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It is proved that proximal methods converge to the sharp, strongly convex, and degenerate
�xed points of extremal mappings.

1. STATEMENT OF THE PROBLEM

We will consider the problem of calculating the �xed point of the extremal mapping

v∗ ∈ Argmin{Φ(w, v∗) : w ∈ Ω}, v ∈ Ω, (1.1)

where the function Φ(w, v) is de�ned on the square Ω× Ω and Ω ∈ Rn. We shall assume that
Φ(w, v) is convex with respect to the variable w for each �xed v. Also, the set Argmin{Φ(w, v) :
w ∈ Ω}, which depends on v, is non-empty for all v and a solution of problem (1.1) always
exists.

Many well-known mathematical models can be reduced to the structure (1.1), including,
primarily, inverse optimization problems [1], n-person zero-sum games (saddle problems) and
non-zero sum games, variational inequalities, problems of economic equilibrium [2], problems
of the distribution of resources at unstable prices [3], ill-posed problems [4] and multicrite-
rion decision-making in conditions of indeterminacy [5], etc. The importance and urgency of
developing methods for calculating �xed points are obvious from this list.

We know that the convergence of any process and estimates of the rate of convergence
depend on the behaviour of the objective function in the neighborhood of the solution of the
problem. This is re�ected in optimization by the concepts of �sharp�, �strongly convex� and
�degenerate� minima. Following those ideas, we will introduce a parametric scale for the types
of equilibrium using the parametric family of inequalities

Φ(w, w)− Φ(v∗, w) ≥ γ|w − v∗|σ, (1.2)

which hold for all w ∈ S = {w : |w − v∗| < 1, w ∈ Ω}, and for the unique solution v∗ ∈ Ω
of problem (1.1), where γ > 0 is a constant and the parameter 0 < σ ≤ ∞. As σ → ∞, the
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quantity |w − v∗|σ → |w − v∗|∞ ≡ 0 for all w ∈ S. The unit sphere may be replaced by any
other sphere of smaller radius.

In the case where all the solutions of the problem form a closed set Ω∗ ∈ Ω, inequality (1.2)
takes the form

Φ(w, w)− Φ(πΩ∗(w), w) ≥ γ|w − πΩ∗(w)|σ, (1.3)
which holds for all w ∈ {w : |w − πΩ∗(w)| < 1, w ∈ Ω}, γ > 0 is a constant, σ > 0 is a
parameter, and πΩ∗(w) is the operator of projection of the vector w on to the set Ω∗. If the set
Ω∗ consists of one point, (1.3) becomes (1.2).

There are two other inequalities, closely connected with (1.2) and (1.3), which have a more
symmetric form with respect to their variables. The �rst describes the behaviour of the objective
function of problem (1.1) in the neighborhood of the unique solution:

[Φ(w, w)− Φ(v∗, w)]− [Φ(w, v∗)− Φ(v∗, v∗)] ≥ γ|w − v∗|σ (1.4)

for all w ∈ {w : |w − v∗| < 1, w ∈ Ω}, γ > 0 is a constant, and σ > 0 is a parameter. The
second inequality describes the same situation, but for the case when the set of solutions of
problem (1.1) is closed:

[Φ(w, w)− Φ(πΩ∗(w), w)]− [Φ(w, πΩ∗(w))− Φ(πΩ∗(w), πΩ∗(w))] ≥ γ|w − πΩ∗(w)|σ. (1.5)

This inequality is true for all w ∈ {w : |w − πΩ∗(w)| ≤ 1, w ∈ Ω}, γ > 0 is a constant, and
σ > 0 is a parameter. If the set Ω∗ consists of one point, inequality (1.5) becomes (1.4).

Since, according to (1.1), Φ(w, v∗)−Φ(v∗, v∗) ≥ 0 or Φ(w, πΩ∗(w))−Φ(πΩ∗(w), πΩ∗(w)) ≥ 0,
(1.2) and (1.3) can be obtained directly from (1.4) and (1.5). One or other inequalities will be
used to an equal extent below.

If the function Φ(w, v) is di�erentiable and convex with respect to the �rst variable, inequa-
lities (1.5) and (1.4) can be represented in the equivalent forms:

〈∇1Φ(w,w)−∇1Φ(πΩ∗(w), πΩ∗(w)), w − πΩ∗(w)〉 ≥ γ|w − πΩ∗(w)|σ

and, correspondingly,

〈∇1Φ(w,w)−∇1Φ(w∗, v∗), w − v∗〉 ≥ γ|w − v∗|σ ∀w ∈ Ω.

If the objective function in (1.1) is a bilinear function Φ(w, v) = 〈Φw, v〉 with a square
matrix Φ, of the same dimensions as the vector w, inequality (1.4) will become:

(〈Φw, w〉 − 〈Φv∗, w〉)− (〈Φw, v∗〉 − 〈Φv∗, v∗〉) =

= 〈Φ(w − v∗), w〉 − 〈Φ(w − v∗), v∗〉 =

= 〈Φ(w − v∗), w − v∗〉 ≥ γ|w − v∗|σ ∀w ∈ Ω.

