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Abstract. Potential equilibrium problems are considered. The notions of bilinear di�erential
and bi-convexity are introduced. The concept of generalized potentiality is o�ered. The con-
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1. Statement of problem

Let us consider the problem of computing a �xed point v∗ ∈ Ω∗
0 of extreme mapping [7],[8]

v∗ ∈ Argmin{Φ(v∗, w) | w ∈ Ω0}. (1)

Here the function Φ(v, w) is de�ned on the product space Rn × Rn and Ω0 ⊆ Rn is
a convex closed set. We also assume that the extreme (marginal) mapping w(v) ≡
≡ Argmin{Φ(v, w) | w ∈ Ω0} is de�ned for all v ∈ Ω0 and the solution set Ω∗

0 = {v∗ ∈
∈ Ω0 | v∗ ∈ w(v∗)} ⊆ Ω0 of the initial problem is nonempty. According to Kakutani's
�xed point theorem the latter assertion follows from the continuity of Φ(v, w) and the
convexity of Φ(v, w) in w for any v ∈ Ω0, where Ω0 is compact. In this case w(v) is an
upper semi-continuous mapping that maps each point of the convex, compact set Ω0 into
a closed convex subset of Ω0 [9].

By de�nition of (1), any �xed point satis�es the inequality

Φ (v∗, v∗) ≤ Φ (v∗, w) ∀w ∈ Ω0. (2)

Let us introduce the function Ψ(v, w) = Φ(v, w)− Φ(v, v) and use it to present (2) as

Ψ(v∗, w) ≥ 0 ∀w ∈ Ω0. (3)

Inequality (3) is a consequence of (1). But if this inequality is considered as primary
then it is known as Ky Fan's inequality [9] since it is proved in [14] that there exists the
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solution of (3) that is vector v∗. In this case the existence of the �xed point of (1) results
from (3).

Problem (1) can be considered from various standpoints. On the one hand, this
problem is an extreme inclusion, which generalizes the concept of operator equations.
On the other hand, this problem may be considered as a scalar convolution of various
game problems that describe the matching of con�icting interests and/or factors for many
agents. Let us illustrate this by examples.

1. Saddle-point problems [16]. Let L : Rn × Rm → R be a convex-concave function
such that (x∗, p∗) ∈ Q×P is a saddle point of L(z, y). By de�nition it satis�es the system
of inequalities

L(x∗, y) ≤ L(x∗, p∗) ≤ L(z, p∗) ∀z ∈ Q ⊆ Rn, ∀y ∈ P ⊆ Rm. (4)

We introduce a normalized function Φ(v, w) = L(z, p) − L(x, y), where w = (z, y), v =
= (x, p). Then problem (4) can be written easily in new variables in the form (1). Both
formulations are equivalent [4].

2. N-person games with Nash equilibria [23]. Let fi(xi, x−i) be the payo� function
of i-th player, i ∈ I. This function depends both on his own strategy xi ∈ Xi, where
Xi = (xi)i∈I , and on the strategies x−i = (xj)j∈I\i of other players. The equilibrium points
x∗i , i = 1, . . . , n, of an n-person game is the solution to the system of extreme inclusions

x∗i ∈ Argmin{fi(xi, x
∗
−i) | xi ∈ Xi}. (5)

Now we introduce a normalized function

Φ(v, w) =
n∑

i=1

fi(xi, x−i),

where w = (xi), v = (x−i), i = 1, . . . , n, and (xi, x−i) ∈ Ω0. Using this function, we can
rewrite problem (5) as (1). Other examples can be found in [12, 3, 21, 17, 18].

2. Splitting of functions

We select two linear subspaces in the linear space of the real-valued functions Φ(v, w).
Both subspaces are characterized by the following properties

Φ(v, w)− Φ(w, v) = 0 ∀w ∈ Ω0, ∀v ∈ Ω0, (6)
Φ(v, w) + Φ(w, v) = 0 ∀w ∈ Ω0, ∀v ∈ Ω0. (7)

The functions of the �rst subspace are called symmetric; those of the second class,
anti-symmetric. If these functions are de�ned on a square net, we have the conventional
classes of symmetric and anti-symmetric matrices.

Recall that a pair of points with coordinates w, v and v, w is situated symmetrically
concerning the diagonal of the square Ω0 × Ω0, i.e., with respect to the linear manifold
v = w. This allows us to introduce the concept of a transposed function [5]. If we assign
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the value of Φ(w, v) calculated at the point w, v to every point with coordinates v, w, that
is v, w → Φ(w, v), then we obtain the transposed function Φ>(v, w) = Φ(w, v). In terms
of this function conditions (6) and (7) look like

Φ(v, w) = Φ>(v, w), Φ(v, w) = −Φ>(v, w).

Using the obvious relations Φ(v, w) = (Φ>(v, w))>, (Φ1(v, w) + Φ2(v, w))> = Φ>
1 (v, w)+

+Φ>
2 (v, w), we can readily verify that any real function Φ(v, w) can be represented as the

sum
Φ(v, w) = S(v, w) + K(v, w), (8)

where S(v, w) and K(v, w) are symmetric and anti-symmetric functions, respectively.
This expansion is unique, and

S(v, w) =
1

2
(Φ(v, w) + Φ>(v, w)), K(v, w) =

1

2
(Φ(v, w)− Φ>(v, w)). (9)

The classes of symmetric and anti-symmetric functions are subsets of more general
functional classes, namely, of pseudo-symmetric and skew-symmetric functions. In the
following section we will investigate properties of classes of these functions.

3. Pseudo-symmetric functions

Now we shall give the following de�nitions.

DEFINITION 1. A di�erentiable function Φ(v, w) from IRn× IRn in IR1 is called pseudo-
symmetric on Ω0 × Ω0, if there exists a di�erentiable function p(v) such that

∇p(v) = 2∇wΦ(v, w)|w=v ∀v ∈ Ω0, (10)

where ∇p(v) is the gradient of p(v) and ∇wΦ(v, w) is the partial gradient of the function
Φ(v, w) in w. The function p(v) is called the potential for the operator ∇wΦ(v, w) |w=v.

The latter means that there exists function p(w), such that its gradient coincides with
the operator 2∇wΦ(v, w)|w=v.

If the function p(w) is twice continuously di�erentiable, then the Lagrange formula
follows from (10)

p(v + h) = p(v) + 2

1∫

0

〈∇wΦ(v + th, v + th), h〉dt. (11)

On the contrary, if the Jacobi matrix ∇F (v) for the operator F (v) = ∇wΦ(v, w)|w=v

is symmetric for all v ∈ Ω0, then (11) holds and, in this case, operator ∇wΦ(v, v) is
potential [25].

So, if the objective function of (1) satis�es (10) or (11), then the equilibrium problem
is said to be potential.

The set of all pseudo-symmetric functions generates a linear space.
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The pseudo-symmetric functions include all symmetric functions (6). Indeed, if Φ(v, w)
is a di�erentiable function, then we obtain by di�erentiating identity (6) in w:

∇wΦ(v, w) = ∇vΦ(w, v) ∀w ∈ Ω0, ∀v ∈ Ω0. (12)

Let's assume w = v in (12); then we have

∇vΦ(v, v) = ∇wΦ(v, v) ∀v ∈ Ω0. (13)

Thus, we can formulate the following

PROPERTY 1. The restrictions of partial derivatives of symmetric functions onto the
diagonal of the square Ω0 × Ω0 are identical.

