
Computational Mathematics and Mathematical Physics, Vol.40, No.9, 2000, pp. 1239�1254.
Translated from Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, Vol.40, No.9, 2000, pp. 1291�1307.
Original Russian Text Copyright c©2000 by Antipin.
English Translation Copyright c©2000 by MAIK �Nauka/Interperiodika� (Russia).

Solution Methods for Variational Inequalities
with Coupled Constraints

A.S. Antipin

Computing Center, Russian Academy of Sciences, ul. Vavilova 40, GSP-1, Moscow, 117967 Russia

Revised December 9, 2003
Variational inequalities with coupled constraints are considered. The class of sym-

metric vector functions that form coupled constraints is introduced. Explicit and implicit
prediction-type gradient and proximal methods are proposed for solving variational in-
equalities with coupled constraints. The convergence of the methods is proved.

1. STATEMENT OF THE PROBLEM

To solve a variational inequality with coupled constraints means to �nd a vector v∗ ∈ Ω0

such that
〈F (v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω0, g(v∗, w) ≤ 0. (1.1)

where F (v) : Rn → Rn, g(v, w) : Rn ×Rn → Rm, and Ω0 ∈ Rn is a convex closed set.
The major di�erence of this setting from the conventional one lies in functional constraints

of the form g(v, w) ≤ 0, which relate the parameters of the problem and its variables. The
presence of coupled constraints makes these problems more di�cult to solve. However, elabo-
rated mathematical models always involve coupled constraints. This motivates the considerable
interest of specialists in such problems. There are very few publications dealing with methods
for solving variational inequalities with coupled constraints. In fact, all the literature is based
on the paper by Rosen [1]. In contrast, there is an extensive literature concerned with the con-
ventional statement of the problem of a variational inequality, including solution techniques.
Note, for example, a popular survey given in [2].

Problems with coupled constraints arise in many �elds of mathematics. Among these are
economic equilibrium models, which involve, by de�nition, budget constraints, according to
which the scalar product of the price vector and the commodity vector does not exceed a priori
costs. By their nature, these constraints are always coupled [3]. In general setting, an n-person
game also leads to variational inequalities with coupled constraints [4]. Coupled constraints nat-
urally arise in equilibrium programming problems [5] and hierarchical programming problems
[6]. The development of this subject in applications of mathematical physics, where variational
inequalities arose for the �rst time, leads to inequalities with coupled constraints [7]. This short
list of problems shows that coupled constraints are characteristic of a wide class of problems
rather than being an attribute of a certain one problem. For this reason, the development of
methods for problems with coupled constraints is a very important task. In this paper, we
propose three quite distinct methods for variational inequalities with coupled constraints and
prove their convergence.
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2. BASIC PROBLEMS

Below is a brief survey of most widely known problems in which coupled constrains are
implied by their statement.

2.1. Two-person game with coupled constraints For simplicity, we consider a two-
person game with coupled scalar constraints (see [8, 4]):

x∗1 ∈ Argmin{f1(x1, x
∗
2) | g1(x1, x

∗
2) ≤ g1(x

∗
1, x

∗
2), x1 ∈ Q1},

x∗2 ∈ Argmin{f2(x
∗
1, x2) | g2(x

∗
1, x2) ≤ g2(x

∗
1, x

∗
2), x2 ∈ Q2}, (2.1)

where f1, f2, g1, g2 : Rn × Rn → R1; f1 and g1 are convex in x1 for any x2; and f2 and g2 are
convex in x2 for any x1.

Any n-person game can always be scalarized and reduced to the problem of calculating
a �xed point of an extremal mapping. This procedure was �rst described in [9] for a game
without coupled functional constraints. However, this procedure can be extended to games
with coupled constraints. This can be done as follows. Introducing two normalized functions
of the form

Φ(v, w) = f1(x1, y2) + f2(y1, x2), G(v, w) = g1(x1, y2) + g2(y1, x2),

(where v = (y1, y2), w = (x1, x2), v, w ∈ Ω0 = Q1 ×Q2), we state the following problem: �nd a
vector v∗ satisfying the extremal inclusion

v∗ ∈ Argmin{Φ(v∗, w) | G(v∗, w)−G(v∗, v∗) ≤ 0 w ∈ Ω0}. (2.2)

