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Abstract. The equilibrium programming problem with coupled constraints is presented.
A properties of symmetric and skew-symmetric functions are discussed. New concept
of symmetric coupled constraints is o�ered. The di�erential feed-back control gradient-
type method for solving the coupled constrained equilibrium problem is suggested and its
convergence is proved.

1 Statement of problem
Let us consider the problem of computing a �xed point of a extreme coupled constrained
mapping: �nd v∗ ∈ Ω0 such that

v∗ ∈ Argmin{Φ(v∗, w) | g(v∗, w) ≤ 0, w ∈ Ω0}, (1.1)

where Φ(v, w) : Rn × Rn → R, g(v, w) : Rn × Rn → Rm, Ω0 ∈ Rn is a convex closed
set. It is assumed that Φ(v, w) and each component of vector-function g(v, w) are convex
in w ∈ Ω0 for any v ∈ Ω0. It is also assumed that the extreme (marginal) mapping
w(v) ≡ Argmin{Φ(v, w) | g(v, w) ≤ 0, w ∈ Ω0} is de�ned for all v ∈ Ω0 and the solution
set Ω∗ = {v∗ ∈ Ω | v∗ ∈ w(v∗)} ⊂ Ω0 of the initial problem is non-empty. According [1]
this approval follows from the continuity of Φ(v, w) and the convexity of Φ(v, w) in w for
any v ∈ Ω0, where Ω0 is compact.

By de�nition of (1.1), any �xed point satis�es the inequality

Φ(v∗, v∗) ≤ Φ(v∗, w), g(v∗, w) ≤ 0 ∀w ∈ Ω0. (1.2)

Let us introduce the function Ψ(v, w) = Φ(v, w)−Φ(v, v) and using it we present (1.2) as

Ψ(v∗, w) ≥ 0, g(v∗, w) ≤ 0 ∀w ∈ Ω0. (1.3)

The inequality obtained means that second component of point v∗, v∗ is a minimum
of Ψ(v∗, w) in w over �vertical� section S1(w) = {w | g(v∗, w) ≤ 0, w ∈ Ω0}. On the other
hand it can occur so that the �rst component of this point is also a maximum of Ψ(v, v∗)
over �horizontal� section S2(v) = {v | g(v, v∗) ≤ 0, v ∈ Ω0}, i.e.

Ψ(v, v∗) ≤ 0, g(v, v∗) ≤ 0 ∀w ∈ Ω0. (1.4)
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Problem (1.4) we call hereinafter as dual. Combining conditions (1.3) and (1.4), we see
that pair v∗, v∗ is a saddle point of function Ψ(v, w), i.e.

Ψ(v, v∗) ≤ Ψ(v∗, v∗) ≤ Ψ(v∗, w), g(v, v∗) ≤ 0, g(v∗, w) ≤ 0 ∀v, w ∈ Ω0. (1.5)

Certainly, in general case the pair v∗, v∗ is not always saddle point but in many practi-
cally signi�cant situations it is so. Moreover, non-saddle pair v∗, v∗ it is possible frequently
to result to a saddle-point situation with the help of procedures of splitting of bi-functions
(functions of two variables) in symmetric and anti-symmetric parts. The procedure of de-
composition of functions is considered in the consequent sections.

The equilibrium problem (1.1) can be considered as scalarization or convolution for
many n−person game with coupled constraints [2]. For the �rst time the n-person game
on square was considered in [3]. The scalarization procedure for game without coupled
constraints was described in [4].

2 Splitting of functions
In the linear space of scalar or vector bifunctions F (v, w) we mark out two linear subspaces
by means of conditions

F (v, w)− F (w, v) = 0 ∀w ∈ Ω0, ∀v ∈ Ω0, (2.1)
F (v, w) + F (w, v) = 0 ∀w ∈ Ω0, ∀v ∈ Ω0. (2.2)

The functions of the �rst subspace are called symmetric; those of the second class,
anti-symmetric. If these functions are de�ned on a square grid, we have the conventional
classes of symmetric and anti-symmetric matrices.

