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1. STATEMENT OF THE PROBLEM

Consider the problem of computing a �xed point of the extremal mapping
v∗ ∈ Argmin{Φ(v∗, w) | w ∈ Ω}, v∗ ∈ Ω∗, (1.1)

where the function Φ(v, w) is de�ned on the product Rn × Rn and Ω ⊂ Rn. We assume that
Φ(v, w) is convex with respect to the variable w ∈ Ω for each chosen v ∈ Ω, the extremal
(marginal) mapping G(v) ≡ argmin{Φ(v, w) | w ∈ Ω} is de�ned for all v ∈ Ω, and the set Ω∗ ⊂ Ω
of solutions to the original problem is nonempty. By (1.1), each point of Ω∗ satis�es the inequality

Φ(v∗, v∗) ≤ Φ(v∗, w) ∀w ∈ Ω, v∗ ∈ Ω∗. (1.2)
If the function Φ(v, w) is di�erentiable with respect to the second variable, then (1.2) is equivalent
to the variational inequality [1]

〈∇Φw(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω, v∗ ∈ Ω∗. (1.3)
where ∇Φw(v, w) is the vector gradient of the function with respect to the second variable.

Inequality (1.2) is related to the existence of a �xed point and has not relation to the stability
of the point, that is, the possibility to get into a small neighborhood of this point by some method.
To specify the stability of the point, we suggest another inequality [2, 3], namely,

Φ(w, v∗) ≤ Φ(w, w) ∀w ∈ Ω, v∗ ∈ Ω∗, (1.4)
which, together with (1.2), generalizes the notion of a saddle point [4, 5]. Indeed, if Φ(w,w) ≡
≡ Φ(v∗, v∗) = const for all w ∈ Ω, i.e., if the function Φ(v, w) is identically equal to the constant
Φ(v∗, v∗) on the diagonal of the square Ω× Ω, then inequality (1.4) becomes

Φ(w, v∗) ≤ Φ(v∗, v∗) ∀w ∈ Ω, v∗ ∈ Ω∗. (1.5)
The system of inequalities (1.2) and (1.5) de�nes a saddle point, in addition, its �rst component
(as well as the second one) is a �xed point.

Inequality (1.4) can be considered as a consequence of the more restrictive inequality
Φ(w, w)− Φ(w, v∗)− Φ(v∗, w) + Φ(v∗, v∗) ≥ 0 ∀w ∈ Ω, v∗ ∈ Ω∗, (1.6)

for all w ∈ Ω and all w∗ ∈ Ω∗. Indeed, by Eqs. (1.2), relation (1.4) directly follows from (1.6).
The aim of the present paper is to prove the convergence of a predictive gradient method to a

solution to problem (1.1) and to obtain estimates for the rate of convergence of this method under
conditions (1.4) and (1.6) and their various modi�cations.
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2. PROBLEMS WITH SKEW-SYMMETRIC GOAL FUNCTION

Below we show that inequalities (1.4) and (1.6) allow one to establish convergence properties
of the considered processes. However, these inequalities are not constructive, since their formal
de�nition contains the unknown vector v∗. Therefore, the validity of inequality (1.4) or (1.6)
cannot be tested for a given particular problem. Hence, we face an important problem of describing
classes of functions Φ(v, w) for which the above inequalities automatically hold. Such classes of
functions exist. Let us describe one of these classes. Consider the class of functions such that

Φ(w, v) + Φ(v, w) ≤ 0 ∀w ∈ Ω, ∀v ∈ Ω. (2.1)

Recall that the points (v, w) and (w, v) are symmetric with respect to the diagonal w = v of the
square. We especially note the case in which (2.1) becomes an equality:

Φ(w, v) + Φ(v, w) = 0 ∀w ∈ Ω, ∀v ∈ Ω. (2.2)

For w = v, it follows from Eq. (2.2) that Φ(w,w) = 0 on the diagonal of the square. If Φ(v, w)
is de�ned on a �nite set of values vi, wj, i = 1, . . . , n, j = 1, . . . , m, then it can be considered as
the matrix Φi,j; in this case, relation (2.2) is reduced to the well-known de�nition of the skew-
symmetric matrix; Φi,j + Φj,i = 0 for all i, j. It is natural to call a function Φ(v, w) with property
(2.2) an skew-symmetric function. Similarly, using the condition