By the de�nition of the di�erentiability of Φ(v, w), we get [29]

Φ(v + h,w + k) = Φ(v, w) + 〈∇vΦ(v, w), h〉+ 〈∇wΦ(v, w), k〉+ ω(v, w, h, k), (14)

where ω(v, w, h, k)/(|h|2 + |k|2)1/2 → 0 as |h|2 + |k|2 → 0. Let w = v and h = k; then
with regard to (13) we get from (14)

Φ(v + h, v + h) = Φ(v, v) + 2〈∇wΦ(v, v), h〉+ ω(v, h), (15)

where ω(v, h)/|h| → 0 as |h| → 0. Since formula (15) is a particular case of (14), it means
that the restriction of the gradient ∇wΦ(v, w) on the diagonal of the square Ω0 × Ω0 is
the gradient ∇Φ(v, v) of function Φ(v, v), i.e.

2∇wΦ(v, w)|v=w = ∇Φ(v, v) ∀v ∈ Ω0. (16)

Thus, we prove

PROPERTY 2. If Φ(v, w) is a symmetric function, then the operator ∇wΦ(v, w)|w=v is
potential and coincides with the restriction of the gradient of Φ(v, w) on the diagonal of
the square, i.e. 2∇wΦ(v, w)|w=v = ∇Φ(v, v) = ∇p(v).

The concept of potentiality in the scienti�c literature is considered rather for a long
time. Apparently, one of the �rst article, where the potential was used for the substan-
tiation of asymptotic stability for a gradient method to solve an n-person game, was the
publication [28]. In [15] a close approach has been considered. In one of the recent paper
[22], the concept of potential game was introduced by using Cournot's game as an example
in the following way. Consider the n-person game

x∗i ∈ Argmin{fi(xi, x
∗
−i) | xi ∈ Xi},

with the Nash equilibrium, where fi(xi, x−i) is a payo� function of the i-th player, i ∈
∈ I = {1, 2, . . . , n}, and (xi, x−i) = x ∈ X1 ×X2, . . . ,×Xn, and x−i = (xj)j∈I\i. If there
exists a function p(x1, x2, . . . , xn) such that

∂p(x1, x2, . . . , xn)

∂xi

=
∂fi(x1, x2, . . . , xn)

∂xi

, i ∈ I, (17)
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then the game is called potential. In other words, partial derivatives of payo� functions
in own variables of the players build the gradient of some function p(x1, x2, . . . , xn), which
is called the potential. We shall present the right-hand side of (17) in the form

∂fi(x1, x2, . . . , xn)

∂xi

=
∂fi(xi, x−i)

∂xi

, i ∈ I, (18)

and we introduce a normalized function for the considered game

Φ(v, w) =
n∑

i=1

fi(xi, x−i),

where w = (xi), v = (x−i), i = 1, . . . , n and (xi, x−i) ∈ Ω0. Since the function Φ(v, w) is
separable in w and the set X has a block structure, we have

∇wΦ(v, w) |v=w=

(
∂fi(xi, x−i)

∂xi

)>
, i ∈ I, (19)

where (a)> is a vector-column. Comparing (17), (18) and (19), we have

∇P (v) = ∇wΦ(v, w) |v=w .

Thus, potential games in sense of (17) are potential games in sense of (10).

4. Potential equilibrium problems

We reveal now that if the objective function of (1) is pseudo-symmetric onto Ω0 × Ω0,
then this problem can be considered as an optimization problem. Indeed, from (2) we
have

〈∇wΦ(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω0. (20)
By virtue of (10) from (20) we get

〈∇p(v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω0. (21)

If the operator ∇p(v) is monotone, then p(v) is a convex function over Ω0 and v∗ ∈ Ω∗

is its optimal solution. In this case equilibrium potential problem (1) can be replaced by
optimization of the function p(v) over Ω0. The function p(v), generally speaking, is not
convex and condition (21) is necessary only. If Φ(v∗, w) is a convex function, then v∗ is
an equilibrium solution of (1) independently from the convexity properties of p(v).

It is well known that variational inequality (20) is equivalent to solving the operator
equation [26]

v∗ = πΩ0(v
∗ − α∇wΦ(v∗, v∗)), α > 0, (22)

where πΩ0(. . .) is the projection operator of a certain vector onto the set Ω0. Both formulas
are the necessary conditions for the minimum of the function Φ(v∗, w) on the set Ω0.

The residual πΩ0(v− α∇wΦ(v, v))− v of equation (22) always generates a vector �eld
[6] of the kind F : v → πΩ0(v − α∇wΦ(v, v)) − v. This map takes the value of zero at
solution points of problem (1). The latter means the solutions of (22) are �xed points. It
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is possible to construct various iterative or di�erential processes at any vector �eld such
that trajectories of these processes converge to �xed points.

To solve operator equation (22) one can use the gradient projection method. But in
this paper we deal with the gradient prediction-type projection method [8] from reasons
of symmetry

ūn = πΩ0(v
n − α∇wΦ(vn, vn)), vn+1 = πΩ0(v

n − α∇wΦ(ūn, ūn)). (23)

This method as applied to saddle-point problems was �rst described in [19]. Another
modi�cation of this method, given by

ūn = πΩ0(v
n − α∇wΦ(vn, vn)), vn+1 = πΩ0(v

n − α∇wΦ(ūn, vn)).

was independently proposed in [1].
It required that the operator ∇wΦ(v, v) = ∇p(v) satis�es to the Lipschitz condition

|p(v + h)− p(v)− 〈∇p(v), h〉| ≤ 1

2
L|h|2 (24)

for all v + h and v from a certain set, where L is a constant. Inequality (24) is equivalent
to

|∇p(v + h, v + h)−∇p(v, v)| ≤ L|h|. (25)
The Lipschitz constants in both cases are the same.

To prove the convergence of process (23) we need an estimate of the deviation of the
vectors ūn and vn+1. Taking into account (25), we obtain from (23)

|ūn − vn+1| ≤ α|∇wΦ(vn, vn)−∇wΦ(ūn, ūn)| ≤ αL|vn − ūn|. (26)

We represent the operator equations (23) in the form of variational inequalities

〈ūn − vn + α∇wΦ(vn, vn), w − ūn〉 ≥ 0 ∀w ∈ Ω0 (27)

and
〈vn+1 − vn + α∇wΦ(ūn, ūn), w − vn+1〉 ≥ 0 ∀w ∈ Ω0 (28)

and prove the following

THEOREM 1. Suppose that the set Ω0 ⊆ Rn is convex, closed, and bounded; the ob-
jective function Φ(v, w) is pseudo-symmetric (10); its potential obey to the Lipschitz
condition (24). Then, the sequence vn generated by method (23) with the parameter
0 < α < 1/(

√
2L) has a nonempty set of accumulation points. Each accumulation point

is a equilibrium solution of problem (1).

Proof. By putting w = vn in (27) and w = ūn in (28), we get

|ūn − vn|2 + α〈∇wΦ(vn, vn), vn+1 − vn〉 − α〈∇wΦ(vn, vn), vn+1 − ūn〉 ≤ 0,

〈vn+1 − vn, vn+1 − ūn〉+ α〈∇wΦ(ūn, ūn), vn+1 − ūn〉 ≤ 0.