When σ = 2, the inequality takes the form of the strong condition for the symmetric matrix
Φ to be positive de�nite:

〈Φ(w − v∗), w − v∗〉 ≥ γ|w − v∗|2 ∀w ∈ Ω,

and γ is the smallest eigenvalue. When σ = ∞, we obtain the condition for Φ to be non-
negative:

〈Φ(w − v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω.
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If the objective function of the original problem (1.1) depends on only the one variable w,
(1.1) becomes the optimization problem:

v∗ ∈ Argmin {Φ(w) : w ∈ Ω}, (1.6)

and the parametric family of inequalities (1.2) takes the form

Φ(w)− Φ(v∗) ≥ γ|w − v∗|σ ∀w ∈ Ω, (1.7)

γ > 0 is a constant and σ > 0 is a parameter. If the parameter σ in (1.7) successively takes
the values 1, 2 and ∞, the minimum of problem (1.6) will become, respectively, either a sharp
minimum [6], or strongly convex [6, 7] or degenerate.

We now turn to inequality (1.2). Here each value of the parameter σ corresponds to one
kind of equilibrium: it will be called a sharp equilibrium when σ = 1, a strongly convex
equilibrium when σ = 2, an exponential equilibrium when σ > 2, and a degenerate equilibrium
when σ = ∞. As the parameter σ varies continuously in the interval 0 < σ ≤ ∞, the type of
equilibrium also changes continuously, corresponding to the continuous change in behaviour of
the objective function in the neighborhood of the solution of the initial problem. A question
that arises is how gradient and proximal methods, for example, which should converge to these
equilibria, behave. Their behaviour should obviously adjust to the behaviour of the objective
function in the neighborhood of equilibrium. In the general case, the picture is as follows [8]:
for parameter values σ < 2, the methods converge after a �nite number of iterations, when
σ = 2 the bounds for the rate of convergence of the processes are exponential or the rate is that
of a geometric progression, when σ > 2 the bounds have a power dependence (negative power)
and, �nally, when σ = ∞, the bounds degenerate and the method may converge as slowly as
desired. Our purpose here is to describe how the proximal method behaves for solving problem
(1.1) with values of the parameter σ = 1, 2 and ∞.

2. EQUILIBRIUM PROBLEMS

In this section we will consider speci�c problems of the type (1.1), the solutions of which
satisfy inequality (1.3) or versions thereof for di�erent values of the parameter σ.

1. Saddle problems
Consider the problem of calculating the saddle point of a convex-concave degenerate func-

tion, that is, a point (x∗, p∗) which is a solution of the system of inequalities

L(x∗, p) ≤ L(x∗, p∗) ≤ L(x, p∗) ∀x ∈ Q ⊆ Rn, p ∈ P ⊆ Rm,

where the function L(x, p) is convex with respect to x and concave with respect to p. The
function L(x, p) is not strongly convex with respect to one variable and strongly concave with
respect to the other. Nor is it assumed to be di�erentiable. The sets Q and P are convex and
closed.

In the general case, the problem of �nding a saddle point of the function L(x, y) can always
be reformulated as a two-person zero-sum game. A solution of the game (or its equilibrium
point, according to Nash) is a point (x∗, p∗) which satis�es the system of extremal inclusions:

x∗ ∈ argmin {L(z, p∗) : z ∈ Q}, p∗ ∈ argmin {−L(x∗, y) : y ∈ P}. (2.1)

It is most convenient to associate the game (2.1) with a normalized function of the form [9]

Φ(w, v) = L(z, p)− L(x, y), (2.2)
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where w = (z, y), v = (x, p). This function is also de�ned in the space of variables z, y, x, p,
that is, in a space of twice as many dimensions as the original. Since the function Φ(w, v) is
separable with respect to the variables z and y and the set Ω = Q×P has a modular structure,
the problem

v∗ ∈ argmin{Φ(w, v∗) : w ∈ Ω}, v ∈ Ω, (2.3)
is equivalent to problem (2.1), and the sets of solutions of the problems are the same. If the
range of variation of the variables w and v is not the direct product Ω×Ω, the set of normalized
solutions of problem (2.3) contains only some of the solutions of problem (2.1).

We will check that the function (2.2) satis�es condition (1.5). With that aim, we verify the
following properties [10, 11]:

Φ(v, v) = 0 ∀ v ∈ Ω, (2.4)
Φ(w, v∗) + Φ(v∗, w) = 0 ∀ w ∈ Ω, (2.5)

The �rst property means that the function Φ(w, v) is equal to zero on the diagonal of the
square, that is, when w = v. This is the reason for the appellation �n-person zero-sum games�.
It is obvious that (2.4) is satis�ed by the function Φ(w, v) = L(z, p)−L(x, y), where w = (z, y),
v = (x, p), since when w = v, we have Φ(v, v) = L(x, p)− L(x, p) = 0.