Recall that a pair of points with coordinates w, v and v, w is situated symmetrically
concerning the diagonal of the square Ω0 × Ω0, i.e., with respect to the linear manifold
v = w. This allows us to introduce the concept of a transposed function [5]. If we assign
the value of Φ(w, v) calculated at the point w, v to every point with coordinates v, w,
that is v, w → F (w, v), then we obtain the transposed function F>(v, w) = F (w, v). In
terms of this function conditions (2.1) and (2.2) look like F (v, w) = F>(v, w), F (v, w) =
= −F>(v, w). Using the obvious relations F (v, w) = (F>(v, w))>, (F1(v, w)+F2(v, w))> =
= F>

1 (v, w) + F>
2 (v, w), we can readily verify that any real function F (v, w) can be re-

presented as the sum
F (v, w) = S(v, w) + K(v, w), (2.3)

where S(v, w) and K(v, w) are symmetric and anti-symmetric functions, respectively.
This expansion is unique, and

S(v, w) =
1

2
(F (v, w) + F>(v, w)), K(v, w) =

1

2
(F (v, w)− F>(v, w)). (2.4)

The classes of symmetric and anti-symmetric functions are subsets for a more expansive
functional classes, namely, of pseudo-symmetric and skew-symmetric functions [6]. In the
following section we will investigate properties of classes for these functions.
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3 Symmetric and skew-symmetric functions
Consider some properties of symmetric functions. First of all we note that the set M =
= {v, w | g(v, w) ≤ 0, v, w ∈ Ω0 × Ω0} of problem (1.1) induced by symmetric vectorial
function g(v, w) is symmetric with regard to diagonal of square Ω0 × Ω0, i.e. any two
points with coordinates v, w and w, v always belong or do not belong to set M . This
property easily follows from a condition of symmetry

g(v, w) = g(w, v) ∀w ∈ Ω0, ∀v ∈ Ω0. (3.1)

It is not hard to produce examples of symmetric functions. First of all they are
functions generating budget constraints in economic equilibrium models: g(v, w) = 〈v, w〉
or g(v, w) = 〈Av, w〉, where A is a symmetric matrix. In applications the Cobb�Douglas
and constant elasticity-of-substitution production functions are widely known: g(v, w) =
= Avαwβ and g(v, w) = A(αv−Ω + βw−Ω)−γ/Ω, where A > 0, α > 0, β > 0, Ω > 0 are
parameters. If α and β are equal, then these functions are symmetric. Easy to check
up that the function Φ(v, w) = f(x1, y2) + f(y1, x2), where v = (y1, y2), w = (x1, x2) is
symmetric.

Explore the crucial properties of symmetric functions [6]. To this end we di�erentiate
identity (3.1) in w, then

∇>
wg(v, w) = ∇>

v g(w, v) ∀w ∈ Ω0, ∀v ∈ Ω0, (3.2)

where ∇>
wg(v, w), ∇>

v g(w, v) are (m × n)-matrices, and ∇vgi(w, v), ∇wgi(v, w), i =
= 1, 2, . . . , m are line-vectors.

Let's put w = v in (3.2), then we have

∇>
wg(v, v) = ∇>

v g(v, v) ∀v ∈ Ω0. (3.3)

Thus, we can formulate the following

Property 1 The matrices of gradient-restrictions of vector symmetric functions g(v, w)
with respect to variable v and w onto the diagonal of the square Ω0 × Ω0 are identical.

By the de�nition of the di�erentiability for function g(v, w) we get [7]

g(v + h,w + k) = g(v, w) +∇>
v g(v, w)h +∇>

wg(v, w)k + Ω(v, w, h, k), (3.4)

where Ω(v, w, h, k)/(|h|2 + |k|2)1/2 → 0 as |h|2 + |k|2 → 0. Let w = v and h = k be, then
using (3.3) we get from (3.4)

g(v + h, v + h) = g(v, v) + 2∇>
wg(v, v)h + Ω(v, h), (3.5)

where Ω(v, h)/|h| → 0 as |h| → 0. Since (3.5) is a particular case of (3.4) it means that
gradient-restriction ∇>

wg(v, w)|v=w is the gradient ∇>g(v, v) of function g(v, v), i.e.