Let us show that any solution to problem (2.2) is also a solution to (2.1).
Indeed, problem (2.2) is equivalent to the inequality

f1(x
∗
1, x

∗
2) + f2(x

∗
1, x

∗
2) ≤ f1(x1, x

∗
2) + f2(x

∗
1, x2)

for all x1 and x2 such that

g1(x1, x
∗
2) + g2(x

∗
1, x2)− g1(x

∗
1, x

∗
2)− g2(x

∗
1, x

∗
2) ≤ 0 ∀x1 ∈ Q1, x2 ∈ Q2.

In particular, this system of inequalities holds for all pairs of the form x1, x
∗
2 ∈ Q1 × x∗2. This

means that the system takes the form

f1(x
∗
1, x

∗
2) ≤ f1(x1, x

∗
2)

for all x1 and x2 satisfying

g1(x1, x
∗
2) ≤ g1(x

∗
1, x

∗
2) ∀x1 ∈ Q1.

Since this set includes x∗1, the last system of inequalities is obviously equivalent to the �rst
problem in (2.1). Similar reasoning for x∗1, x2 leads to the second problem in (2.1).

When the objective function is di�erentiable, it is easy to see that problem (2.2) can always
be represented in the form of a variational inequality as

〈∇wΦ(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Ω0, G(v∗, w) ≤ G(v∗, v∗),

where ∇wΦ(v, v) = ∇wΦ(v, w)|v=w.
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2.2. The simplest model of price equilibrium. Consider the simplest market with
one aggregate consumer [10]. Let f(x) be his utility function, β be a �xed amount of money
available to the consumer, and x be the vector of resources he wants to buy. The cost of
the resources is described by the price vector p. On the one hand, the consumer cannot buy
commodities whose cost is greater than β and, on the other hand, he cannot buy an amount of
commodities greater than that available on the market, namely, greater than a vector y0. Thus,
assuming that the consumer is maximizing his utility function when buying commodities, we
arrive at the following problem: �nd an equilibrium price vector p = p∗ and an optimal resource
vector x = x∗ such that

x∗ ∈ Argmax{f(x) | 〈p∗, x〉 ≤ β, x ∈ Q}, x∗ ≤ y0. (2.3)

If the material balance x∗ ≤ y0 in this problem is strengthened by the �nancial balance
〈p∗, x∗ − y0〉 = 0, then these conditions satisfy an inequality of the form 〈p − p∗, x∗ − y0〉 ≤ 0
∀p ≥ 0. This means that the nonpositive linear functional 〈p−p∗, x∗−y0〉 attains its maximum
at the point p∗ on the positive orthant. In other words, we have the problem

x∗ ∈ Argmax{f(x) | 〈p∗, x〉 ≤ β, x ∈ Q},
p∗ ∈ Argmax{〈p− p∗, x∗ − y0〉 | p ≥ 0},

whose solution is a solution to (2.3). This problem is of type (2.1).
The aggregate producer on the market under consideration is represented by the vector y0.

However, his presence on the market can be substantially strengthened if he has the possibility
of minimizing, at given prices, the production of commodities that will never be bought. Thus,
we obtain a model of the situation

x∗ ∈ Argmax{f(x) | 〈p∗, x〉 ≤ β, x ∈ Q},
y∗ ∈ Argmin{〈p∗, y〉 | x∗ ≤ y, y ∈ Y }, (2.4)

where Y is the set of feasible production plans. In the general case, at arbitrary prices p, the
feasible production set may be empty. Therefore, it is required to choose prices p = p∗ such
that the set

{y | x∗ ≤ y, y ∈ Y } 6= ∅,
is nonempty and, hence, the problem has a solution.