Φ(w, v)− Φ(v, w) = 0 ∀w ∈ Ω, ∀v ∈ Ω (2.3)

one can introduce the notion of a symmetric function Φ(v, w). If to the point (v, w) we assign the
value of the function Φ(·, ·) at the point (w, v), then we obtain the function that can be called
the transposed function Φ>(v, w). In terms of this function, conditions (2.2) and (2.3) become
Φ(v, w) = −Φ>(v, w) and Φ(v, w) = Φ>(v, w), respectively. We can readily verify that any real
function Φ(v, w) can be represented in the form of the sum Φ(v, w) = Ψ1(v, w) + Ψ2(v, w), where
the function Ψ1(v, w) is symmetric and the function Ψ2(v, w) is skew-symmetric. This expansion
is unique, and we have Ψ1(v, w) = 0.5(Φ(v, w)+Φ>(v, w)) and Ψ2(v, w) = 0.5(Φ(v, w)−Φ>(v, w)).

In the present paper we restrict ourselves to the case of an skew-symmetric function Φ(v, w).
We shall consider the condition of being skew-symmetric in a somewhat more general form than
(2.1), namely,

Φ(w, w)− Φ(w, v)− Φ(v, w) + Φ(v, v) ≥ 0 ∀w ∈ Ω, ∀v ∈ Ω. (2.4)

If Φ(w,w) = 0, then (2.4) reduces to (2.1).
The foregoing consideration shows that the notion of skew-symmetry covers equilibrium prob-

lems and equilibrium solutions that inherit properties of optimization problems and saddle prob-
lems.

Inequality (2.4) holds for all v ∈ Ω and w ∈ Ω, in particular, for v = v∗ ∈ Ω∗. By taking into
account (1.2), relation (2.4) immediately implies (1.4). Thus, if the goal function of problem (1.1)
have the skew-symmetry property (2.4), then the equilibrium solution to problem (1.1) satis�es
condition (1.4).

Let us show that a normalized function of the saddle problem is skew-symmetric. The saddle
problem is to solve the system of inequalities

L(x∗, p) ≤ L(x∗, p∗) ≤ L(x, p∗), x ∈ Q ⊂ Rn, p ∈ P ⊂ Rm, (2.5)

where the function L(x, p) is convex with respect to x and concave with respect to p. Applying
the normalized function of the form Φ(v, w) = L(z, p) − L(x, y) [6], w = (z, y), v = (x, p), we
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can reduce system (2.5) to the computation of a �xed point of extremal inclusion (1.1). Since the
function Φ(v, w) is separable with respect to the variables z and y and the set Ω = Q × P has
block structure, problem (1.1) is equivalent to problem (2.4), and the sets of solutions to these
problems coincide.

Let us verify that the normalized function Φ(v, w) of saddle problem (2.5) satis�es the following
conditions [4, 5]:

Φ(w, w) = 0 ∀w ∈ Ω, (2.6)
Φ(w, v) + Φ(v, w) = 0 ∀w ∈ Ω, ∀v ∈ Ω. (2.7)

The �rst property means that the function Φ(v, w) vanishes on the diagonal of the square, i.e.,
for v = w. This clearly holds for the function Φ(v, w) = L(z, p) − L(x, y), where w = (z, y) and
v = (x, p), because Φ(w, w) = L(z, y)− L(z, y) = 0 for v = w.

We can readily verify the second property as well. Indeed, let Φ(v, w) = L(z, p) − L(x, y).
Since the domain of the variables w ∈ Ω and v ∈ Ω is the same, we can set v = w and w = v
in Φ(v, w); then Φ(w, v) = L(x, y) − L(z, p). Therefore, Φ(w, v) + Φ(v, w) = L(x, y) − L(z, p)+
+L(z, p)− L(x, y) = 0.

Summing (2.6) and (2.7) we obtain

Φ(w, w)− Φ(w, v)− Φ(v, w) + Φ(v, v) = 0 ∀w ∈ Ω, ∀v ∈ Ω. (2.8)

According to (1.2), for v = v∗, relation (2.8) immediately implies (1.4). Since Φ(w, w) = 0 and
Φ(v∗, v∗) = 0, we have

Φ(w, v∗) ≤ Φ(v∗, v∗) ≤ Φ(v∗, w), w ∈ Ω, v∗ ∈ Ω∗. (2.9)

Thus, (v∗, v∗) is a saddle point of the normalized function Φ(v, w), and Φ(v, v) = 0, where v is a
�xed point. The left inequality in system (2.9) coincides with condition (1.4).