It is also easy to see that the second property is true. Let v = v∗. Then Φ(w, v∗) =
= L(z, p∗) − L(x∗, y). Since the ranges of variation of the variables w ∈ Ω and v ∈ Ω are
the same, we put w = v∗ and v = w in Φ(w, v); then Φ(v∗, w) = L(x∗, y) − L(z, p∗). Thus
Φ(w, v∗) + Φ(v∗, w) = L(z, p∗)−L(x∗, y) + L(x∗, y)−L(z, p∗) = 0. The argument applies if the
domain of de�nition of the function Φ(w, v) is the square Ω × Ω. However, it remains valid if
the domain of de�nition of the function is a convex closed set that is symmetrically positioned
in relation to the diagonal of the square (w = v), or in other words, a set which contains the
point (v0, w0) as well as the point (w0, v0).

Properties (2.4), (2.5) combined ensure that inequality (1.4) or (1.5) is satis�ed when σ = ∞:

Φ(w, w)− Φ(v∗, w)− Φ(w, v∗) + Φ(v∗, v∗) = 0 ∀ w ∈ Ω, ∀ v∗ ∈ Ω∗. (2.6)

2. n-person non-zero sum games
We now consider the two-person game:

x∗ ∈ argmin{f(z) + L(z, p∗) : z ∈ Q}, p∗ ∈ argmin{ϕ(y)− L(x∗, y) : y ∈ P}, (2.7)

where the functions f(z), ϕ(y) are convex with respect to their variables, and L(z, p) is a
saddle function. Assume that a solution of problem (2.7) exists. The most typical example of
the structure (2.7) is that of quadratic problems, such as

x∗ ∈ argmin{0.5(z − 1)2 + zp∗ : z ∈ R1}, p∗ ∈ argmin{0.5(y − 3)2 − x∗y : y ∈ R1}.
The �xed point (x∗, p∗) here has coordinates (−1, 2).

Problem (2.7) is not an antagonistic game and thus its solution, Nash equilibrium, re�ects
the notion of compromise. We write out the normalized function for this problem and verify
that it is a game with a non-zero sum:

Φ(w, v) = f(w1) + L(w1, v2)− L(v1, w2) + ϕ(w2). (2.8)

In fact, when w = v from (2.8) we have Φ(w,w) = f(w1) + L(w1, w2) − L(w1, w2) + ϕ(w2) =
= f(w1) + ϕ(w2) 6= 0 for all w1 and w2 of Ω.

4



We will now check that inequality (1.4) holds for problem (2.7) when σ = ∞. From (2.8)
we have

Φ(w, w) − Φ(v∗, w)− Φ(w, v∗) + Φ(v∗, v∗) =

= f(w1) + L(w1, w2)− L(w1, w2) + ϕ(w2)−
− f(v∗1)− L(v∗1, w2) + L(w1, v

∗
2)− ϕ(v∗2)−

− f(w1)− L(w1, v
∗
2) + L(v∗1, w2)− ϕ(w2) +

+ f(v∗1) + L(v∗1, v
∗
2)− L(v∗1, v

∗
2) + ϕ(v∗2) = 0

for all w1 and w2 from Ω. Thus, when σ = ∞ inequality (1.4) is satis�ed for the non-zero sum
game (2.7).

3. Strongly convex equilibrium
In problem (1.1), let the objective function have the form Φ(w,w) = 0.5|Aw + Cv|2 =

= 0.5|Aw|2 + 〈Aw,Cv〉+ 0.5|Cv|2. We will check that inequalities (1.4) are satis�ed for σ = 2:
Φ(w, w)− Φ(v∗, w)− Φ(w, v∗) + Φ(v∗, v∗) =

= 0.5|Aw|2 + 〈Aw, Cw〉+ 0.5|Cw|2 − 0.5|Av∗|2 − 〈Av∗, Cw〉−
− 0.5|Cw|2 − 0.5|Aw|2 − 〈Aw,Cv∗〉 − 0.5|Cv∗|2 + 0.5|Av∗|2+
+ 〈Av∗, Cv∗〉+ 0.5|Cv∗|2 = 〈A(w − v∗), Cw〉 − 〈A(w − v∗), Cv∗〉 =

= 〈A(w − v∗), C(w − v∗)〉 = 〈C>A(w − v∗), w − v∗〉 ≥ γ|w − v∗|2.

(2.9)

In this inequality C>A is assumed to be a symmetric matrix with minimum eigenvalue γ > 0.
For example, if C> = I is the identity matrix, and A is symmetric with minimum eigenvalue
γ > 0, then inequality (2.9) is satis�ed.