2∇>
wg(v, w)|v=w = ∇>g(v, v) ∀v ∈ Ω0. (3.6)

Hence, it proves as follows [6]
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Property 2 The operator 2∇wg(v, w)|v=w is potential, i.e. 2∇>
wg(v, v) = ∇>g(v, v).

This key property play further important role.
We will expand the class of anti-symmetric functions to a class of positive-semide�nite

(skew-symmetric) one and will show that the equilibrium solutions of (1.1) with skew-
symmetric objective functions have saddle property (1.5).

De�nition 1 A function Φ(v, w) from IRn × IRn to IR1 is called positive-semide�nite or
skew-symmetric onto Ω0 × Ω0, if it obeys the inequality

Φ(w,w)− Φ(w, v)− Φ(v, w) + Φ(v, v) ≥ 0 ∀w ∈ Ω0, ∀v ∈ Ω0. (3.7)

The class of skew-symmetric functions is not empty as it includes all anti-symmetric
functions (2.2). If we put in (2.2) F (v, w) = Φ(v, w) and v = w, then we receive Φ(v, v)+
+Φ(v, v) = 0, i.e. the anti-symmetric function is identically equal to zero on diagonal of
square Ω0 × Ω0. If the anti-symmetric function is convex in w, then it follows from (2.2)
that it is concave in v, i.e. in this case Φ(v, w) is saddle-point function.

As an example of the anti-symmetric function we specify the normalized function
Φ(v, w) = L(z, p)− L(x, y), where w = (z, y), v = (x, p) for a saddle-point problem

L(x∗, y) ≤ L(x∗, p∗) ≤ L(z, p∗) ∀z ∈ Q ⊆ Rn, ∀y ∈ P ⊆ Rm. (3.8)

Here x∗, p∗ ∈ Q × P is a saddle point of function L(z, y). Easy to check up that the
normalized function in this example satis�es condition (2.2) [8]. From above it follows that
the skew-symmetric equilibrium problems largely inherit properties saddle-point problems
and include the last.

Note that condition (3.7) in the case of monotonicity for Φ(v, w) in w ∈ Ω0 entails
the monotonicity of gradient-restriction ∇wΦ(v, w)|v=w. Indeed, let function Φ(v, w) be
convex in w, then using the system of convex inequalities

〈∇f(x), y − x〉 ≤ f(y)− f(x) ≤ 〈∇f(y), y − x〉 (3.9)

for all x and y over some set, from (3.7) we have the monotonicity of gradient-restriction

〈∇wΦ(w,w)−∇wΦ(v, v), w − v〉 ≥ 0 ∀v, w ∈ Ω0. (3.10)

Note that if Φ(v, w) = L(z, p)−L(x, y) is taking from (3.8), then (−∇xL(x, y),∇yL(x, y))>

is monotone operator. The latter fact was established in [9].

4 Reduction to double saddle point
We show now that if objective function Φ(v, w) in (1.1) is skew-symmetric, and the func-
tional constraints are induced symmetric vectorial function g(v, w), then a solution of
this problem is subjected to saddle-point property (1.5). Really, using (1.2) from (3.7), if
v = v∗, and symmetry of set M = {v, w | g(v, w) ≤ 0, v, w ∈ Ω0 × Ω0}, we have

Φ(v, v)− Φ(v, v∗) ≥ 0, g(v, v∗) ≤ 0, ∀v ∈ Ω0, (4.1)
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or
Ψ(v, v∗) ≤ 0, g(v, v∗) ≤ 0 ∀v ∈ Ω0. (4.2)

Combining inequality (1.3) and (4.2), we can write

Ψ(v, v∗) ≤ Ψ(v∗, v∗) ≤ Ψ(v∗, w), g(v, v∗) ≤ 0, g(v∗, w) ≤ 0 ∀v, w ∈ Ω0. (4.3)

Obviously, this inequality coincides with (1.5). Thus, the equilibrium solution of (1.1)
with skew-symmetric objective function and symmetric functional constraints satis�es
saddle-point property (1.5).