Equations (2.6) and (2.7) can be generalized up to the inequalities

Φ(w,w) ≥ 0 ∀w ∈ Ω. (2.10)

Φ(w, v) + Φ(v, w) ≤ 0 ∀w ∈ Ω, ∀v ∈ Ω. (2.11)
This generalization extends the class of equilibrium problems under consideration. Note that
the system of inequalities (2.10), (2.11) was used in [7] to prove the Ky Fan inequality, which
is equivalent to the Kakutani �xed point theorem for a continuous point-to-set mapping on a
bounded closed convex set [8].

If the function Φ(v, w) is di�erentiate with respect to the second variable, then, by the convexity
inequalities

〈∇f(x), y − x〉 ≤ f(y)− f(x) ≤ 〈∇f(y), y − x〉, (2.12)
for all y and x from some set, relation (1.6) yields the inequality

〈∇Φw(w, w)−∇Φw(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω, v∗ ∈ Ω∗,

which means that the partial gradient ∇Φw(v, w) is a monotone operator with respect to the
equilibrium v∗.

There exist classes of equilibrium problems for which inequalities (1.4) and (1.6) can be
strengthened. Such problems are similar to optimization problems with strongly convex goal
functions, and their solutions satisfy the following inequalities [2, 3]:

1) if the solution to the problem is unique, then

Φ(w, w)− Φ(w, v∗) ≥ γ|w − v∗|1+ν ∀w ∈ Ω, (2.13)
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the constant γ is positive and the parameter ν belongs to [0,∞]; for ν = 0 we have a sharp isolated
equilibrium;

2) if the solutions to the problem form a closed connected set, then

Φ(w, w)− Φ(w, πΩ∗(w)) ≥ γ|w − πΩ∗(w)|1+ν ∀w ∈ Ω, (2.14)

πΩ∗(w) is the projection operator of the vector w to the set Ω∗. If the set Ω∗ is a singleton, then
(2.14) becomes (2.13). We also note that (2.14) implies (1.4).

An analog of Eq. (1.6) has the form

(Φ(w,w)− Φ(w, πΩ∗(w))) − (Φ(πΩ∗(w), w)− Φ(πΩ∗(w), πΩ∗(w)) ≥
≥ γ|w − πΩ∗(w)|1+ν ∀w ∈ Ω.

(2.15)

If the function Φ(w, v) is di�erentiable and convex with respect to the second variable, then
inequality (2.15) can be represented in the form [2, 3]

〈∇Φw(w, w)−∇Φw(πΩ∗(w), πΩ∗(w)), w − πΩ∗(w)〉 ≥ γ|w − πΩ∗(w)|1+ν ∀w ∈ Ω.

3. LINEAR AND BILINEAR CLASSES OF PROBLEMS

In this section we study two popular classes of problems as examples.

3.1. Quadratic Equilibrium
Consider the �xed point problem for the quadratic extremal inclusion

v∗ ∈ Argmin{0.5〈Nw, w〉+ 〈Mv∗ + m,w〉 | w ∈ Ω}, (3.1)

where N and M are nonnegative matrices, i.e., 〈Nv, v〉 ≥ 0 and 〈Mv, v〉 ≥ 0 for all v ∈ Rn. In
addition we assume that the matrix N is symmetric. In particular, if Ω = Rn, then problem (3.1)
reduces to the solution of the linear system of equations (N + M)w = −m.

Let us verify that the goal function of problem (3.1) satis�es the skew-symmetry condition
(2.4) and condition (1.6) holds at the points of a solution. Consider

Φ(w,w)− Φ(w, v)− Φ(v, w) + Φ(v, v) =
= 0.5〈Nw,w〉+ 〈Mw, w〉+ 〈m,w〉 − 0.5〈Nv, v〉 − 〈Mw, v〉 − 〈m, v〉−
−0.5〈Nw, w〉 − 〈Mv, w〉 − 〈m,w〉+ 0.5〈Nv, v〉+ 〈Mv, v〉+ 〈m, v〉 =
= 〈M(w − v), w − v〉 ≥ 0 ∀w ∈ Ω, ∀v ∈ Ω.

(3.2)

Therefore, if the matrix M is nonnegative, then Φ(w, v) from (3.1) is skew-symmetric, and hence
a solution to this problem satis�es either condition (2.13) or condition (2.14), depending on the
behavior of the eigenvalues of the matrix M .