We will now verify that inequality (1.5) holds when σ = 2. In this case the matrix C>A
is degenerate, and so we will consider a decomposition of the space Rn into a right sum:
Rn = H1+H2, where H1 is the kernel of the matrix C>A, and H2 is the orthogonal complement
to H1. In that case any vector w − v∗ ∈ Rn has the representation w − v∗ = h1 + h2, where
h1 = πH1(w− v∗) and h2 = πH2(w− v∗); also, C>Ah1 = 0, C>Ah2 ∈ H2. On this basis, we will
repeat the inequality (2.9) in the degenerate case:

[Φ(w, w)− Φ(πΩ∗(w), w)]− [Φ(w, πΩ∗(w))− Φ(πΩ∗(w), πΩ∗(w))] =

= 〈C>A(w − v∗), w − v∗〉 = 〈(C>A)1/2(w − v∗), (C>A)1/2(w − v∗)〉 =

= 〈(C>A)1/2(h1 + h2), (C
>A)1/2(h1 + h2)〉 = 〈(C>A)1/2h2, (C

>A)1/2h2〉 =

= 〈C>Ah2, h2〉 ≥ µ|h2|2 = µ|w − v∗ − h1|2 = µ|w − v∗ − πH1(w − v∗)|2 =

= µ|w − v∗ − πH1(w) + πH1(v
∗)|2 = µ|w − πH1(w)|2.

Here µ is the minimum non-zero eigenvalue of the degenerate matrix C>A. In this chain of
argument we have also made use of the fact that the symmetric matrix (C>A)1/2 has a square
root and the projection operators πH1(w − v∗) are linear, where πH1(v

∗) = v∗.

3. PROXIMAL METHODS FOR CALCULATING THE FIXED POINT OF AN
EXTREMAL MAPPING

We will now discuss the proximal control method for solving the extremal inclusion

v∗ ∈ Argmin{Φ(w, v∗) : w ∈ Ω}, v ∈ Ω.
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If v∗ is the point of a minimum of Φ(w, v∗) on the set w ∈ Ω, it is easy to see that v∗ remains
a �xed point of the proximal mapping [11]:

v∗ = argmin{0.5|w − v∗|2 + αΦ(w, v∗) : w ∈ Ω}, (3.1)

that is, the proximal step from the point v∗ again leads to the same point. Since the proximal
operator on the right-hand side of system (3.1) is a non-expandable operator, under certain
conditions one can expect the sequence vn, generated by the process

vn+1 = argmin{0.5|w − vn|2 + αΦ(w, vn) : w ∈ Ω}, (3.2)

to converge to the solution of the initial problem. This does in fact happen for optimization
problems, but not for equilibrium problems. Convergence of the proximal process (3.2) for
equilibrium problems can be guaranteed using the idea of feedback control of the process.

In the general case, feedback [12] is a function which depends on the approximations vn and
the distance between them: vn+1 − vn, that is, u = u(vn, vn+1 − vn). The feedback is zero at
equilibrium points: u = u(v∗, 0) = 0.

We will introduce the additive control u into system (3.2):

vn+1 = argmin{0.5|w − vn|2 + αΦ(w, vn + u) : w ∈ Ω}. (3.3)

We will now formulate the problem of the control of this system: in a certain class of the
feedback u = u(vn, vn+1 − vn), it is required to select a control as a function of the state of
system (3.3) which will ensure that the process (3.3) converges to the equilibrium v∗. The
simplest controls have the form [11, 13]

u = vn+1 − vn. (3.4)

If system (3.3) is closed by control (3.4):

vn+1 = argmin{0.5|w − vn|2 + αΦ(w, vn+1) : w ∈ Ω}, (3.5)

we obtain an implicit iterative system (which is not solved for vn+1) [14, 15], causing certain
di�culties in its numerical solution. System (3.5) is an inverse optimization problem and has
been analysed in [1]. Thus, we will be interested in feedback corresponding to explicit closed
iterative processes. As feedback of that kind, we consider control by the discrepancy [11, 13]

u = argmin{0.5|w − vn|2 + αΦ(w, vn) : w ∈ Ω} − vn. (3.6)

When system (3.3) has been closed by the feedback (3.6), we obtain an explicit iterative process
of the form

ūn = argmin{0.5|w − vn|2 + αΦ(w, vn) : w ∈ Ω},
vn+1 = argmin{0.5|w − vn|2 + αΦ(w, ūn) : w ∈ Ω}. (3.7)

This is clearly an explicit iterative scheme with a preliminary (or predictive) step, as a result
of which the prediction ūn is calculated �rst, followed then by the next approximation vn+1.

For simplicity it will always be assumed below that the zero approximation w0 ∈ {w :
|w − πΩ∗(w)| ≤ 1, w ∈ Ω}.

The convergence theorems proved here are based on the inequality of [16], which is satis�ed
for any convex, not necessarily di�erentiable function f(y) de�ned on the set Q:

0.5|zx − x|2 + αf(zx) ≤ 0.5|z − x|2 + αf(z)− 0.5|z − zx|2, (3.8)
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where z ∈ Q, and zx is the point of a minimum of ϕx(x) = 0.5|z − x|2 + αf(z) on Q for a
�xed vector x. The truth of this inequality can be established by simple arguments: let zx be
the point of a minimum of ϕx(x) on Q. Then by the necessary condition, the subdi�erential
∂ϕx(z), calculated at the point of the minimum zx, will contain the positive subgradient

〈zx − x + α∇f(zx), z − zx〉 ≥ 0 ∀ z ∈ Q. (3.9)

We add the convexity inequality for f(z)

f(z) ≥ f(zx) + 〈∂ϕ(zx), z − zx〉

to the identity

0.5|z − x|2 = 0.5|z − zx|2 + 〈z − zx, zx − x〉+ 0.5|zx − x|2.