If a function Ψ(v, w) or Φ(v.w) is di�erentiable in w for any v from (1.2) we have

〈∇wΦ(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω0, g(v∗, w) ≤ 0. (4.4)

Comparing the monotonicity condition (3.10) in v = v∗ and (4.4), we receive

〈∇wΦ(v, v), v − v∗〉 ≥ 0 ∀v ∈ Ω0, g(v, v∗) ≤ 0. (4.5)

We record inequalities (4.4) and (4.5) as the system

〈∇wΦ(v, v), v∗ − v〉 ≤ 〈∇wΦ(v∗, v∗), v∗ − v∗〉 ≤ 〈∇wΦ(v∗, v∗), w − v∗〉,
g(v, v∗) ≤ 0, g(v∗, w) ≤ 0 ∀v, w ∈ Ω0.

(4.6)

Thus, the pair v∗, v∗ is a saddle point for function 〈∇wΦ(v, v), w− v〉 over the symmetric
set M = {v, w | g(v, w) ≤ 0, v, w ∈ Ω0 × Ω0}.

In optimization, the functional constraints are taken into account usually with the
help of Lagrange functions. Obviously, this approach is useful in equilibrium problems
too. To this end we consider analogs Lagrange functions for equilibrium programming
problems

L(v, w, p) = Ψ(v, w) + 〈p, g(v, w)〉 ∀v ∈ Ω0, w ∈ Ω0, p ≥ 0,

and

L1(v, w, p) = 〈∇wΦ(v, v), w − v〉+ 〈p, g(v, w)〉 ∀v ∈ Ω0, w ∈ Ω0, p ≥ 0,

where Ψ(v, w) = Φ(v, w)−Φ(v, v). If admissible set {w | g(v∗, w) ≤ 0, w ∈ Ω0} at v = v∗

satis�es a regularity condition, for example, Slater condition, then problem (1.1) repre-
sents itself a convex programming problem with respect to variable w, and its Lagrange
function, for example, L1(v

∗, w, p) has a saddle point v∗, p∗, which is subjected to the
system of inequalities

L1(v
∗, v∗, p) ≤ L1(v

∗, v∗, p∗) ≤ L1(v
∗, w, p∗) ∀w ≥ Ω0, ∀p ≥ 0. (4.7)

In the case of di�erentiability of function g(v, w) this system of inequalities can be
presented in the form of variational inequalities

〈∇wΦ(v∗, v∗) +∇>
wg(v∗, v∗)p∗, w − v∗〉 ≥ 0 ∀w ∈ Ω0,

〈p− p∗, g(v∗, v∗)〉 ≤ 0 ∀p ≥ 0.
(4.8)

We transform separately second term in the �rst inequality (4.8). Taking into account
the key property of symmetric functions (3.6) and convexity of vectorial function g(v, v)
componently, we have

〈∇>
wg(v∗, v∗)p∗, w − v∗〉 =

1

2
〈p∗,∇g(v∗, v∗)(w − v∗)〉 ≤ 1

2
〈p∗, g(w,w)− g(v∗, v∗)〉 ≥ 0.
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In view of an obtained evaluation we copy the �rst inequality from (4.8) in the form

〈∇wΦ(v∗, v∗), w − v∗〉+
1

2
〈p∗, g(w,w)− g(v∗, v∗)〉 ≥ 0 ∀w ∈ Ω0. (4.9)

If the operator ∇wΦ(v, v) is monotone, then by virtue of (3.10) we get from (4.9)

〈∇wΦ(w, w), w − v∗〉+
1

2
〈p∗, g(w,w)− g(v∗, v∗)〉 ≥ 0 ∀w ∈ Ω0. (4.10)

The �rst inequality from (4.8) and (4.10) on the whole are analog of (4.6) without func-
tional constraints already. The inequality (4.10) is obtained from the monotonicity con-
dition of operator ∇wΦ(v, v). However this inequality can be valid for the non-monotone
operators. It is key property and is underlying the convergence analysis of gradient-type
methods to the equilibrium solutions.