Indeed, let v = v∗ in (3.2):

Φ(w, w)− Φ(w, v∗)− Φ(v∗, w) + Φ(v∗, v∗) = 〈M(w − v∗), w − v∗〉 ≥ 0. (3.3)

Let the matrix M be degenerate. Consider the decomposition of the space Rn into the direct sum
Rn = H1 + H2, where H1 is the kernel of the matrix M and H2 is the orthogonal complement
of H1. In this case, any vector w − v∗ ∈ Rn can be represented as w − v∗ = h1 + h2, where
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h1 = πH1(w− v∗) and h2 = πH2(w− v∗); moreover, Mh1 = 0 and Mh2 ∈ H2. Taking into account
these facts, we continue the calculations:

〈M(w − v∗), w − v∗〉 = 〈M1/2(w − v∗),M1/2(w − v∗)〉 =
= 〈M1/2(h1 + h2),M

1/2(h1 + h2)〉 = 〈M1/2h2,M
1/2h2〉 =

= 〈Mh2, h2〉 ≥ µ|h2|2 = µ|w − v∗ − h1|2 = µ|w − v∗ − πH1(w − v∗)|2 =
= µ|w − v∗ − πH1(w)− πH1(v

∗)|2 = µ|w − πH1(w)|2.
(3.4)

Here µ is the minimal nonzero eigenvalue of the degenerate matrix M . In addition, in this line
of reasoning we used the existence of a square root of the symmetric matrix M and the fact that
the projection operator in πH1(w − v∗) is linear and πH1(v

∗) = v∗. Combining (3.3) and (3.4), we
obtain Eq. (2.15) with n = 1, and taking into account Eq. (1.2), we obtain Eq. (2.14).

3.2. Sharp Equilibrium

Assume that in problem (3.1), the matrices N and M have the form N = 0 and M =

(
0 −L>

L 0

)
,

where L is some submatrix and Ω is endowed with the structure of a polyhedral set:

Ω =

{(
z
y

)
|

(
0 −B
A 0

) (
z
y

)
≤

(
−c
b

) (
z
y

)
≥

(
0
0

)}
.

Introduce the vector notation v = (x, p), w = (z, y), and m = (−c, b) and rewrite problem (3.1)
in the vector-matrix form

(x∗, p∗) ∈ Argmin





(
0 −L>

L 0

) (
z
y

)
+ (−c, b)

(
z
y

)
|

(
0 −B
A 0

) (
z
y

)
≤

(
−c
b

) (
z
y

)
≥

(
0
0

)





(3.5)

or, in notation of (3.1),
v∗ ∈ Argmin{〈Mv∗ + m,w〉 | w ∈ Ω}. (3.6)

Using the linearity of the problem and the block structure of its restrictions, we represent (3.5)
in the form of a two-person game with nonzero sum:

x∗ ∈ Argmin{−〈c, z〉+ 〈Lz, p∗〉 | Az ≤ b, z ≥ 0},
p∗ ∈ Argmin{〈b, y〉+ 〈Lx∗, y〉 | By ≥ c, y ≥ 0}. (3.7)

It is assumed that the dimensions of the matrices L, A, and B agree with dimensions of the
variables x and y and the vectors c and b. If L = 0 and B = A>, then (3.7) coincides with the a
primal linear program and a dual linear program.

Each of the problems in (3.7) is a linear program. It was shown in [9] that the set of optima
of any of them is the set of sharp minima, i.e., it satis�es the conditions

γ|z − x∗| ≤ (−〈c, z〉+ 〈Lz, p∗〉)− (−〈c, x∗〉+ 〈Lx∗, p∗〉),
γ|y − p∗| ≤ (〈b, y〉 − 〈Lx∗, y〉)− (〈b, p∗〉 − 〈Lx∗, p∗〉) (3.8)

for all z ∈ {z | Az ≤ b, z ≥ 0} and for all y ∈ {y | By ≥ c, y ≥ 0}, where γ > 0. We add
inequalities (3.8) and represent the resultant inequality in the notation of problem (3.6):