Adding up these inequalities

〈vn+1 − vn, vn+1 − ūn〉 + |vn − ūn|2 + α〈∇wΦ(vn, vn), vn+1 − vn〉+
+ α〈∇wΦ(ūn, ūn)−∇wΦ(vn, vn), vn+1 − ūn〉 ≤ 0,

(29)
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and using the identity

|x1 − x3|2 = |x1 − x2|2 + 2〈x1 − x2, x2 − x3〉+ |x2 − x3|2, (30)

we expand the scalar product on the left-hand side of (29) into a sum of squares. Then,
using (25) and (26), we get

|vn+1 − vn|2 + |vn+1 − ūn|2 − |vn − ūn|2 + 2|ūn − vn|2+
+ 2α〈∇wΦ(vn, vn), vn+1 − vn〉 − 2(αL)2|vn − ūn|2 ≤ 0.

(31)

Using (24), we present (31) as

2αp(vn+1) + d1|vn+1 − vn|2 + |vn+1 − ūn|2 + d2|vn − ūn|2 ≤ 2αp(vn),

where d1 = 1 − αL > 0, d2 = 1 − 2(αL)2 > 0 since α < 1/(
√

2L). The latter inequality
implies that the sequence vn monotonically decreases in the sense of the quantity p(vn).

Let us sum up the system of inequalities obtained from n = 0 to n = N

2αp(vn+1) + d1

k=N∑

k=0

|vk+1 − vk|2 +
k=N∑

k=0

|vk+1 − ūk|2 + d2

k=N∑

k=0

|vk − ūk|2 ≤ 2αp(v0).

Hence, the series below are convergent
∞∑

n=0

|vn+1 − vn|2 < ∞,
∞∑

n=0

|vn+1 − ūn|2 < ∞,
∞∑

n=0

|vn − ūn|2 < ∞.

Consequently,

|vn+1 − vn| → 0, |vn+1 − ūn| → 0, |vn − ūn| → 0, n →∞. (32)

Since Ω0 is a bounded set, the sequence vn is bounded; i.e., there exist an element v′

such that vni → v′ as ni →∞, and this follows from (32) we have: vni+1 → v′, ūni → v′.
Consider any inequality (27) or (28) for all ni →∞. Passing to the limit, we obtain

〈∇wΦ(v′, v′), w − v′〉 ≥ 0 ∀w ∈ Ω0. (33)

Since Φ(v, w) is convex in w for any v, the inequality

Φ(v′, w)− Φ(v′, v′) ≥ 〈∇wΦ(v′, v′), w − v′〉 ∀w ∈ Ω0 (34)

holds. Taking into account (33), we have

Φ(v′, v′) ≤ Φ(v′, w) ∀w ∈ Ω0.

The inequality obtained, evidently, coincides with (2). The latter it means v′ = v∗ ∈ Ω∗
0,

i.e., any limit point of vn is an equilibrium solution to the problem. The theorem is
proved.

The assertion proven can be considered as the existence theorem for solution of equi-
librium problem (1).
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5. Skew-symmetric functions and bilinear
di�erential

We introduce the following

DEFINITION 2. A function Φ(v, w) from IRn× IRn to IR1 is called skew-symmetric onto
Ω0 × Ω0, if it obeys the inequality [7]

Φ(w,w)− Φ(w, v)− Φ(v, w) + Φ(v, v) ≥ 0 ∀w ∈ Ω0, ∀v ∈ Ω0. (35)

If the inequality

Φ(w, w)− Φ(w, v∗)− Φ(v∗, w) + Φ(v∗, v∗) ≥ 0 ∀w ∈ Ω0 (36)

holds, where v∗ ∈ Ω∗, then the function Φ(v, w) shall be called skew-symmetric relative
to v∗.

The class of skew-symmetric functions is non-empty, as it includes in itself all anti-
symmetric functions (7). Indeed, put v = w in (7), then Φ(v, v) + Φ(v, v) = 0, i.e.,
Φ(v, v) = Φ(w, w) = 0. Adding Φ(v, v) and Φ(w, w) to (7), we obtain (35). If the anti-
symmetric function is convex in w, then it follows from (7) that it is concave in v. In
this case Φ(v, w) is a saddle point function. To illustrate it we consider the normalized
function Φ(v, w) for the saddle-point problem, which satis�es the relations [2]

Φ(v, v) = 0, Φ(v, w) + Φ(w, v) = 0 ∀w ∈ Ω0, v ∈ Ω0.

Note that the authors from [10] earlier attempted to extend these conditions to non-
saddle-point problems.

From above it follows that the skew-symmetric equilibrium problems largely inherit
the properties of saddle-point problems and include them itself. In connection with this
we introduce the following

DEFINITION 3. A function Φ(v, w) from IRn × IRn in IR1 is called bidi�erentiable at
point v, v ∈ Ω0 × Ω0, if there exists a quadratic matrix D(v, v) such that

{Φ(v +h, v +k)−Φ(v +h, v)}−{Φ(v, v +k)−Φ(v, v)} = 〈D(v, v)h, k〉+ω(v, h, k), (37)

where ω(v, h, k)/|h| |k| → 0 as |h|, |k| → 0 for all h ∈ IRn, k ∈ IRn.
Bilinear function 〈D(v, v)h, k〉 is called the bilinear di�erential of function Φ(v, v) at

the point v, v ∈ Ω0 × Ω0.

The function Φ(v, w) is called bidi�erentiable on the diagonal of the square Ω0 × Ω0,
if it is di�erentiable for all points of this set.

It is not hard to see that if the function Φ(v, w) = ϕ1(v) + ϕ2(w) is separable with
respect to their variables, then the bidi�erential of such a function is equal to zero, i.e.
D(v, v) = 0, (dij(v, v) = 0 ∀i, j ∈ N).

The introduced di�erential has a simple geometric sense and enables to estimate the
deviation in v of two increments in w from each other, namely, {Φ(v+h, v+k)−Φ(v+h, v)}
and {Φ(v, v + k)− Φ(v, v)} under transition from a point v, v to the point v + h, v + k.
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The bilinear di�erential represents itself a saddle tangent surface and describes some
singularities of the behavior of the double increment of Φ(v, w) with respect to this dif-
ferential.

There is the question, whether the bilinear di�erential introduced corresponds with
classical one in the case of di�erentiability Φ(v, w)? We show that if Φ(v, w) is a twice
continuously di�erentiable function, then matrix D(v, v) coincides with the restriction of
the mixed derivative matrix ∂2Φ(v, w)

∂w, ∂v
|v=w on the diagonal of the square for the second

di�erential.
So, if the function f(x) is twice continuously di�erentiable, then Taylor's formula [29]

takes place
f(x + y)− f(x) = 〈∇f(x), y〉+

1

2
〈∇2f(x + ϑy)y, y〉, (38)

where 0 ≤ ϑ ≤ 1. Using this formula, it is possible to get the expansion for the �rst of
three summands Φ(v + εh, v + εk), Φ(v + εh, v) and Φ(v, v + εk) from (37), assuming
that the increments h and k have the kind of εh and εk, where ε > 0. Then, if obtained
expansions are substituted for (37), then after mutual reductions of terms with di�erent
signs this leads to

1

2
ε2

〈{
∇2

vvΦ(v + ϑ1εh, v + ϑ1εk)−∇2
vvΦ(v + ϑ2εh, v)

}
h, h

〉
+

+ ε2〈∇2
wvΦ(v + ϑ1εh, v + ϑ1εk)h, k〉+

+
1

2
ε2

〈{
∇2

wwΦ(v + ϑ1εh, v + ϑ1εk)−∇2
wwΦ(v, v + ϑ3εk)

}
k, k

〉
=

= ε2〈D(v, v)h, k〉+ ω(v, εh, εk).