Then the inequality (3.8) is obtained using (3.9).
A necessary element of the proof of convergence of almost any method, apart from inequality

(3.8), is a Lipschitz type inequality. For the function of two variables Φ(w, v), this inequality
can be stated in the form [10]

|[Φ(w + h, v + k)− Φ(w, v + k)]− [Φ(w + h, v)− Φ(w, v)]| ≤ |Φ| |h| |k|. (3.10)

The inequality is true for all w and w+h, v and v+k of Ω, and |Φ| is a constant. The symmetric
inequality to (3.10),

|[Φ(w + h, v + k)− Φ(w + h, v)]− [Φ(w, v + k)− Φ(w, v)]| ≤ |Φ| |h| |k|

is also true for all w and w + h, v and v + k of Ω, and the constant |Φ| is di�erent from
the analogous constant in (3.10). The classes of functions of two variables which satisfy this
condition are non-empty. For example, if Φ(w, v) is a di�erentiable function whose partial
derivative with respect to the variable w satis�es the Lipschitz condition with constant |Φ|,
then inequality (3.10) holds for all w and w + h and v and v + k of Ω. This can be understood
easily from the following argument. We use Lagrange's formula

f(x + h)− f(x) =

1∫

0

〈∇f(x + th), h〉dt

and perform the obvious transformations:

|[Φ(w + h, v + k)− Φ(x, v + k)]− [Φ(x + h,w)− Φ(x,w)]| =

=

∣∣∣∣∣∣

1∫

0

〈∇Φw(w + th, v + k), h〉dt−
1∫

0

〈∇Φw(w + th, v), h〉dt

∣∣∣∣∣∣
≤

≤
1∫

0

|〈∇Φw(w + th, v + k)−∇Φw(w + th, v), h〉|dt ≤

≤
1∫

0

|Φ| |k| |h|dt ≤ |Φ| |h| |k|.

This proves the assertion.
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Since the objective function on the right-hand sides of process (3.7) has the structure of
ϕ(y), we can rewrite both equations of (3.7) in an equivalent form to (3.8): ∀ w ∈ Ω

0.5|vn+1 − vn|2 + αΦ(vn+1, ūn) ≤ 0.5|w − vn|2 + αΦ(w, ūn)− 0.5|vn+1 − w|2, (3.11)
0.5|ūn − vn|2 + αΦ(ūn, vn) ≤ 0.5|w − vn|2 + αΦ(w, vn)− 0.5|ūn − w|2. (3.12)

We will now �nd bounds for the quantity |ūn−vn+1|. We put w = ūn in (3.11) and w = vn+1

in (3.12) and add the two inequalities; then, from (3.10), we have

|vn+1 − ūn|2 ≤ α(Φ(ūn, ūn)− Φ(vn+1, ūn) + Φ(vn+1, vn)− Φ(ūn, vn)) ≤
≤ α|Φ| |vn+1 − ūn| |vn − ūn|.

It follows that
|vn+1 − ūn| ≤ α|Φ| |vn − ūn|, (3.13)

where |Φ| is the constant of (3.10).
Finally, we represent the initial problem (1.1) in the form of the equivalent variational

inequality:
Φ(v∗, v∗) ≤ Φ(w, v∗) ∀ w ∈ Ω. (3.14)

We now have all the technical means at our disposal and can proceed to investigate the con-
vergence properties of the process (3.7). The convergence of the process (3.5) is established in
the same way.

4. CONVERGENCE TO SHARP EQUILIBRIUM

We will investigate the behaviour of the iterative proximal method depending on the type
of equilibrium solution of the original problem, considering the cases of sharp, strongly convex
and degenerate equilibria in succession.

Suppose that inequality (1.3) is satis�ed with the parameter value σ = 1. Then

Φ(w,w)− Φ(πΩ∗(w), w) ≥ γ|w − πΩ∗(w)| (4.1)

for all w ∈ {w : |w − πΩ∗(w)| < 1, w ∈ Ω}, γ > 0. In that case, problem (1.1) has a set of
sharp equilibria, and the process (3.7) converges to one of these after a �nite number of steps.

Theorem 1. If the set of solutions of problem (1.1) is non-empty and satis�es the sharp
condition (4.1), the objective function Φ(w, v), w ∈ Ω, v ∈ Ω, is convex with respect to the
variable w for each �xed value of v, Ω is a convex closed set and, in addition, the function
Φ(w, v) satis�es condition (3.10), then the sequence vn of the proximal process (3.7) with pa-
rameter α < (

√
2|Φ|)−1, where |Φ| is the constant of (3.10), converges after a �nite number of

iterations to one of the equilibria, that is, there is a number nf such that ūnf = v∗ ∈ Ω∗.