〈Mv∗, w〉+ 〈m,w〉 − 〈Mv∗, v∗〉 − 〈m, v∗〉 ≥ γ|w − v∗|. (3.9)
This inequality holds for all w ∈ Ω. Since the matrix M in problem (3.6) is nonnegative, i.e.,
〈Mv, v〉 ≥ 0 for all v ∈ Rn, the goal function of this problem satis�es the skew-symmetry condi-
tion (1.6). Combining (1.6) and (3.9) we obtain the main condition (1.4): 〈Mw,w〉 + 〈m,w〉−
−〈Mw, v∗〉 − 〈m, v∗〉 ≥ |w − v∗| ∀w ∈ Ω. Thus, a �xed point of the linear two-person game (3.7)
is a sharp equilibrium.
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4. CONTROLLED METHODS

The notion of convergence of a method on the phase portrait of a dynamical system is ge-
ometrically associated with a �stable node� singularity to which all trajectories that start from
any point of some neighborhood of the equilibrium are convergent. In this connection we face
the natural idea to transform the phase portrait of a dynamical system in such a way that an
unstable equilibrium transforms into an asymptotically stable node with the same coordinates. In
the present paper we realize this idea with the use of the feed-back control [10].

Let us describe this approach. Suppose that the function Φ(v, w) is di�erentiate with respect to
the second variable, and hence a necessary (and su�cient) condition for the minimum of problem
(1.1) can be expressed as the equation

v∗ = πΩ(v∗ − α∇Φw(v∗, v∗)), (4.1)

where πΩ(. . .) is the projection operator onto the set Ω, α > 0 is a parameter of step length type,
and ∇Φw(v, w) is the vector gradient of the function Φ(v, w) with respect to the second variable
w.

The point v∗ is either a �xed point or an equilibrium point. If we make a step from the point
v∗ along the partial antigradient of the function Φ(v, w), then, after projecting, we arrive at the
point v∗ again. Problems (1.1) and (4.1) are equivalent.

The residual, that is, the di�erence between the left- and right-hand sides of (4.1), which
vanishes at the point v∗ and does not vanish at an arbitrary point v, speci�es a transformation of
Rn into itself. The image of this transformation can be considered as a vector �eld whose �xed
point is v∗. Let us state the problem to �nd a trajectory such that its tangent coincides with the
given direction of the �eld at this point. Formally, this problem is described by the system of
di�erential equations

dv

dt
+ v = πΩ(v − α∇Φw(v, v)), v(t0) = v0. (4.2)

Since the right-hand side of this system satis�es all conditions of the existence and uniqueness
theorem, system (4.2), for all v(t0) = v0, generates a trajectory v(t) for all t ≥ t0.

The gradient ∇Φw(v, v) with respect to the second variable is not a potential operator, since,
in general, there is no function whose gradient coincides with ∇Φw(v, v). The examples in [4, 5]
show that the process must not converge to an equilibrium, and to provide the convergence, we
introduce an additive control [4, 5] into the right-hand side of the dynamical system (4.2):

dv

dt
+ v = πΩ(v − α∇Φw(v + u, v + u)), v(t0) = v0, (4.3)

and state the following problem. In some class of feed-backs, choose a control u = u(v, v̇) (where
v̇ = dv/dt), as a function of the state of the dynamical system, to provide the convergence of the
corresponding trajectory to the equilibrium. At the equilibrium point, the object does not move
and its velocities vanish; therefore, u = u(v∗, v∗) = 0.

Consider two kinds of control with respect to the derivative: u = v̇, and with respect to the
residual:

u = πΩ(v − α∇Φw(v, v))− v. (4.4)
The closure of system (4.3) by the control with respect to the derivative u = v̇ leads to the implicit
(unsolved with respect to the derivative) di�erential system

dv

dt
+ v = πΩ(v − α∇Φw(v + v̇, v + v̇)), v(t0) = v0, (4.5)
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The iterative analog of this system is the implicit iterative process

vn+1 = πΩ(vn − α∇Φw(vn+1, vn+1)), (4.6)

Here vn is the preceding approximation, and (4.6) must be solved with respect to the variables
vn+l. In turn, other iterative subprocesses are necessary to solve this equation.

Taking into account the advantages of process (4.6), it is necessary to note its disadvantage,
namely, it is implicit (or unsolved) with respect to the derivative. After the closure of system (4.3)
by control (4.4) we obtain

dv

dt
+ v = πΩ(v − α∇Φw(ū, ū)), ū = πΩ(v − α∇Φw(v, v)). (4.7)

System (4.7) is explicit, which becomes especially apparent in the iterative analog

ūn = πΩ(vn − α∇Φw(vn, vn)), vn+1 = πΩ(vn − α∇Φw(ūn, ūn)),

This is an explicit iterative scheme with a preliminary (predictive) step on which we �rst compute
the prediction ūn and then the subsequent approximation vn+1.