(39)

Taking into account the continuity of the operators ∇2
vvΦ(v, w), ∇2

wwΦ(v, w) and
ω(v, εh, εk)/ε2 → 0, as ε → 0, ε > 0, we have 〈∇2

wvΦ(v, v)h, k〉 = 〈D(v, v)h, k〉 ∀h, k ∈
∈ IRn. Hence

∇2
wvΦ(v, v) = D(v, v) ∀v ∈ Ω0. (40)

Thus, it is possible to formulate the following statement.

PROPERTY 3. If the objective function Φ(v, w) is twice continuously di�erentiable, then
the matrix D(v, v) of the bilinear di�erential coincides with the restriction of the matrix
of mixed derivatives of the second di�erential on the main diagonal.

Using (40), we calculate the bilinear di�erential for the normalized (smooth) function
of saddle-point problem (4). Indeed, as Φ(v, w) = L(z, p) − L(x, y), where w = (z, y),
v = (x, p), then

∂Φ(v, w)

∂w
=

(
∂L(z, p)

∂z
, −∂L(x, y)

∂y

)>

where (·, ·)> is a vector-column. Further

∂2Φ(v, w)

∂w∂v
=




0
∂2L(z, p)

∂z∂p

−∂2L(x, y)

∂y∂x
0
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If v = w, then by virtue of ∂2L(x, p)/∂x∂p = ∂2L(x, p)/∂p∂x, we have

∂2Φ(v, w)

∂w∂v
|v=w =




0
∂2L(x, p)

∂x∂p

−∂2L(x, p)

∂p∂x
0


 =

∂2L(x, p)

∂x∂p

(
0 1
−1 0

)
.

From here
〈∇2

wvΦ(v, v)h, h〉 = 〈D(v, v)h, h〉 = 0 ∀v ∈ Ω0, h ∈ Rn. (41)
We assured that the matrix D(v, v) in (37) for a symmetric function (6) is symmetric

and for anti-symmetric function (7) is anti-symmetric. Indeed, let Φ(v, w) be a symmetric
function, consider expansion (37) again

Φ(v+εh, v+εk)−Φ(v+εh, v)−Φ(v, v+εk)+Φ(v, v) = ε2〈D(v, v)h, k〉+ω(v, εh, εk) (42)

for all v ∈ Ω0, h ∈ Rn, k ∈ Rn, ε > 0. Since (42) is correct for any pair of variables h and
k, we interchange them and obtain

Φ(v+εk, v+εh)−Φ(v, v+εh)−Φ(v+εk, v)+Φ(v, v)} = ε2〈D(v, v)k, h〉+ω(v, εk, εh). (43)

By virtue of the symmetry of functions, the left-hand sides (42) and (43) are equal,
therefore, their right-hand sides are equal as well

〈D(v, v)h, k〉 = 〈D>(v, v)h, k〉+ (ω(v, εh, εk)− ω(v, εk, εh))/ε2.

From here, we get as ε → 0

D(v, v) = D>(v, v) ∀v ∈ Ω0.

Let Φ(v, w) be an anti-symmetric function,i.e., it obeys condition (7). Then we add
inequalities (42) and (43). By virtue of the anti-symmetry condition, we get

0 = 〈(D(v, v) + D>(v, v))h, k〉+ (ω(v, εh, εk) + ω(v, εk, εh))/ε2.

Hence, as ε → 0, we have

D(v, v) = −D>(v, v) ∀v ∈ Ω0.

From the last equality, in particular, it follows 〈D(v, v)h, h〉 = 0 ∀h ∈ IRn.

PROPERTY 4. If the function Φ(v, w) is symmetric, then D(v, v) is a symmetric matrix
for all v ∈ Ω0, if Φ(v, w) is an anti-symmetric function, then D(v, v) is an anti-symmetric
matrix for all v ∈ Ω0.

The conversion, generally speaking, is not true. Indeed, let Φ(v, w) be a symmetric
function, then the function of the kind Φ(v, w) + ϕ(v) is not symmetric but their mixed
derivatives (i.e., bilinear di�erentials) coincide.

From (11) we know that if the Jacobian ∇F (v) of the operator F (v) = ∇wΦ(v, w)|w=v

is a symmetric matrix, then there exists the potential P (v) such that its gradient co-
incides with the operator, i.e., ∇P (v) = F (v) = ∇wΦ(v, v). We put a question. Is it

10



possible to describe the potential condition in term of bilinear di�erential? Taking into
account dv = dw we rewrite the di�erential of operator d(F (v)) = d(∇wΦ(v, w)|w=v) =
= (∇2

wvΦ(v, w)dv+∇2
wwΦ(v, w)dw)|w=v = (∇2

wvΦ(v, v)+∇2
wwΦ(v, v))dv. The latter means

that Jacobian ∇F (v) has the form D(v, v)+∇2
wwΦ(v, v). The matrix ∇2

wwΦ(v, v) is sym-
metric as the diagonal submatrix of second di�erential d2Φ(v, w) and, consequently, the
symmetry property of matrix ∇F (v) is determined completely by the property of sym-
metry for the bilinear di�erential D(v, v). So, the following can be established

PROPERTY 5. If the bilinear di�erential D(v, v) is a symmetric matrix for all v ∈ Ω0,
then the function Φ(v, w) is pseudo-symmetric and the operator ∇wΦ(v, v) is potential.

State yet the following property of function Φ(v, w). Let this function be skew-
symmetric; then from (42) we have as h = k

〈D(v, v)h, h〉+ ω(v, εh, εh)/ε2 ≥ 0 ∀h ∈ IRn.

Hence, 〈D(v, v)h, h〉 ≥ 0 ∀h ∈ IRn and v ∈ Ω0 as ε → 0.

PROPERTY 6. If the function Φ(v, w) is skew-symmetric, then D(v, v) is a positive-
semide�nite matrix for all v ∈ Ω0.

The class of skew-symmetric functions can be described in the other way. Using the
entered bilinear di�erential, we introduce a class of biconvex functions.

DEFINITION 4. If in (37) the value ω(v, h, k) ≥ 0, then the function Φ(v, w) is called
biconvex on Ω0 × Ω0. This function satis�es the condition

{Φ(v + h, v + k)− Φ(v + h, v)} − {Φ(v, v + k)− Φ(v, v)} ≥ 〈D(v, v)h, k〉 (44)

∀v ∈ Ω0 and h, k ∈ Rn. If D(v, v) ≥ 0, then the function is called positive biconvex.

The introduced class of biconvex function is nonempty because the normalized func-
tions of saddle-point problems are biconvex by virtue of condition (41).

LEMMA 1. The classes of bidi�erentiable skew-symmetric and positive biconvex functions
coincide.