5 Gradient prediction-type method
System of inequalities (4.7) or (4.8) can be presented by means of projection operators in
the form

v∗ = πΩ0(v
∗ − α∇wL1(v

∗, v∗, p∗)), p∗ = π+(p∗ + αg(v∗, v∗)), (5.1)

where π+(. . .), πΩ0(. . .) are the projection operators of some vector into the positive
orthant Rn

+, Ω0 is a convex set, α > 0 is a parameter like steplength. We note that
systems (4.7), (4.8), and (5.1) are equivalent.

Discrepancy, i.e. residual between left-hand and right-hand sides of (5.1), equal to zero
at the point v∗, p∗ and not equal to zero in any point v, p puts a transformation of space
Rn × Rn in itself. The image of this transformation can be considered as vectorial �eld,
where v∗, p∗ is the �xed point. We shall deliver a problem about realization of trajectory
such that a velocity vector of trajectory coincides with a speci�c direction of vector �eld
at given point. The formal problem is described by the following system of di�erential
equations of the form

dv

dt
+ v = πΩ0{v − α∇wL1(v, v, p)},

dp

dt
+ p = π+{p + αg(v, v)}, v(t0) = v0, p(t0) = p0,

where α > 0. To supply convergence of this trajectory to a saddle point of the Lagrange
function L1(v

∗, w, p) at v = v∗ of (1.1) we introduce a additive control in the feed-back
form. Selection of various types of feed-backs control results in various controlled di�e-
rential systems. This technique is rather detailed described in paper [10].

In this article we consider controlled processes of a kind

dv

dt
+ v = πΩ0{v − α∇wL1(v̄, v̄, p̄)}, dp

dt
+ p = π+{p + αg(v̄, v̄)}, (5.2)

where the controls look like

v̄ = πΩ0{v − α∇wL1(v, v, p̄)}, p̄ = π+{p + αg(v, v)}.
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The iterated analog of this system takes the form [2]

p̄n = π+(pn + αg(vn, vn)),

v̄n = πΩ0(v
n − α∇wL1(v

n, vn, p̄n)),

pn+1 = π+(pn + αg(v̄n, v̄n)),

vn+1 = πΩ0(v
n − α∇wL1(v̄

n, v̄n, p̄n)).

The steplength α > 0 in (5.2) is determined from the condition 0 < α < α0, where the
constant α0 will be estimated below. It is supposed also that Lipschitz conditions are
ful�lled

|g(v + h, v + h)− g(v, v)| ≤ |g| |h| (5.3)
for all v ∈ Ω and h ∈ Rn, where |g| is a constant and

|∇wΦ(v + h, v + h)−∇wΦ(v, v)| ≤ |Φ| |h|,
|∇>

wg(v + h, v + h)−∇>
wg(v, v))| ≤ |∇| |h|, (5.4)

for all v ∈ Ω and h ∈ Rn, where |Φ|, |∇| are constants, besides it is supposed also that
|p̄n| ≤ C0 for all n →∞. In view of entered conditions we have evaluations from (5.2)

|ṗ + p− p̄| ≤ α|g(v̄, v̄)− g(v, v)| ≤ α|g| |v̄ − v|, (5.5)

|v̇ + v− v̄| ≤ α|∇wL1(v̄, v̄, p̄)−∇wL1(v, v, p̄)| ≤ α(|Φ|+C0|∇|)|v̄− v| = αC|v̄− v|, (5.6)
where C = |Φ|+C0|∇|. We present the system of equations (5.2) as variational inequalities

〈v̇ + α∇wL1(v̄, v̄, p̄), w − v − v̇〉 ≥ 0 ∀w ∈ Ω0, (5.7)

〈ṗ− αg(v̄, v̄), y − p− ṗ〉 ≥ 0 ∀y ≥ 0, (5.8)
〈v̄ − v + α∇wL1(v, v, p̄), w − v̄〉 ≥ 0 ∀w ∈ Ω0, (5.9)

〈p̄− p− αg(v, v), y − p̄〉 ≥ 0 ∀y ≥ 0. (5.10)
We show that the trajectory of process (5.2) converges monotonically under the norm

of space to one of equilibrium solutions.