5. CONVERGENCE TO A SHARP EQUILIBRIUM

Consider the behavior of the predictive method of gradient projection given by (4.7) in the
case of a sharp equilibrium [2, 11].

Let us represent the process (4.7), according to the de�nition of a projection operator, in the
form of the following variational inequalities:

〈v̇ + v − v + α∇Φw(ū, ū), w − v − v̇〉 ≥ 0 (5.1)

for all v ∈ Ω and
〈ū− v + α∇Φw(v, v), w − ū〉 ≥ 0 (5.2)

for all v ∈ Ω. Moreover, to prove the convergence of the method, we need the Lipschitz condition
in the form

|∇Φw(w,w)−∇Φw(v, v)| ≤ |Φ| |w − v| ∀w, v ∈ Ω, (5.3)
where |Φ| is a Lipschitz constant for the operator ∇Φw(v, w). This condition always holds if the
gradient of the function Φ(v, w) is (jointly) Lipschitzian.

Taking into account (5.3), we obtain the estimate for the deviation between v + v̇ and the
vector ū given by (4.7):

|v + v̇ − ū| ≤ |πΩ(v − α∇Φw(ū, ū))− πΩ(v − α∇Φw(v, v))| ≤
≤ |∇Φw(ū, ū)−∇Φw(v, v)| ≤ α|Φ| |ū− v|, ∀w, v ∈ Ω,

(5.4)

where |Φ| is a Lipschitz constant for the vector function Φ(v, v).
For the gradient ∇Φw(v, w), replace the (absent) condition of being monotone by the sharpness

condition (2.13) with ν = 0 and assume that the original problem has an isolated equilibrium:

Φ(w, w)− Φ(w, v∗) ≥ γ|w − v∗|, ∀w ∈ Ω. (5.5)

In this case, process (4.7) converges at a �nite time.

Theorem 1. If the set of solutions to problem (1.1) is nonempty and satis�es the sharpness
condition (5.5), the goal function Φ(v, w) is convex with respect to the variable w for each chosen
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v, Ω is a closed convex set, and the partial gradient of the function Φ(v, w) satis�es the Lipschitz
condition (5.3), then the trajectory v(t) of process (4.7) with parameter α, 0 < α < 1/(

√
2|Φ|),

where |Φ| is the constant occurring in (5.3), converges at a �nite time, i.e., there exists an index
nf such that ūnf = v∗.

Proof. We set w = v∗ in Eq. (5.1) and represent the obtained expression in the form

〈v̇, v∗ − v〉 − |v̇|2 + α〈∇Φw(ū, ū), v∗ − ū〉+ α〈∇Φw(ū, ū), ū− v − v̇〉 ≥ 0.

Hence, by the convexity condition (2.12) we have

〈v̇, v∗ − v〉 − |v̇|2 + α(Φ(ū, v∗)− Φ(ū, ū))− α〈∇Φw(v, v)−∇Φw(ū, ū), ū− v − v̇〉+
+ α〈∇Φw(v, v), ū− v − v̇〉 ≥ 0.

We write w = v + v̇ in Eq. (5.2) and add the obtained inequality and the previous one. Taking
into account (5.3) and (5.4), we see that

〈v̇, v∗ − v〉 − |v̇|2 + α(Φ(ū, v∗)− Φ(ū, ū)) + α2|Φ|2|ū− v|2 + 〈ū− v, v + v̇ − ū〉 ≥ 0. (5.6)

We transform the last inner product on the right-hand side of Eq. (5.6) by using the identity

|v1 − v2|2 = |v1 − v3|2 + 2〈v1 − v3, v3 − v2〉+ |v3 − v2|2, (5.7)

then we have
〈ū− v, v + v̇ − ū〉 = 0.5|v̇|2 − 0.5|ū− v|2 − 0.5|ū− v − v̇|2.