Proof. Indeed, let Φ(v, w) be a skew-symmetric function in the sense of (35). Assuming
that the increment in (37) looks like εh and k = h, we have

〈D(v, v)h, h〉+ ω(v, εh, εh)/ε2 ≥ 0 ∀h ∈ Ω0.

Hence, as ε → 0, we obtain 〈D(v, v)h, h〉 ≥ 0 ∀h ∈ IRn and v ∈ Ω0.
On the contrary, if the value 〈D(v, v)h, h〉 ≥ 0 ∀h ∈ IRn and v ∈ Ω0 in (37), then the

ful�llment of (35) is obvious. The lemma is proved.

In the general case, if the matrix D(v, v) 6= 0, v ∈ Ω0, then it has the represen-
tation D(v, v) = S(v, v) + K(v, v), where S(v, v) =

1

2
(D(v, v) + D>(v, v)), K(v, v) =

11



=
1

2
(D(v, v)−D>(v, v)), with S(v, v) a symmetric and K(v, v) an anti-symmetric matrix,

i.e., 〈K(v, v)h, h〉 = 0 ∀h ∈ IRn and v ∈ Ω0.
We show that in the case of convexity of function Φ(v, w) in w ∈ Ω0 condition (44)

entail the bimonotonicity of the restriction of partial gradient ∇wΦ(v, v) in w on the
diagonal of the square Ω0 × Ω0. Indeed, let the function Φ(v, w) be convex in w, then
using the system of convex inequalities

〈∇f(x), y − x〉 ≤ f(y)− f(x) ≤ 〈∇f(y), y − x〉 (45)

for all x and y on some set from (44), we have

〈∇wΦ(v + h, v + h)−∇wΦ(v, v), h〉 ≥ 〈D(v, v)h, h〉 ∀v ∈ Ω0, h ∈ Rn. (46)

If the condition 〈D(v, v)h, h〉 ≥ 0 ∀h ∈ IRn holds, then monotonicity of gradient-
restriction follows from (46)

〈∇wΦ(v + h, v + h)−∇wΦ(v, v), h〉 ≥ 0 ∀v ∈ Ω0, h ∈ Rn. (47)

This inequality can be derived from (35), if one uses the convexity condition (45). Note
that, if Φ(v, w) is the normalized function of saddle-point problem (4), then (−∇xL(x, y),
∇yL(x, y))> is a monotone operator. The latter fact follows from (47) and was established
yet in [27].

We consider another useful inequality which allows us to estimate the growth rate of
a function Φ(v, w) in a neighborhood of a point v, w ∈ Ω0 × Ω0

|{Φ(w + h, v + k)− Φ(w + h, v)} − {Φ(w, v + k)− Φ(w, v)}| ≤ L|h| |k| (48)

for all w, v ∈ Ω0, h ∈ Rn, k ∈ Rn, where L is a constant. The class of functions satisfying
condition (48) is nonempty [7].

Now, we show that the classes of pseudo-symmetric and skew-symmetric functions
have a nonempty intersection.

It was stated previously that the symmetric functions possess the potential property.
But some of them are also skew-symmetric.

Indeed, consider a subset of functions subject to the condition:

Φ(v, w) ≤
√

Φ(w, w)Φ(v, v) ∀v, w ∈ Ω0 × Ω0.

Let us write out an expression similar to the left-hand side of (35). Using (6) and the
condition introduced, we rewrite this expression to obtain:

Φ(w,w)− Φ(w, v)− Φ(v, w) + Φ(v, v) = Φ(w,w)− 2Φ(w, v) + Φ(v, v) ≥
≥ Φ(w,w)− 2

√
Φ(w,w)Φ(v, v) + Φ(v, v) = (

√
Φ(w, w)−

√
Φ(v, v))2 ≥ 0 ∀v, w ∈ Ω0,

i.e., the function Φ(v, w) obeys the skew-symmetric condition. From here, it follows that
if Φ(v, w) is convex in w for any v ∈ Ω0, then ∇wΦ(v, v) is a monotone operator.

12



6. Generalized or saddle-point potentiality

The expansion (8) shows that any objective function of(1) can be uniquely presented as
sum of symmetric and anti-symmetric functions. However, it is very reasonable to expand
the class of these functions up to the class of pseudo-symmetric and skew-symmetric
functions. Both classes are overlapping and the expansion (8) is not unique in these classes
already. The last circumstance can appear useful as gives capability to select elements of
expansion with the necessary properties, for example, (quasi-, pseudo-) convexity. Thus,
we shall consider the functions S(v, w) and K(v, w) in expansion (8) as pseudo-symmetric
and skew-symmetric ones. From (8) we have

∇wΦ(v, w)|v=w = ∇wS(v, w)|v=w +∇wK(v, w)|v=w. (49)
Using the pseudo-symmetric condition (10), we present equality (49) in the form

∇wΦ(v, v) =
1

2
∇p(v) +∇wK(v, v). (50)

Recall that a �xed point of (1) satis�es inequality (20). Considering (50), this inequa-
lity can be written as

〈1
2
∇p(v∗) +∇wK(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω0. (51)

This inequality is necessary and in the case of a convex function p(w) + K(v∗, w) it is a
su�cient condition for a minimum of the problem

v∗ ∈ Argmin{P (v∗, w) =
1

2
p(w) + K(v∗, w) | w ∈ Ω0}. (52)

Hence, we obtain two equilibrium problems (1) and (52) such that the necessary
conditions (20) and (51) coincide because of the equality∇wΦ(v, w)|w=v = ∇wP (v, w)|w=v.
In the sequel both operators we will call as the gradient-restrictions.

EXAMPLE 1. If the objective function of (1) is bilinear, i.e., 〈Fv, w〉 = 〈Sv, w〉 +
〈Kv, w〉, and matrix F has unique presentation F = S+K, where S and K are symmetric
and anti-symmetric matrices, then the skew-symmetric function P (v, w) has the form
〈Pv, w〉 =

1

2
〈Sw,w〉+ 〈Kv, w〉.

Because the necessary condition of (1) and (52) concur, the convergence of any method
for solving (1) depend on the properties of the gradient-restriction ∇wP (v, w)|w=v for
skew-symmetric function P (v, w). From the reasoning of previous section we know that
if function P (v, w) is convex in w for any v, then the operator ∇wP (v, v) is monotone.
The monotonicity is rather a hard condition for this operator. Therefore any possibility
to relax this demand is of interest.

The procedure of generalization is performed in two directions: we consider pseudo-
skew-symmetry instead of skew-symmetry and pseudo-convexity and quasi-convexity in-
stead of convexity.

DEFINITION 5. The bifunction P (v, w) from IRn×IRn into IR1 is pseudo-skew-symmetric
on Ω0 × Ω0 if, for every pair of distinct points w ∈ Ω0 and v ∈ Ω0, we have

P (v, w)− P (v, v) ≥ 0 implies P (w,w)− P (w, v) ≥ 0. (53)
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It is not hard to check up that any skew-symmetric bifunction (35) satis�es the pseudo-
skew-symmetric condition (53). The de�nition introduced enlarges the analogous notion
from [11].

Put in remembrance the de�nitions of pseudo-convexity and quasi-convexity.