Proof. Put w = v∗ ∈ Ω∗ in (3.11) and w = vn+1 in (3.12):

0.5|vn+1 − vn|2 + αΦ(vn+1, ūn) ≤ 0.5|v∗ − vn|2 + αΦ(v∗, ūn)− 0.5|vn+1 − v∗|2,
0.5|ūn − vn|2 + αΦ(ūn, vn) ≤ 0.5|vn+1 − vn|2 + αΦ(vn+1, vn)− 0.5|vn+1 − ūn|2.

Adding the two inequalities, we obtain

|vn+1 − v∗|2 + |vn+1 − ūn|2 + |ūn − vn|2 +

+ 2α{Φ(vn+1, ūn)− Φ(ūn, ūn) + Φ(ūn, vn)− Φ(vn+1, vn)}+

+ 2α{Φ(ūn, ūn)− Φ(v∗, ūn)} ≤ |vn − v∗|2 ∀ v∗ ∈ Ω∗.
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Using (3.10) and (3.13), we transform this inequality to obtain:

|vn+1 − v∗|2 + |vn+1 − ūn|2 + (1− 2α2|Φ|2)|ūn − vn) +

+ 2α{Φ(ūn, ūn)− Φ(v∗, ūn)} ≤ |vn − v∗|2. (4.2)

Since Φ(ūn, ūn)− Φ(v∗, ūn) ≥ 0, we have

|vn+1 − v∗|2 + |vn+1 − ūn|2 + d|ūn − vn|2 ≤ |vn − v∗|2. (4.3)

Here d = 1− 2α2|Φ|2 > 0, since α < (
√

2|Φ|)−1. Using the inequality

0.5|vn+1 − vn|2 ≤ |vn+1 − ūn|2 + |ūn − vn|2, (4.4)

from (4.3) we obtain the inequality

|vn+1 − v∗|2 + 0.5d|vn+1 − vn|2 ≤ |vn − v∗|2. (4.5)

We now sum the inequality from n = 0 to n = N :

|vN+1 − v∗|2 + 0.5d
k=N∑

k=0

|vk+1 − vk|2 ≤ |v0 − v∗|2.

The partial sums on the left-hand side of this inequality are bounded for any N . As a result,
the series

∞∑
k=0

|vk+1 − vk|2 < ∞. It follows that

|vn+1 − vn| → 0 as n →∞. (4.6)

We now sum (4.3) from n = 0 to n = N :

|vN+1 − v∗|2 +
k=N∑

k=0

|vk+1 − ūk|2 + d
k=N∑

k=0

|ūk − vk|2 ≤ |v0 − v∗|2.

It follows from this that the series converge and, therefore, that:

|vn+1 − ūn|2 → 0, |ūn − vn|2 → 0, as n →∞. (4.7)

We now represent the di�erence of squares in (4.5) in the form of a product:

(|vn+1 − v∗| − |vn − v∗|)(|vn+1 − v∗|+ |vn − v∗|) + 0.5d|vn+1 − vn|2 ≤ 0.

Thus, allowing for the monotonicity, that is, |vn+1 − v∗| ≤ |vn − v∗|, we obtain the relation

|vn+1 − v∗| − |vn − v∗|+ 1

4
d
|vn+1 − vn|2
|vn − v∗| ≤ 0.

Since the relation is true for all v∗ ∈ Ω∗, we put v∗ = πΩ∗(v
n) and, since |vn+1 − πΩ∗(v

n+1)| ≤
≤ |vn+1 − πΩ∗(v

n)|, we rewrite this inequality in the form

|vn+1 − πΩ∗(v
n+1)|+ 1

4
d
|vn+1 − vn|2
|vn − πΩ∗(vn)| ≤ |vn − πΩ∗(v

n)|.

We now sum it from n = 0 to n = N :

|vN+1 − πΩ∗(v
N+1)|+ 1

4
d

k=N∑

k=0

|vk+1 − vk|2
|vk − πΩ∗(v0)| ≤ |vn − πΩ∗(v

n)|.
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It follows that the series ∞∑

k=0

|vk+1 − vk|2
|vk − πΩ∗(vk)| < ∞.

Thus
|vn+1 − vn|2
|vn − πΩ∗(vn)| → 0 as n →∞.

Using the triangle inequality, we obtain

|vn+1 − vn|2
|vn − ūn|+ |ūn − πΩ∗(ūn)|+ |πΩ∗(ūn)− πΩ∗(vn)| ≤

|vn+1 − vn|2
|vn − πΩ∗(vn)| → 0 as n →∞.

Hence, allowing for (4.7), we have

|vn+1 − vn|2
|ūn − πΩ∗(ūn)| → 0 as n →∞. (4.8)

We now turn to inequality (4.2). Applying the identity

|vn+1 − v∗|2 = |vn+1 − vn|2 + 2〈vn+1 − vn, vn − v∗〉+ |vn − v∗|2,

we transform the di�erence of squares:

2〈vn+1− vn, vn− v∗〉+ |vn+1− vn|2 + |vn+1− ūn|2 + d|ūn− vn|2 + 2α[Φ(ūn, ūn)−Φ(v∗, ūn)] ≤ 0.