Now we can write (5.6) in the form

〈v̇, v− v∗〉+ |v̇|2 +α(Φ(ū, ū)−Φ(ū, v∗))−α2|Φ|2|ū− v|2− 0.5|v̇|2 +0.5|ū− v|2 +0.5|ū− v− v̇|2 ≤ 0

or
〈v̇, v − v∗〉+ 0.5|v̇|2 + α(Φ(ū, ū)− Φ(ū, v∗)) + (0.5− α2|Φ|2)|ū− v|2 ≤ 0. (5.8)

By Eq. (5.5), the third term in the last inequality is nonnegative, and, therefore,

0.5
d

dt
|v − v∗|2 + 0.5|v̇|2 + (0.5− α2|Φ|2)|ū− v|2 ≤ 0. (5.9)

Since 0 < α < 1/(
√

2|Φ|), we have d = 0.5− α2|Φ|2 > 0. Integrate inequality (5.9) from t0 to t:

|v − v∗|2 +

t∫

t0

|v̇|2dτ + (1− 2α2|Φ|2)
t∫

t0

|ū− v|2dτ ≤ |v0 − v∗|2.

It follows that |v(t) − v∗| is monotone decreasing and the trajectory v(t) is bounded and the
integrals

t∫

t0

|v̇|2dτ < ∞,

t∫

t0

|ū− v|2dτ < ∞

are convergent as t →∞; hence,

lim inf |v̇|2 = 0, lim inf |ū− v|2 = 0, t →∞. (5.10)
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Let us obtain another assertion of the form (5.10). To this end we consider the inequality
0.5

d

dt
|v − v∗|2 + 0.5|v̇|2 ≤ 0, which follows from (5.9); its di�erentiation yields

|v − v∗| d
dt
|v − v∗|+ 0.5|v̇|2 ≤ 0.

If we assume that |v(t)− v∗| 6= 0 for all t ≥ t0, then we have d
dt
|v − v∗|2 + 0.5 |v̇|2

|v−v∗| ≤ 0.
Integrating this inequality from t0 to t we obtain the estimate

|v − v∗|2 +
1

2

t∫

t0

|v̇|2
|v − v∗|dτ ≤ |v0 − v∗|2,

which implies the convergence of the integral; therefore, lim inf(|v̇|2/|v − v∗|) = 0, t → ∞. Since
we have the estimate |v̇|2/(|v − ū| + |ū − v∗|) ≤ |v̇|2/|v − v∗|, it follows from the convergence
|v − ū| → 0 as t →∞ that

lim inf(|v̇|2/|ū− v∗|) = 0, t →∞. (5.11)

Let us return to inequality (5.8). Taking into account the sharpness condition (5.5), we repre-
sent (5.8) in the form

〈v̇, ū− v∗〉+ 〈v̇, v − ū〉+ 0.5|v̇|2 + αγ|ū− v∗|+ d|ū− v|2 ≤ 0.

In the second and third summands we single out a square:

〈v̇, ū− v∗〉+ |(0.5/
√

d)v̇ +
√

d(v − ū)|2 − (0.25/d)|ū|2 + 0.5|v̇|2 + αγ|ū− v∗| ≤ 0.

Hence αγ|ū − v∗| ≤ 0.25(1/d − 2)|v̇|2 + |v̇| |ū − v∗|. Assuming that |ū − v∗| 6= 0 for all t ≥ t0 we
obtain

αγ ≤ 0.25(1/d− 2)|v̇|2/|ū− v∗|+ |v̇|2. (5.12)
By combining inequalities (5.12), (5.10), and (5.11) we obtain a contradiction. Therefore, the
assumption that |ū− v∗| 6= 0 for all t ≥ t0 leads to a contradiction; hence, there exists t = tf such
that ū(tf ) = v∗. This completes the proof of the theorem.

Similarly, one can prove that the implicit process (4.5) also converges to an equilibrium at a
�nite time under the assumptions of Theorem 1.

6. CONVERGENCE TO A QUADRATIC EQUILIBRIUM

In this section we obtain an exponential estimate for the rate of convergence of process (4.7)
under the assumption that the original problem (1.1) has an isolated quadratic equilibrium. Thus,
let condition (2.13) with n = 1 be valid:

Φ(w,w)− Φ(w, v∗) ≥ γ|w − v∗|2, ∀w ∈ Ω. (6.1)

Theorem 2. If inequality (6.1) is used instead of (5.5) in the assumption of Theorem 1, then
the trajectory v(t) converges to an equilibrium solution with exponential rate, i.e.,

|v(t)− v∗|2 ≤ |v0 − v∗|2 exp(2s(α)(t0 − t)), (6.2)
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where s(α) = αγ(d/d1) ≥ 0, d = 0.5− α2|Φ|2, and d1 = 0.5 + αγ − α2|Φ|2.