DEFINITION 6. A di�erentiable function f(v) on a convex subset Q ∈ Rn, is pseudo-
convex [20] if, for every pair of distinct points w ∈ Q, v ∈ Q, we have

〈∇f(v), w − v〉 ≥ 0 implies f(w)− f(v) ≥ 0. (54)

DEFINITION 7. A di�erentiable function f(v) on a convex subset Q ∈ Rn, is quasi-
convex [20, 24] if, for every pair of distinct points w ∈ Q, v ∈ Q, we have

f(w)− f(v) ≤ 0 implies 〈∇f(v), w − v〉 ≤ 0. (55)

In [20, 13] it is proved that any pseudo-convex function is quasi-convex, i.e., from (54)
follows (55).

Assuming that the function P (v, w) is pseudo-convex in w for any v, then necessary
condition (51) entails:

〈∇wP (v∗, v∗), w − v∗〉 ≥ 0 implies P (v∗, w)− P (v∗, v∗) ≥ 0 ∀w ∈ Ω0. (56)

From (56) and (53) as v = v∗ it follows

P (w,w)− P (w, v∗) ≥ 0 ∀w ∈ Ω0. (57)

We introduce the function Ψ(v, w) = P (v, w) − P (v, v) and the last two inequalities
(56) and (57) can be presented as in the form

Ψ(v, v∗) ≤ Ψ(v∗, v∗) ≤ Ψ(v∗, w) ∀w ∈ Ω0. (58)

Hence, this establishes that, if v∗ is equilibrium solution, then the pair v∗, v∗ is a saddle
point for function Ψ(v, w).

Applying this to a solution v∗ of variational inequality

〈F (v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω0,

we come to the following

DEFINITION 8. An operator F (v) : Ω0 → Rn is called a saddle-point potential, if there
exists a function Ψ(v, w) = P (v, w) − P (v, v) di�erentiable in w for any v such that its
gradient-restriction coincides with given operator

∇wΨ(v, w)|w=v = F (v) ∀v ∈ Ω0, (59)
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and pair v∗, v∗ is a saddle point for Ψ(v, w), i.e., it satis�es the condition (58).

By virtue of (50) the operator ∇wΦ(v, w)|w=v of equilibrium problem (1) with skew-
symmetric function Φ(v, w) is always generalized-potential. This situation can be consid-
ered as likeness to optimization, where the gradient is always a potential operator.

Consequently, one can say that the establishment of saddle-point potential gives
capabilities to convert the equilibrium problem to the saddle-point problem, at that
Ψ(v∗, v∗) = 0. Note that the function Ψ(v, w) in general case is not convex-concave
though Φ(v, w) may be convex-concave. This saddle-point factor will be used for de-
signing methods for computing equilibria. However under reasoning of convergence of
gradient-type methods we need to use a gradient analog of (58).

Since, by de�nition, the function P (v, w) is pseudo-convex in w for any v, this function,
it was noted previously, is quasi-convex in w for any v. It means that from (57), seeing
(55), we have

〈∇wP (w,w), w − v∗〉 ≥ 0 ∀w ∈ Ω0.

Taking into account that ∇wP (v, v) =
1

2
∇p(v) +∇wK(v, v), we combine the inequality

obtained to (51), then

〈∇wP (w, w), v∗−w〉 ≤ 〈∇wP (v∗, v∗), v∗−v∗〉 ≤ 〈∇wP (v∗, v∗), w−v∗〉 ∀w ∈ Ω0, (60)

i.e., v∗, v∗ is saddle point for function 〈∇wP (v, v), w−v〉. From (60), in particular, on the
strength ∇wΦ(v, w)|w=v = ∇wP (v, w)|w=v we have

〈∇wΦ(w,w), w − v∗〉 ≥ 0 ∀w ∈ Ω0. (61)

This is the key condition for convergence of gradient-type methods.
Accordingly, if the function Φ(v, w) from (1) is skew-symmetric, then v∗, v∗ is its saddle

point. If this function is not skew-symmetric, then there exists a saddle-point potential
P (v, w) such that v∗, v∗ is a saddle point provided that Ψ(v, w) is pseudo-convex in w for all
v. Furthermore, this point is a saddle point for a function of the form 〈∇wP (v, v), w− v〉.

There are classes of skew-symmetric functions Ψ(v, w) and accordingly equilibrium
problems answering to these functions, whose solutions satisfy more restrictive inequalities
than (58), namely (recall that Ψ(v∗, v∗) = 0)

Ψ(w, v∗) ≤ −γ|w − v∗|1+ν ∀w ∈ Ω0, (62)

where v∗ ∈ Ω∗ is the solution of problem, γ ≥ 0 and ν ∈ [0,∞] are parameters. We
rewrite (62) in the form

P (w,w)− P (w, v∗) ≥ γ|w − v∗|1+ν ∀w ∈ Ω0. (63)

The inequality obtained we shall call as a condition of the sharpness for a skew-symmetric
equilibrium. If γ > 0, then with ν = 0 we have the sharp equilibrium, and with ν = 1
quadratic equilibrium. If γ = 0, we get the left-hand inequality in (58) (see [7, 8]).
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7. Generalized potential equilibrium problems

In section 4 we investigated the convergence conditions of gradient prediction-type method
(23) for potential equilibrium problems. In this section we discuss the convergence of this
method for generalized potential equilibrium problems. Thereby it is supposed that the
generalized potential, which exists always, has some additional convexity properties in
the optimization variable.

Therefore, it is supposed additionally that the gradient-restriction to Φ(v, w) satis�es
the Lipschitz condition (25)

|∇wΦ(v + h, v + h)−∇wΦ(v, v)| ≤ L|h| ∀v ∈ Ω0, h ∈ Rn. (64)

Prove the following

THEOREM 2. Suppose that the set Ω0 ∈ Rn is convex and closed; the objective function
Φ(v, w) is convex in w for any v, di�erentiable and its gradient-restriction ∇wΦ(v, w)|w=v

satis�es the Lipschitz condition (64); there exists a saddle point potential Ψ(v, w), (i.e., the
skew-symmetric function P (v, w) is pseudo-convex in w for any v). Then, the sequence
vn generated by method (23) with 0 < α < 1/(

√
2L) converges to the solution of the

equilibrium problem (1) monotonically in the norm of the space.

Proof. By putting w = v∗ ∈ Ω∗ in (28), we get

〈vn+1 − vn + α∇wΦ(ūn, ūn), v∗ − vn+1〉 ≥ 0. (65)

Using (26),(64) and (61), we transform apart the following term:

〈∇wΦ(ūn, ūn), v∗ − vn+1〉 = 〈∇wΦ(ūn, ūn), v∗ − ūn〉+
+ 〈∇wΦ(ūn, ūn), ūn − vn+1〉 ≤ 〈∇wΦ(ūn, ūn), v∗ − ūn〉−
− 〈∇wΦ(vn, vn)−∇wΦ(ūn, ūn), ūn − vn+1〉+ 〈∇wΦ(vn, vn), ūn − vn+1〉 ≤
≤ αL2|vn − ūn|2 + 〈∇wΦ(vn, vn), ūn − vn+1〉.