2.3. A multicriteria decision making model on the subset of e�ective points.
The speci�c character of multicriteria decision making [11] is that there are a set of alternatives
x ∈ Q on which a vector e�ciency criterion f(x) = (f1(x), f2(x), . . . , fm(x)) is speci�ed. A
decision maker tries to increase each of the scalar criteria on the given set of alternatives. In
the convex case, the scalarization of the vector criterion 〈λ, f(x)〉 =

m∑
i=1

λifi(x), where λ ≥ 0,
allows one to describe the set of optimal alternatives (Pareto set) as the set of optimal solutions
to the family of scalar optimization problems xλ ∈ Argmax{〈λ, f(x)〉 | x ∈ Q} [12]. In the
general case, the task of multicriteria decision making is to choose a value of λ = λ∗ and
the corresponding optimal solution x∗ such that both vectors belong to a prescribed subset of
e�ective points; i.e.,

x∗ ∈ Argmax{〈λ∗, f(x)〉 | x ∈ Q}, g(x∗, λ∗) ≤ 0. (2.5)
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Assuming that the vectors λ � g(x, λ) have the same dimension and strengthening the require-
ments g(x∗, λ∗) ≤ 0 by the extra condition 〈λ, g(x∗, λ∗)〉 = 0 we arrive, as in (2.3), at a problem
whose solution also solves (2.5):

x∗ ∈ Argmax{〈λ∗, f(x)〉 | x ∈ Q},
λ∗ ∈ Argmax{〈λ− λ∗, g(x∗, λ∗)〉 | λ ≥ 0}.

This problem is of type (2.1).
When model (2.5) describes a large engineering project, the maximization of the vector

criterion ensures the e�ectiveness of that project, and the conditions g(x, λ) ≤ 0 describe
�nancial, ecological, and other constraints.

2.4. Quasi-variational inequalities. Consider a bilinear two-person game with coupled
constraints speci�ed by a convex, closed set K ∈ Q1 × Q2 ∈ Rn × Rn [7]. Fixing any point
x̄ = (x̄1, x̄2) ∈ K, we construct two sections K1(x̄) = {x1 ∈ Rn | (x1, x̄2) ∈ K} and K2(x̄) =
= {x2 ∈ Rn | (x̄1, x2) ∈ K} through that point and consider the game

x∗1 ∈ Argmin{〈A1x1, x
∗
2〉+ 〈l1, x1〉 | x1 ∈ K1(x

∗)},
x∗2 ∈ Argmin{〈x∗1, A2x2)〉+ 〈l2, x2〉 | x2 ∈ K2(x

∗)}, (2.6)

where x∗ = (x∗1, x
∗
2). By introducing the vector l = (l1, l2) and the matrix A> with entries

a11 = 0, a12 = A>
1 , a21 = A>

2 , and a22 = 0, where > denotes the transpose, problem (2.6) can
be represented as an equivalent variational inequality:

〈A>x∗, x− x∗〉+ 〈l, x− x∗〉 ≥ 0 ∀x ∈ K(x∗), (2.7)

where K(x∗) = K1(x
∗)×K2(x

∗).
When A>

1 and A>
2 are di�erential operators and K ∈ Q1 × Q2 ⊆ H1 ×H2, where H1 and

H2 are Hilbert spaces, problem (2.7) is called a quasi-variational inequality [7].
Note that, if g1(x1, x2) = g2(x1, x2) in problem (2.1), it takes the form (2.6).

2.5. Two-level programming. The ordinary problem of �nding a maximin can be viewed
as the simplest hierarchical programming problem [5]. Indeed, consider the problem of �nding
an optimal strategy that maximizes the minimum function,

max
x
{min

y
f(x, y) | g(x, y) ≤ 0, y ∈ Y } = max

x
min

y
{f(x, y) | g(x, y) ≤ 0, y ∈ Y }.

Here x ∈ X(y) ⊂ Rn and y ∈ Y ⊂ Rn. Any point of the manifold y(x) = Argmin{f(x, y) |
| g(x, y) ≤ 0, y ∈ Y } can be a solution to this problem. However, if f(x, y) and g(x, y) are
convex in y for any x and x∗ is a �xed point of the extremal inclusion

x∗ ∈ Argmin{f(x∗, y) | g(x∗, y) ≤ 0, y ∈ Y },

then the minimax problem can be reduced to �nding a �xed point of this extremal mapping.