Proof. Using (6.1), we estimate the third summand of inequality (5.8) of Theorem 1. Then
we obtain

〈v̇, v − v∗〉+ 0.5|v̇|2 + αγ|ū− v∗|+ d|ū− v|2 ≤ 0. (6.3)
We transform the third summand on the left-hand side of (6.3) by means of identity (5.10) with
v1 = ū, v2 = v∗, and v3 = v. Then (6.3) becomes

〈v̇, v − v∗〉+ 0.5|v̇|2 + d1|ū− v|2 + 2αγ〈ū− v, v + v∗〉+ αγ|v − v∗|2 ≤ 0. (6.4)

In the sum of the third term and the fourth term of (6.4) we single out a square:

〈v̇, v − v∗〉+ 0.5|v̇|2 + |
√

d1(ū− v∗) + (αγ/
√

d1)(v − v∗)|2 − ((αγ)2/d1)|v − v∗|2 + αγ|v − v∗| ≤ 0,

hence, we have
〈v̇, v − v∗〉+ 0.5|v̇|2 + s(α)|v − v∗| ≤ 0, (6.5)

where s(α) = αγ(d/d1) > 0. By assumption, v∗ is a unique minimum. Therefore, (6.5) can be
represented in the form d|v − v∗|2/dt + 2s(α)|v − v∗|2 ≤ 0. Let us rewrite the obtained inequality
in the form

exp(−2s(α)t)
d(exp(2s(α)t)|v − v∗|2)

dt
≤ 0 or d(exp(2s(α)t)|v − v∗|2)

dt
≤ 0,

which implies estimate (6.2). We can readily see that s(α) = αγ(d/d1) > 0 is nonnegative for
0 < α < 1/(

√
2|Φ|). The proof of the theorem is completed.

Thus, if the value of the parameter α > 0 is not very large, then the trajectory v(t) converges
to the equilibrium solution with exponential rate. The implicit process (4.5) also converges with
exponential rate if the assumptions of Theorem 2 are satis�ed.

7. CONVERGENCE TO A DEGENERATE EQUILIBRIUM

Let us state a theorem on the convergence of process (4.7) in the degenerate case, that is, for
the case in which condition (1.4) holds.

Theorem 3. If the set of solutions to problem (1.1) is nonempty and satis�es condition
(1.4), the goal function Φ(v, w) is convex with respect to the variable w for each chosen v, Ω is a
closed convex set, and the vector function ∇Φw(v, w) satis�es Lipschitz condition (5.3), then the
trajectory v(t) of process (4.7) with parameter α, 0 < α < 1/(

√
2|Φ|), where |Φ| is the constant in

(5.3), is monotone convergent, with respect to the norm, to an equilibrium state, i.e., v(t) → v∗ ∈
∈ Ω∗ as t →∞ for all v0 ∈ Rn.

Proof. Using transformations similar to those in the proof of Theorem 1 we establish assertion
(5.10).

Let a sequence ti → ∞ satisfy the conditions v(ti) → v′, ū(ti) → v′, and v̇(ti) → 0. Consider
(5.1) and (5.2) for all t → ∞. Passing to the limit, we obtain the limit inequality of the form
〈∇Φw(v′, v′), w − v′〉 ≥ 0 for all w ∈ Ω, which coincides with inequality (1.3). The last relation
means that v′ is an equilibrium solution to the problem.

Thus, each limit point of the trajectory v(t) is a solution to the original problem. This fact,
together with the remark that |v(t)− v∗| is monotone decreasing as t →∞, implies that v(t) has
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a unique limit point, i.e., the trajectory v(t) is monotone convergent, with respect to the norm,
to a solution of the original problem, v(t) → v∗ ∈ Ω∗ as t → ∞ for any v0 = v(t0) ∈ Rn. The
theorem is proved.

The convergence of the implicit process (4.5) under the assumption of Theorem 3 can be proved
similarly.

Thus, we proved that in the case of a sharp equilibrium, the considered processes converge at
a �nite time, the methods have an exponential rate of convergence for a quadratic equilibrium,
and the processes can converge as slowly as desired for a degenerate equilibrium.

The research was partially supported by the Russian Foundation for Basic Research (grant
No. 94-01-00005).
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