Taking into account the estimate obtained, we rewrite (65) as

〈vn+1 − vn, v∗ − vn+1〉+ (αL)2|vn − ūn|2 + α〈∇wΦ(vn, vn), ūn − vn+1〉 ≥ 0. (66)

Set w = vn+1 in (27) to get

〈ūn − vn, vn+1 − ūn〉+ α〈∇wΦ(vn, vn), vn+1 − ūn〉 ≥ 0. (67)

Adding (66) and (67), then

〈vn+1 − vn, v∗ − vn+1〉+ 〈ūn − vn, vn+1 − ūn〉+ (αL)2|vn − ūn|2 ≥ 0. (68)

The �rst two terms in the obtained inequality we expand by means of identity (30)
into a sum of squares

|vn+1 − v∗|2 + |vn+1 − vn|2 + |vn − ūn|2 + |ūn − vn+1|2 − 2(αL)2|ūn − vn|2 ≤
≤ |vn − v∗|2 + |vn+1 − vn|2.

16



From here
|vn+1 − v∗|2 + d|vn − ūn|2 + |ūn − vn+1|2 ≤ |vn − v∗|2, (69)

where d = 1− 2(αL)2 > 0, since α < 1/(
√

2L). From here, under α < 1/(
√

2L) it follows
the monotone decrease of quantity |vn − v∗|2 as n → ∞. Summing up the inequalities
(69) from n = 1 to n = N , we obtain

|vN+1 − v∗|2 + d
n=N∑

n=1

|vn − ūn|2 +
n=N∑

n=1

|ūn − vn+1|2 ≤ |v0 − v∗|2.

This inequality implies the convergence of the series
n=N∑

n=1

|vn − ūn|2 < ∞,
n=N∑

n=1

|ūn − vn+1|2 < ∞.

Hence
|vn − ūn|2 → 0, |ūn − vn+1|2 → 0, n →∞. (70)

Since the sequences vn and ūn are bounded, there exists a subsequence vni and point v′

such that vni → v′ as ni →∞ and, in addition, vni+1 → v′, ūni → v′.
Let us consider inequality (27) for n = ni. Passing to the limit, we will obtain the

necessary condition (33). The monotonic decrease of the quantity |vn − v∗| guarantees
the uniqueness of the limit point, i.e., the convergence vn → v∗ as n → ∞ to a solution
of variational inequality (33). By virtue of the convexity Φ(v, w) in w for any v the
calculated point is a solution of equilibrium problem (1). The theorem is proved.

Note that this theorem is proved under pseudo-convexity of function P (v, w) in w for
any v. In these conditions the gradient-restriction ∇wΦ(v, w)|w=v = ∇wP (v, w)|w=v, in
general, is not a monotone operator and, consequently, the convergence of method (23) is
proved for the solution of variational inequality (20) with a non-monotone operator.

8. Finite convergence

The estimates for the convergence rate of the gradient prediction-type method (23) de-
pend, as should be expected, on the behavior of the objective function in the neighborhood
of the equilibrium solution. We assume that this function satis�es the sharpness condition
(63) for ν = 0

Φ(w,w)− Φ(w, v∗) ≥ γ|w − v∗| ∀w ∈ Ω0. (71)
Taking into account the convexity (45) of function Φ(v, w) in w for all v from (71), we
have

〈∇wΦ(w, w), v∗ − w〉 ≤ −γ|w − v∗| ∀w ∈ Ω0. (72)
In addition, we assume that the gradient-restriction ∇wΦ(v, v)|w=v satis�es the Lips-

chitz condition (64). Examples of problems satisfying the above sharpness condition can
be found in [7, 8].

THEOREM 3. Suppose that the set Ω0 ∈ Rn is convex and closed; the solution set
(1) is nonempty and satis�es sharpness condition (71), the objective function Φ(v, w) is
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di�erentiable and convex in w for any v, the gradient-restriction ∇wΦ(v, w)|w=v satis�es
Lipschitz condition (64). Then, the sequence vn generated by method (23) with parameter
0 < α < 1/L converges to a solution of (1) in a �nite number of iterations, i.e., there
exists a number n0 such that vn0 is a solution of (1).

Proof. Setting w = v∗ in (28), w = vn+1 in (27), we add these inequalities to obtain

〈vn+1 − vn, v∗ − vn+1〉+ 〈ūn − vn, vn+1 − ūn〉+
+α〈∇wΦ(ūn, ūn)−∇wΦ(vn, vn), ūn − vn+1〉+ α〈∇wΦ(ūn, ūn), v∗ − ūn〉 ≥ 0.

(73)

Transforming the �rst two terms, we estimate the third one using (26) and (64), then

〈vn+1 − vn, v∗ − ūn〉 − |vn+1 − ūn|2 + +(αL)2|ūn − vn|2 + α〈∇wΦ(ūn, ūn), v∗ − ūn〉 ≥ 0.

Using the identity (30), we transform the second term |vn+1 − ūn|2 to get

α〈∇wΦ(ūn, ūn), ūn − v∗〉 + |vn+1 − vn|2 + 2〈vn+1 − vn, vn − ūn〉+
+ d|ūn − vn|2 ≤ 〈vn+1 − vn, v∗ − ūn〉,

where d = 1− (αL)2 > 0, since α < 1/L. From (72) we have

〈∇wΦ(ūn, ūn), ūn − v∗〉 ≥ γ|ūn − v∗|.
In respect to the estimate obtained we rewrite the above inequality

αγ|ūn − v∗|+ |vn+1 − vn|2 + 2〈vn+1 − vn, vn − ūn〉+ d|ūn − vn|2 ≤ 〈vn+1 − vn, v∗ − ūn〉.
We single out a perfect square from the third and fourth terms:

αγ|ūn − v∗| +

∣∣∣∣∣
1√
d
(vn+1 − vn) +

√
d(vn − ūn)

∣∣∣∣∣
2

+

+
(
1− 1

d

)
|vn+1 − vn|2 ≤ 〈vn+1 − vn, v∗ − ūn〉.

Hence, we obtain

αγ|ūn − v∗| ≤ |vn+1 − vn| |v∗ − ūn|+
(

1

d
− 1

)
|vn+1 − vn|2.

Assuming that |ūn − v∗| 6= 0 for all n, we get

αγ ≤ |vn+1 − vn|+
(

1

d
− 1

) |vn+1 − vn|2
|ūn − v∗| . (74)

We will consider inequality (74) later on. Now, we write inequality (69), which is also
valid under the hypotheses of Theorem 3

|vn+1 − v∗|2 + d|vn − ūn|2 + |ūn − vn+1|2 ≤ |vn − v∗|2.
Applying the estimate

1

2
|x1 − x2|2 ≤ |x1 − x3|2 + |x3 − x2|2, (75)
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and observing d < 1, we transform the latter inequality

|vn+1 − v∗|2 +
d

2
|vn+1 − vn|2 ≤ |vn − v∗|2.

Thus
(|vn+1 − v∗| − |vn − v∗|)(|vn+1 − v∗|+ |vn − v∗|) +

d

2
|vn+1 − vn|2 ≤ 0.

We divide this inequality by (|vn+1−v∗|+|vn−v∗|) and take into account the monotonicity
of |vn+1 − v∗| ≤ |vn − v∗| to obtain

|vn+1 − v∗| − |vn − v∗|+ d

4

|vn+1 − vn|2
|vn − v∗| ≤ 0. (76)

Summing up (76) from n = 0 to n = N :

|vN+1 − v∗|2 +
d

4

k=N∑

k=0

|vk+1 − vk|2
|vk − v∗| ≤ |v0 − v∗|2. (77)

Inequality (77) implies
∞∑

k=0

|vk+1 − vk|2
|vk − v∗| < ∞.