3. SYMMETRIC FUNCTIONS

Problems with coupled constraints have always attracted and attract the attention of in-
vestigators. We mention [1, 13], where gradient approaches to these problems were discussed.
Game problems with coupled constraints were analyzed in [14]. The study [1] is considered
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to be one of the best and has often been cited until now. The basic premise of these studies
is the assumption that the function g(v, w) involved in constraints is jointly convex in v and
w. This is a very severe requirement. It never holds for constraints in economic equilibrium
models, since they involve budget constraints like 〈p, x〉 ≤ m, where p denotes the prices,
x � the commodities, and m � given costs. Here, g(p, x) = 〈p, x〉 is not jointly convex in its
variables.

In this paper, we drop the requirement that g(v, w) be jointly convex in v and w and,
instead, use the symmetry of these functions about the diagonal of the square Ω0 × Ω0, i.e.,
about the manifold v = w.

De�nition 1. A function g(v, w) from IRn × IRn into IRm is said to be symmetric on
Rn ×Rn if it satis�es the condition

g(v, w) = g(w, v) ∀w ∈ Ω0, ∀v ∈ Ω0. (3.1)

Examples of symmetric functions include primarily functions generating budget constraints
in economic equilibrium models. They have the form g(v, w) = 〈v, w〉 or g(v, w) = 〈Av, w〉,
where A is a symmetric matrix. Widely known in applications are the Cobb�Douglas production
function and the constant-elasticity-of-substitution production function: g(v, w) = Avαwβ and
g(v, w) = A(αv−ω + βw−ω)−γ/ω, where A > 0, α > 0, β > 0, ω > 0 are parameters. If α and
β are equal, then these functions are symmetric in the sense of (3.1). It is easy to see that
Φ(v, w) = f(x1, y2) + f(y1, x2), where v = (y1, y2) and w = (x1, x2), is a symmetric function.

Let us analyze the characteristic properties of symmetric functions [15]. To this end, we
di�erentiate (3.1) with respect to w to obtain

∇>
wg(v, w) = ∇>

v g(w, v) ∀w ∈ Ω0, ∀v ∈ Ω0, (3.2)

where ∇>
wg(v, w) and ∇>

v g(w, v) are m×n matrices whose rows are the vectors ∇vgi(w, v) and
∇wgi(v, w), i = 1, 2, . . . , m.

Setting w = v in (3.2) yields

∇>
wg(v, v) = ∇>

v g(v, v) ∀v ∈ Ω0. (3.3)

Thus, we can state the following.

Property 1. For the gradients of a symmetric vector function g(v, w) with respect to v and
w, the matrices of their restrictions to the diagonal of the square Ω0 × Ω0 are equal.

According to the de�nition of a di�erentiable function g(v, w), we have (see [16])

g(v + h,w + k) = g(v, w) +∇>
v g(v, w)h +∇>

wg(v, w)k + ω(v, w, h, k), (3.4)

where ω(v, w, h, k)/(|h|2 + |k|2)1/2 → 0 as |h|2 + |k|2 → 0. Let w = v and h = k. Then, in view
of (3.3) and (3.4), we obtain

g(v + h, v + h) = g(v, v) + 2∇>
wg(v, v)h + ω(v, h), (3.5)

where ω(v, h)/|h| → 0 as |h| → 0. Being a special case of (3.4), formula (3.5) means that the
restriction of the gradient ∇>

wg(v, w) to the diagonal of Ω0 × Ω0 is the gradient ∇>g(v, v) of
g(v, v), i.e.,

2∇>
wg(v, w)|v=w = ∇>g(v, v) ∀v ∈ Ω0. (3.6)
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Thus, we have proved the following property (see [17]).

Property 2. The operator 2∇wg(v, w)|v=w is potential and equal to the gradient of the
restriction of the symmetric function g(v, w) to the square's diagonal; i.e., 2∇>

wg(v, v) =
= ∇>g(v, v).

This key property of symmetric functions is crucial in the following analysis.
As mentioned above, if g1(x1, x2) and g2(x1, x2) in problem (2.1) are equal, then problem

(2.1) reduces to (2.6). Let us verify that the normalized function G(v, w) in (2.2) then satis�es
the symmetry property (3.1). Indeed, G(v, w) = g1(x1, y2)+g2(y1, x2) and G(w, v) = g1(y1, x2)+
+g2(x1, y2). Since g1(x1, x2) = g2(x1, x2), it is obvious that G(v, w) = G(w, v). Thus, problem
(2.1) in the case under consideration has symmetric coupled constraints.