Hence

2〈vn+1 − vn, ūn − v∗〉+ 2α[Φ(ūn, ūn)− Φ(v∗, ūn)] +

+ 2〈vn+1 − vn, vn − ūn〉+ d|ūn − vn|2 + |vn+1 − vn|2 + |vn+1 − ūn|2 ≤ 0.

We separate the complete square from the third and fourth terms:

2〈vn+1 − vn, ūn − v∗〉+ 2α[Φ(ūn, ūn)− Φ(v∗, ūn)] +

+ |d−1/2(vn+1 − vn) +
√

d(vn − ūn)|2 +

+ (1− 1/d)||vn+1 − vn|2 + |vn+1 − ūn|2 ≤ 0.

It follows from the last inequality that

2〈vn+1 − vn, ūn − v∗〉+ 2α[Φ(ūn, ūn)− Φ(v∗, ūn)] ≤ (1/d− 1)||vn+1 − vn|2.

Since this inequality is true for all v∗ ∈ Ω∗, if v∗ = πΩ∗(ū
n) and the sharp condition (4.1) holds,

we obtain

2αγ|ūn − πΩ∗(ū
n)| ≤ 2|vn+1 − vn| |ūn − πΩ∗(ū

n)|+ (1/d− 1)|vn+1 − vn|2.

Assuming that |ūn − πΩ∗(ū
n)| 6= 0 for all n, we obtain

αγ ≤ |vn+1 − vn|+ (1/d− 1)
vn+1 − vn|2
|ūn − πΩ∗(ūn)| . (4.9)

It can be seen by comparing inequalities (4.5), (4.8) and (4.9) that they contradict one
another. Hence, the assumption that |ūn−πΩ∗(ū

n)| 6= 0 for all n is false, and there is, therefore,
a number nf such that ūnf = πΩ∗(ū

nf ) = v∗ ∈ Ω∗. This proves the theorem.
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5. CONVERGENCE TO STRONGLY CONVEX EQUILIBRIUM

In this section we obtain estimates for the rate of convergence to strongly convex equilibrium
of the process (3.7).

Let the solution of the initial problem be unique, and let the behaviour of the objective
function in its neighborhood be described by an inequality of the form

[Φ(w,w)− Φ(v∗, w)]− [Φ(w, v∗)− Φ(v∗, v∗)] ≥ γ|w − v∗|2 (5.1)

for all w ∈ {w : |w − v∗| < 1, w ∈ Rn}, where the parameter γ > 0.

Theorem 2. If the set of solutions of problem (1.1) is non-empty and satis�es condition
(5.1), the objective function Φ(w, v), w ∈ Ω, v ∈ Ω, is convex with respect to the variable w
for each �xed value of v, Ω ∈ Rn is a convex closed set and, in addition, the function Φ(w, v)
satis�es condition (3.10), then the sequence vn of the proximal process (3.7) with parameter α <
< (

√
2|Φ|)−1, where |Φ| is the constant in (3.10), converges at the rate of a geometric progression

to one of the equilibria, that is,

|vn+1 − v∗|2 ≤ q(α)n+1|v0 − v∗|2 as n →∞,

where q(α) = [1 + 4(αγ)2/d− 2αγ] < 1, d = 1 + 2αγ − 2α2|Φ|2.

Proof. We put w = v∗ ∈ Ω∗ in (3.11), w = vn+1 in (3.12) and w = ūn in (3.14). Then

0.5|vn+1 − vn|2 + αΦ(vn+1, ūn) ≤ 0.5|v∗ − vn|2 + αΦ(v∗, ūn)− 0.5|vn+1 − v∗|2,
0.5|ūn − vn|2 + αΦ(ūn, vn) ≤ 0.5|vn+1 − vn|2 + αΦ(vn+1, vn)− 0.5|vn+1 − ūn|2,
Φ(v∗, v∗) ≤ Φ(ūn, v∗).

We add all three inequalities. Then

|vn+1 − v∗|2 + |vn+1 − ūn|2 + |ūn − vn|2) +

+ 2α[Φ(vn+1, ūn)− Φ(ūn, ūn) + Φ(ūn, vn)− Φ(vn+1, vn)] +

+ 2α{[Φ(ūn, ūn)− Φ(v∗, ūn)]− [Φ(ūn, v∗)− Φ(v∗, v∗)] ≤
≤ |vn − v∗|2 ∀ v∗ ∈ Ω∗.

Taking (3.10) and (3.13) into account, we obtain

|vn+1 − v∗|2 + |vn+1 − ūn|2 + (1− 2α2|Φ|2)|ūn − vn|2 + (5.2)
+ 2α{[Φ(ūn, ūn)− Φ(v∗, ūn)]− [Φ(ūn, v∗)− Φ(v∗, v∗)]} ≤ |vn − v∗|2.