Theorem 1 Suppose that a solution set of (1.1) is non-empty, function Φ(v, w) is positive-
semide�nite and convex in w for any v, vector-function g(v, w) is symmetric, di�eren-
tiable, and convex in w for any v, moreover its restriction g(v, w)|v=w on the diagonal
of the square is convex function, |p(t)| ≤ C for all t → ∞, Ω ⊆ IRn is convex closed
set. Then, the trajectory v(t), p(t) of (5.2) with the parameter 0 < α < α0 converges to a
equilibrium solution, i.e. v(t), p(t) → v∗, p∗ as t →∞ monotonically in the norm.

Proof. Putting w = v∗ ∈ Ω∗ in (5.7), we have

〈v̇ + α(∇wΦ(v̄, v̄) +∇>
wg(v̄, v̄)p̄), v∗ − v − v̇〉 ≥ 0. (5.11)

We put w = v + v̇ in (5.9)

〈v̄ − v, v + v̇ − v̄〉+ α〈∇wΦ(v̄, v̄), v + v̇ − v̄〉 − α〈∇wΦ(v̄, v̄)−∇wΦ(v, v), v + v̇ − v̄〉+
+α〈∇>

wg(v̄, v̄)p̄, v + v̇ − v̄〉 − α〈(∇>
wg(v̄, v̄)−∇>

wg(v, v))p̄, v + v̇ − v̄〉 ≥ 0,
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and take into account (5.6)

〈v̄ − v, v + v̇ − v̄〉+ α〈∇wΦ(v̄, v̄), v + v̇ − v̄〉+
+α〈∇>

wg(v̄, v̄)p̄, v + v̇ − v̄〉+ (αC)2|v̄ − v|2 ≥ 0.
(5.12)

We combine both inequalities (5.11) and (5.12)

〈v̇, v∗ − v − v̇〉+ 〈v̄ − v, v + v̇ − v̄〉+ α〈∇wΦ(v̄, v̄), v∗ − v̄〉+
+α〈p̄,∇wg(v̄, v̄)(v∗ − v̄)〉+ (αC)2|v̄ − v|2 ≥ 0.

(5.13)

Taking into account (3.6) and component-wise convexity of function g(v, v), we transform
fourth term from (5.13) separately

〈p̄,∇wg(v̄, v̄)(v∗ − v̄)〉 =
1

2
〈p̄,∇g(v̄, v̄)(v∗ − v̄)〉 ≤ 1

2
〈p̄, g(v∗, v∗)− g(v̄, v̄)〉,

then
〈v̇, v∗ − v − v̇〉+ 〈v̄ − v, v + v̇ − v̄〉+ α〈∇wΦ(v̄, v̄), v∗ − v̄〉+

+(α/2)〈p̄, g(v∗, v∗)− g(v̄, v̄)〉+ (α′)2|v̄ − v|2 ≥ 0.

We put w = v̄ in (4.10), then

〈∇wΦ(v̄, v̄), v̄ − v∗〉+
1

2
〈p∗, g(v̄, v̄)− g(v∗, v∗)〉 ≥ 0.

We combine two last inequalities

〈v̇, v∗−v− v̇〉+〈v̄−v, v+ v̇− v̄〉+ α

2
〈p̄−p∗, g(v∗, v∗)−g(v̄, v̄)〉+(αC)2|v̄−v|2 ≥ 0. (5.14)

Consider inequalities (5.8) and (5.10). We set p = p∗ in (5.8)

〈ṗ, p∗ − p− ṗ〉 − α〈g(v̄, v̄), p∗ − p− v̇〉 ≥ 0,

and y = p + ṗ in (5.10)

〈p̄− p, p + ṗ− p̄〉+ α〈g(v̄, v̄)− g(v, v), p + ṗ− p̄〉 − α〈g(v̄, v̄), p + ṗ− p̄〉 ≥ 0.

We estimate the second term in this inequality by means of (5.3) and (5.6), and add both
inequalities

〈ṗ, p∗ − p− ṗ〉+ 〈p̄− p, p + ṗ− p̄〉+ (α|g|)2|v̄ − v|2 − α〈g(v̄, v̄), p∗ − p̄〉 ≥ 0.