4. SYMMETRIZATION

The coupled constraints in problem (1.1) may not be symmetric. For example, they may
be antisymmetric, i.e., may satisfy the condition g(v, w) = −g(w, v) ∀v, w ∈ Ω0. We show that
the coupled constraints then have no e�ect on the solution to problem (1.1) and, hence, can be
dropped. Indeed, consider a pair of problems,

〈F (v∗), w − v∗〉 ≥ 0, ∀w ∈ Ω0,

and
〈F (v∗), w − v∗〉 ≥ 0, g(v∗, w) ≤ 0, ∀w ∈ Ω0,

where g(v, w) is an antisymmetric function. Such a function always vanishes on the diagonal
of Ω0 × Ω0, because setting v = w in g(v, v) = −g(v, v) yields g(v, v) = 0. Consider the
intersection of two sets: Ω0

⋂{w | g(v∗, w) ≤ 0}. It is always nonempty (contains the point v∗)
and is a subset of Ω0. Since v∗ is a minimum point of 〈F (v∗), w − v∗〉 on Ω0 (i.e., a solution
to the �rst problem), it is also a minimum point of this function on any of its subsets; i.e., it
is a solution to the second problem. Thus, antisymmetric coupled constraints in equilibrium
problems can be dropped.

In the general case, when g(v, w) is neither symmetric nor antisymmetric, the constraints
in problem (1.1) can be symmetrized. Indeed, de�ne two subclasses of symmetric and antisym-
metric vector functions:

g(v, w)− g(w, v) = 0 ∀w ∈ Ω0, ∀v ∈ Ω0, (4.1)

g(v, w) + g(w, v) = 0 ∀w ∈ Ω0, ∀v ∈ Ω0. (4.2)
These conditions generalize the concepts of symmetric and antisymmetric matrices [17]. The
transpose is de�ned as g>(v, w) = g(w, v) (see [15]). In terms of this function, the conditions
of symmetry (4.1) and antisymmetry (4.2) have the form

Φ(v, w) = Φ>(v, w), Φ(v, w) = −Φ>(v, w).

By using the obvious relations Φ(v, w) = (Φ>(v, w))> and (Φ1(v, w)+Φ2(v, w))> = Φ>
1 (v, w)+

+Φ>
2 (v, w), it is easy to see that any real function Φ(v, w) can be decomposed as

g(v, w) = s(v, w) + k(v, w), (4.3)
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where s(v, w) and k(v, w) are a symmetric and an antisymmetric function, respectively. This
decomposition is unique, and

s(v, w) =
1

2
(g(v, w) + g>(v, w)), k(v, w) =

1

2
(g(v, w)− g>(v, w)). (4.4)

Using this decomposition, we represent the functional constraints of problem (1.1) as {w |
| g(v∗, w) = s(v∗, w) + k(v∗, w) ≤ 0, w ∈ Ω0}. Apparently, from the reasoning atthe beginning
of this section, it follows that the antisymmetric part of the constraints can also be dropped in
this case. Indeed, let v∗ be a solution to the problem

〈F (v∗), w − v∗〉 ≥ 0, s(v∗, w) ≤ 0, w ∈ Ω0. (4.5)

We introduce notations for the sets D = {w | g(v∗, w) ≤ 0, w ∈ Ω0} and K1 = {w |
| k(v∗, w) ≤ 0, w ∈ Ω0} and K2 = {w | k(v∗, w) > 0, w ∈ Ω0}. The feasible set D of
the original problem is partitioned into two parts, D1 = D

⋂
K1 and D2 = D

⋂
K2 such that

D = D1 ∪ D2. For all w ∈ D2, the function k(v∗, w) in s(v∗, w) + k(v∗, w) ≤ 0 (w ∈ Ω0)
can be dropped; then, D2 ⊂ {w | s(v∗, w) ≤ 0, w ∈ Ω0}. On the other hand, consider the
intersection D1

⋂{w | s(v∗, w) ≤ 0, w ∈ Ω0}, which includes v∗ and on which the function
〈F (v∗), w− v∗〉 reaches a minimum. It is easy to see that any point of this intersection satis�es
s(v∗, w) + k(v∗, w) ≤ 0, w ∈ Ω0. Consequently, if a solution to problem (1.1) has an interior
neighborhood, for example, when g(v∗, v∗) < 0 and w ∈ Ω0, then the solution to (4.5) is a
solution to (1.1).

