2− α(L0 + `)]〈∇f(xn)−∇f(x∗), xn − x∗〉 ≤ (1 + 〈e, pn〉)|xn − x∗|2.

(A2.7)

If α < 2/(L0 + `), then 2− α(L0 + `) > 0; for the last term of (A2.7), we use the inequality

`|xn − x∗|2 ≤ 〈∇f(xn)−∇f(x∗), xn − x∗〉.
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Otherwise, for α > 2/(L0 + `), we have 2− α(L0 + `) < 0.
We apply the inequality

〈∇f(xn)−∇f(x∗), xn − x∗〉 ≤ L0|xn − x∗|2,

then (A2.7) takes the form
|xn+1 − x∗|2 ≤ q(α)|xn − x∗|2, (A2.8)

where

q(α) =





1− α`(2− α`)

1 + 〈e, C〉 , if α <
2

L0 + `
,

1− αL0(2− αL0)

1 + 〈e, C〉 , if α >
2

L0 + `
,

and pn ≤ C is a vector constant.
Summing (A2.8), we have

|xn+1 − x∗|2 ≤ Cq(α)n+1,

where C = |x0 − x∗|2.
The optimum value of the parameter is αopt = 2/(L0 + `), the best estimate for the common

ratio of the progression being equal to

q(αopt) = 1− 1

1 + 〈e, C〉
4L0`

(L0 + `)2
.

This proves the theorem.
I wish to thank A. I. Golikov for helpful discussion of the results.
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