Using relations 〈p̄, g(v∗, v∗)〉 ≤ 0, 〈p∗, g(v∗, v∗)〉 = 0, we rewrite the last inequality in the
form

1

2
〈ṗ, p∗−p−ṗ〉+1

2
〈p̄−p, p+ṗ−p̄〉+α2

2
|g|2|v̄−v|2+α

2
〈g(v∗, v∗)−g(v̄, v̄), p∗−p̄〉 ≥ 0. (5.15)

We combine inequalities (5.14) and (5.15)

〈v̇, v∗−v−v̇〉+〈v̄−v, v+v̇−v̄〉+1

2
〈ṗ, p∗−p−ṗ〉+1

2
〈p̄−p, p+ṗ−p̄〉+α2

(
C2 +

|g|2
2

)
|v̄−v|2 ≥ 0.
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Present the inequality obtained in the kind

〈v̇, v∗ − v〉 +
1

2
〈ṗ, p∗ − p〉 − |v̇|2 − 1

2
|ṗ|2 + α2

(
C2 +

1

2
|g|2

)
|v̄ − v|2+

+ 〈ū− v, v + v̇ − ū〉+ 〈p̄− p, p + ṗ− p̄〉 ≥ 0.
(5.16)

We transform two last scalar products in a left-hand part (5.15) with the help of identities

2〈ū− v, v + v̇ − ū〉 = |v̇|2 − |ū− v|2 − |ū− v − v̇|2,
2〈p̄− p, p + ṗ− p̄〉 = |ṗ|2 − |p̄− p|2 − |p̄− p− ṗ|2.

Then the considered inequality get the form

1

2

d

dt
|v − v∗|2 +

1

2
|v̇|2 +

1

4

d

dt
|p− p∗|2 +

(
1

2
− α2

(
C2 +

1

2
|g|2

))
|v̄ − v|2+

+
1

2
|p̄− p|2 +

1

2
|p̄− p− ṗ|2 ≤ 0.

If α0 = (1/2)− α2(C2 + (1/2)|g|2) > 0, then we integrate inequality obtained from t0 up
to t:

|v − v∗|2 +
1

2
|p− p∗|2 +

t∫

t0

|v̇|2dτ + 2α0

t∫

t0

|v̄ − v|2dτ +

t∫

t0

|p̄− p|2dτ +

t∫

t0

|p̄− p− ṗ|2dτ ≤

≤ |v0 − v∗|2 +
1

2
|p0 − p∗|2.

The monotone decrease of |v(t)−v∗|+(1/2)|p(t)−p∗| follows from an evaluation obtained
and boundedness of trajectory v(t), p(t) we have as well, besides it follows convergence of
all integrals. We prove convergence of trajectory v(t), p(t) to the equilibrium solution of
the problem. By admitting the existence ε > 0 such that |v̇(t)| ≥ ε, |ṗ(t)| ≥ ε, |v−v̄|2 ≥ ε,
|p− p̄|2 ≥ ε for all t ≥ t0, we get the inconsistency to convergence of integrals. Therefore,
there is the subsequence of times moment ti → ∞ such that |v̇(ti)| → 0, |ṗ(ti)| → 0,
|v(ti) − v̄(ti)| → 0. Since v(t), p(t) is bounded, we select once again subsequence of
times, which we also designate ti, such that |v(ti)| → v′, |p(ti)| → p′, |v(ti) − v̄(ti)| → 0,
|v̇(ti)| → 0, |ṗ(ti)| → 0. We consider equation (5.2) for all time moment ti → ∞ and,
passing into a limit, we write out marginal relations

v′ = πΩ0(v
′ − α∇wL1(v

′, v′, p′)), p′ = π+(p′ − αg(v′, v′)).

These equations coincide with (5.1) and, therefore, we have v′ = v∗ ∈ Ω∗, p′ = p∗ ≥ 0.
Thus, any limit point of trajectory v(t) is the solution of (1.1). By virtue of a monotonicity
of decrease of size |v(t)−v∗|+(1/2)|p(t)−p∗| trajectory v(t), p(t) has get the unique limit
point. The theorem is proved.
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