Allowing for the sharp minimum property of (5.1), we have

|vn+1 − v∗|2 + |vn+1 − ūn|2 + (1− 2α2|Φ|2)|ūn − vn|2 + 2αγ|ūn − v∗| ≤ |vn − v∗|2. (5.3)

Using the identity

|ūn − v∗|2 = |ūn − vn|2 + 2〈ūn − vn, vn − v∗〉+ |vn − v∗|2

we transform (5.2):

|vn+1 − v∗|2 + |vn+1 − ūn|2 + (1− 2αγ − 2α2|Φ|2)|ūn − vn|2 +

+ 4αγ〈ūn − vn, vn − v∗〉+ 2αγ|vn − v∗|2 ≤ |vn − v∗|2.
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We separate the complete square from the third and fourth terms:

|vn+1 − v∗|2 + |vn+1 − ūn|2 +

+

∣∣∣∣∣
√

d(ūn − vn) +
2αγ√

d
(vn − v∗)

∣∣∣∣∣
2

− (2αγ)2

d
|vn − v∗|2 +

+ 2αγ|vn − v∗|2 ≤ |vn − v∗|2,
where d = 1 + 2αγ − 2α2|Φ|2. Hence

|vn+1 − v∗|2 ≤ (1 + 4(αγ)2/d− 2αγ)|vn − v∗|2.
Since α < (

√
2|Φ|2)−1, we have q(α) = (1 + 4(αγ)2/d− 2αγ) < 1.

Thus,
|vn+1 − v∗|2 ≤ q(α)|vn − v∗|2.

Summing this inequality, we obtain

|vn+1 − v∗|2 ≤ q(α)n+1|v0 − v∗|2,
where the parameter satis�es the condition α < (

√
2|Φ|)−1. This proves the theorem.

6. CONVERGENCE TO DEGENERATE EQUILIBRIUM

We will now consider the convergence of the proximal process (3.7) to degenerate equilib-
rium, which is described by an inequality of the form

[Φ(w, w)− Φ(v∗, w)]− [Φ(w, v∗)− Φ(v∗, v∗)] ≥ 0 (6.1)

for all w ∈ S = {w : w − πΩ∗(w)| < 1, w ∈ Rn}, where Ω∗ is the convex closed set of solutions
of problem (1.1). We will show in that case that the process (3.7) converges monotonely with
respect to the norm to one of the equilibrium solutions.

Theorem 3. If the set of solutions of problem (1.1) is non-empty and satis�es condition
(6.1), the objective function Φ(w, v), w ∈ Ω, v ∈ Ω, is convex with respect to the variable w
for each �xed value of v, Ω ∈ Rn is a convex closed set and, in addition, the function Φ(w, v)
satis�es condition (3.10), then the sequence vn of the proximal process (3.7) with parameter
α < (

√
2|Φ|)−1, where |Φ| is the constant of (3.10), converges monotonely with respect to the

norm to one of the equilibrium solutions, that is, vn → v∗ ∈ Ω∗ as n →∞ for all v0 ∈ Rn.

Proof. From inequality (5.2), allowing for condition (6.1), we obtain

|vn+1 − v∗|2 + |vn+1 − ūn|2 + (1− 2α2|Φ|2)|ūn − vn|2 ≤ |vn − v∗|2. (6.2)

Assuming that the parameter α is chosen from the condition α < (
√

2|Φ|)−1 (in which case
d = (1− 2α2|Φ|2) > 0, we sum the inequality (6.2) from n = 0 to n = N :

|vN+1 − v∗|2 + d
k=N∑

k=0

|vk+1 − ūk|2 + d
k=N∑

k=0

|ūk − vk|2 ≤ |v0 − v∗|2.

It follows from this inequality that the trajectory is bounded:

|vN+1 − v∗|2 ≤ |v0 − v∗|2,
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and also that the series converge:
∞∑

k=0

|vk+1 − ūk|2 < ∞,
∞∑

k=0

|ūk − vk|2 < ∞

and, therefore, that

|vn+1 − ūn|2 → 0, |ūn − vn|2 → 0 as n →∞

Thus, using (4.4), we obtain |vn+1 − vn| → 0 as n →∞.
Since the sequence vn is bounded, there is an element v′ such that vni → v′ as ni →∞, and

|vni+1 − ūni|2 → 0, |ūni − vni|2 → 0.

We now consider inequality (3.11) for all ni → ∞ and, taking the limit, write out the
limiting inequality

Φ(v′, v′) ≤ Φ(w, v′) ∀ w ∈ Ω.

This inequality is obviously the same as (3.14) and, therefore, v′ = v∗ ∈ Ω∗. Thus, any limit
point of the sequence vn is a solution of the problem, and the quantity |vn − v∗|2 decreases
monotonely. These two facts together mean that the sequence vn can have only one limit
point, that is, vn converges monotonely with respect to the norm to one of the solutions of the
problem: vn → v∗ as n →∞. This proves the theorem.

All three theorems proved above also apply to the implicit process (3.5).
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