Thus, to �nd a solution to problem (1.1), we have to solve the symmetrized problem

〈F (v∗), w − v∗〉, g(v∗, w) + g>(v∗, w) ≤ 0 ∀w ∈ Ω0.

The idea of symmetrizing constraints makes it possible, in principle, to solve equilibrium prob-
lems with coupled constraints. Some considerations regarding the symmetrization of sets can
also be found in [18].

5. REDUCTION TO A SADDLE-POINT PROBLEM

Problem (1.1) can always be viewed as the minimization of the linear function f(w) =
= 〈F (v∗), w − v∗〉 on the set Ω = {w ∈ Ω0 | g(v∗, w) ≤ 0}. De�ne the Lagrange functions
L(v∗, w, p) = 〈F (v∗), w − v∗〉 + 〈p, g(v∗, w)〉 ∀w ∈ Ω0, ∀p ≥ 0, where v∗ is a solution to the
problem and w and p are the primal and dual variables. Since v∗ is the minimum of f(w) on
Ω0, the pair (v∗, p∗) (under certain regularity conditions) is a saddle point of L(v∗, w, p), i.e.,
satis�es the system of inequalities

〈F (v∗), v∗ − v∗〉+ 〈p, g(v∗, v∗)〉 ≤
≤ 〈F (v∗), v∗ − v∗〉+ 〈p∗, g(v∗, v∗)〉 ≤
≤ 〈F (v∗), w − v∗〉+ 〈p∗, g(v∗, w)〉

(5.1)

for all w ∈ Ω0 and p ≥ 0.
This system can be represented in a somewhat di�erent manner as

v∗ ∈ Argmin{〈F (v∗), w − v∗〉+ 〈p∗, g(v∗, w)〉 | w ∈ Ω0},
p∗ ∈ Argmax{〈p, g(v∗, v∗)〉 | p ≥ 0}. (5.2)
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There are other equivalent representations of system (5.1). Assuming that g(v, w) is di�eren-
tiable with respect to w for any v, we rewrite system (5.2) as

〈F (v∗) +∇>
wg(v∗, v∗)p∗, w − v∗〉 ≥ 0 ∀w ∈ Ω0,

〈−g(v∗, v∗), p− p∗〉 ≥ 0 ∀p ≥ 0.
(5.3)

By using a projection operator, this system of variational inequalities is represented in the form
of operator equations as

v∗ = πΩ0(v
∗ − α(F (v∗) +∇>

wg(v∗, v∗)p∗),
p∗ = π+(p∗ + αg(v∗, v∗)),

(5.4)

where π+(. . .) and πΩ0(. . .) are the operators projecting a vector onto the positive orthant Rn
+

and the set Ω0, respectively, and α > 0 is the step-length parameter.
System (5.3) can be transformed as follows. The �rst inequality in this system is represented

as
〈F (v∗), w − v∗〉+ 〈p∗,∇wg(v∗, v∗)(w − v∗)〉 ≥ 0 ∀w ∈ Ω0.

Next, taking into account the key property (3.6) of symmetric functions and the convexity of
g(v, w)v=w on the diagonal of the square Ω0 × Ω0, we transform the term

〈p∗,∇wg(v∗, v∗)(w − v∗)〉 =
1

2
〈p∗,∇g(v∗, v∗)(w − v∗)〉 ≤ 1

2
〈p∗, g(w, w)− g(v∗, v∗)〉.