Thus,
|vn+1 − vn|2/|vn − v∗| → 0 as n →∞.

Using the triangle inequality, we have

|vn+1 − vn|2
|vn − ūn|+ |ūn − v∗| ≤

|vn+1 − vn|2
|vn − v∗| → 0 as n →∞. (78)

Taking into account (70), we rewrite (78) as

|vn+1 − vn|2/|ūn − v∗| → 0 as n →∞. (79)

Indeed, if (79) is not valid, then there exists a subsequence vni such that

|vni+1 − vni|2/|ūni − v∗| ≥ a > 0

for any ni →∞. Since |vni − ūni| → 0, as ni →∞, we can choose a number ni0 such that
the estimate

|vni0
+1 − vni0 |2/(|vni0 − ūni0 |+ |ūni0 − v∗|) ≥ 1

2
a > 0

holds for any ni ≥ ni0 . However, this contradicts (78).
Returning to inequality (74), we can see that, according to (70), (75) and (79), the

right-hand side of this inequality tends to zero as n increases. On the other hand, it is
bounded by αγ for any n → ∞. To resolve this contradiction, we must assume that the
approval |ūn − v∗| 6= 0 is not valid for any n. Therefore, there exists a number nf , such
that ūnf is a solution to the variational inequality (20). Since the function Φ(v, w) is
convex in w ∈ Ω for any v ∈ Ω, the calculated point is a equilibrium solution of (1), i.e.,
ūnf = v∗ ∈ Ω∗. The theorem is proved.
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9. Convergence at the rate of geometric progression

In this section, we assume that the function Φ(v, v) has a quadratic order of sharpness of
the minimum; i.e., in (63) the parameter ν = 1

Φ(w, w)− Φ(w, v∗) ≥ γ|w − v∗|2 ∀w ∈ Ω0. (80)

In respect that the function Φ(v, w) is convex in w for any v from (80), we have

〈∇wΦ(w, w), v∗ − w〉 ≤ −γ|w − v∗|2 ∀w ∈ Ω0. (81)

The quadratic function Φ(v, v) = 〈Av − b, Av − b〉 with non-degenerate matrix A and
vector b ∈ Rn satis�es this condition [7].

THEOREM 4. Suppose that the set Ω0 ∈ Rn is convex and closed; the solution set of
(1) is nonempty and satis�es sharpness condition (80), the objective function Φ(v, w)
is convex in w for any v, di�erentiable and its the gradient-restriction ∇wΦ(v, w)|w=v

satis�es Lipschitz condition (64). Then, the sequence vn generated by method (23) with
parameter 0 < α < 1/(

√
2L) converges to the solution of (1) at the rate of a geometric

progression; i.e.,

|vn+1 − v∗|2 ≤ q(α)n+1|v0 − v∗|2 asquadn →∞,

where q(α) = (1 + 4(αγ)2/d1 − 2αγ) < 1, d1 = 1 + 2αγ − 2(αL)2.

Proof. Using (30), (26) and (64), we rewrite (73) as

|vn − v∗|2 − |vn+1 − v∗|2 − |vn+1 − ūn|2 − |ūn − vn|2+
+ 2(αLw)2|ūn − vn|2 + 2α〈∇Φ(ūn, ūn), v∗ − ūn〉 ≥ 0.

Applying (81), we get

〈∇wΦ(ūn, ūn), ūn − v∗〉 ≥ γ|ūn − v∗|2.

Therefore,

|vn+1 − v∗|2 + |vn+1 − ūn|2 + d|ūn − vn|2 + 2αγ|ūn − v∗|2 ≤ |vn − v∗|2, (82)

where d = 1− 2(αL)2 > 0, since 0 < α < 1/(
√

2L). Using the identity

|ūn − v∗|2 = |ūn − vn|2 + 2〈ūn − vn, vn − v∗〉+ |vn − v∗|2,

we transform (82)

|vn+1 − v∗|2 + |vn+1 − ūn|2 + d|ūn − vn|2 + 2αγ|ūn − vn|2+
+ 4αγ〈ūn − vn, vn − v∗〉+ 2αγ|vn − v∗|2 ≤ |vn − v∗|2

or
|vn+1 − v∗|2 + |vn+1 − ūn|2 + d1|ūn − vn|2 + 4αγ〈ūn − vn, vn − v∗〉 ≤

≤ (1− 2αγ)|vn − v∗|2
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where d1 = 1 + 2αγ − 2(αL)2. We single out a perfect square from the third and fourth
terms:

|vn+1 − v∗|2 + |vn+1 − ūn|2 +
∣∣∣
√

d1(ū
n − vn) + 2αγ√

d1
(vn − v∗)

∣∣∣
2−

− 4(αγ)2

d1
|vn − v∗|2 ≤ (1− 2αγ)|vn − v∗|2.

As a result, we obtain

|vn+1 − v∗|2 ≤ (1 + 4(αγ)2/d1 − 2αγ)|vn − v∗|2.

Since α < 1/(
√

2L), we have

q(α) = 1 + 4(αγ)2/d1 − 2αγ = 1 + 2αγ
(

2αγ

d1

− 1
)

< 1.

Here 2αγ

d1

− 1 < 0.
Thus, |vn+1 − v∗|2 ≤ q(α)|vn − v∗|2, hence,

|vn+1 − v∗|2 ≤ q(α)n+1|v0 − v∗|2.

The factor q(α) of progression is a function of the parameter α. Minimizing this
parameter on the interval (0, 1/(

√
2L)), we can choose the best value of the progression

factor.
Since the function Φ(v, w) is convex in w ∈ Ω for all v ∈ Ω, the point v∗ is the

equilibrium solution of problem (1). The theorem is proved.

10. Conclusion

In this paper the splitting method of objective function of equilibrium problem on a sum
of symmetric and anti-symmetric functions is o�ered. It is shown that such splitting of
functions results to decomposition of an equilibrium problem on a sum of optimization
and saddle-point problems. The properties of symmetric (pseudo-symmetric) objective
function are investigated and it is shown that equilibrium problems with such objective
functions are, in point of fact, optimization problems. It is established their connec-
tion with potential game problems introduced earlier by D. Monderer and L.S. Shapley
(1993). It is proved that prediction-type gradient method convergence to the solutions of
symmetric equilibrium problems.

We o�ered the extension of anti-symmetric functions up to a class of skew-symmetric
functions. Special technique for operating such functions is advanced. It includes new
concepts of by-di�erentiability, by-convexity and by-monotonicity. Equilibrium problems
with skew-symmetric objective functions generalize concept of saddle-point problems.
Idea of splitting always allows to any objective function of an equilibrium problem assign a
skew-symmetric function such that the gradient-restriction of it coincides with gradient-
restriction of initial function. It enables capabilities for us to introduce concept of a
saddle-point potential for equilibrium problem. In view of this concept the convergence of
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a prediction-type gradient method is proved and estimates of convergence rate are adduced
for the equilibrium problems with a saddle-point potential. The elaborated technique can
be applied to solving a variational inequalities with the non-monotone operators and it
enables to solve some classes of such problems.
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