Finally, (5.3) can be represented as

〈F (v∗), w − v∗〉+
1

2
〈p∗, g(w,w)− g(v∗, v∗)〉 ≥ 0 ∀w ∈ Ω0,

〈−g(v∗, v∗), p− p∗〉 ≥ 0 ∀p ≥ 0.
(5.5)

Thus, the variational inequality with coupled constraints reduces to the saddle-point problem
(5.5). This problem can be solved by the methods described in [19]. However, the development
of methods in terms of the original problem is of considerable interest, at least, for two reasons.
First, these methods are interpreted as dynamic models of matching con�icts of factors or in-
terests. Second, these methods will be basic for various symmetrization procedures in problems
with asymmetric coupled constraints.

6. THE METHOD INVOLVING THE MODIFIED LAGRANGE FUNCTION

To solve system (5.2), we consider the simple iteration method

vn+1 ∈ argmin{1

2
|w − vn|2 + α(〈F (vn), w − vn〉+ 〈pn, g(vn, w)〉) | w ∈ Ω0},

pn+1 = π+(pn + αg(vn+1, vn+1)).
(6.1)

However, it is well known that this method does not converge to solutions even for optimization
problems and much less for equilibrium ones. In optimization, this situation was overcome by
invoking the modi�ed Lagrange function. Let us verify that this idea, in conjunction with the
symmetry of g(v, w), is also e�ective in our case [20, 21]. Consider the method of the modi�ed
Lagrange function as applied to variational inequalities with coupled constraints:

vn+1 ∈ argmin{1

2
|w − vn|2 + αM(vn+1, w, pn) | w ∈ Ω0},

pn+1 = π+(pn + αg(vn+1, vn+1)), α > 0,
(6.2)
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where
M(v, w, p) = 〈F (v), w − v〉+

1

2α
|π+(p + αg(v, w))|2 − 1

2α
|p|2

is de�ned for all v, w ∈ IRn×IRn and p ≥ 0. Here, vn, pn is the current approximation and vn+1,
pn+1 is the desired solution. Relations (6.2) are equations with variables vn+1, which appear on
the left and right of the expression (implicit scheme).

Representing (6.2) as variational inequalities yields

〈vn+1−vn+α(F (vn+1)+∇>
wg(vn+1, vn+1)π+(pn+αg(vn+1, vn+1)), w−vn+1〉 ≥ 0 ∀w ∈ Ω0, (6.3)

〈pn+1 − pn − αg(vn+1, vn+1), p− pn+1〉 ≥ 0 ∀p ≥ 0. (6.4)
The iteration formulas of process (6.2) are equivalent to (6.3) and (6.4).

Comparing these variational inequalities with the original problem (1.1), it is important
to note that the original problem with coupled constraints is replaced by a sequence of prob-
lems, each consisting of a system of two ordinary variational inequalities (without coupled
constraints), for which there are a variety of solution techniques [2].

Before proving the convergence (monotone in norm) of method (6.2) to an equilibrium
solution to the problem, we make an important remark. The conditions of the theorem require
that g(v, w) be convex only on the diagonal of Ω0 × Ω0 and do not require that it be convex
in w for any v. However, method (6.2) assumes the minimization of the regularized function
M(vn+1, w, pn) in w for any v, and this function involves g(v, w). The function 1

2
|w − vn|2+

+M(vn+1, w, pn) can be considered convex if α is su�ciently small. According to the theorem's
conditions, this parameter takes any value, including su�ciently small.

Let us show that any function whose gradient satis�es the Lipschitz condition can be made
convex (up- or downward). Indeed, suppose that the gradient of f(x) satis�es the Lipschitz
condition; i.e., 〈∇f(x + h)−∇f(x), h〉 ≤ L|h|2 on some set or

−L|h|2 ≤ 〈∇f(x + h)−∇f(x), h〉 ≤ L|h|2.

The left inequality of this system yields

〈(∇f(x + h) + LI(x + h))− (∇f(x) + LI(x), h〉 ≥ 0.

This means that, for all α ≥ L, the function fα(x) = f(x) + (1/2)α|x|2 is convex (and even
strongly convex, if α > L) on some set of x. A similar line of reasoning for the right inequality
of the system shows that fα(x) = f(x) − (1/2)α|x|2 is concave on the same set for all α ≥ L.
In other words, the regularization of a nonconvex function makes it convex for su�ciently large
values of the regularization parameter.

Theorem 1. Let the solution set of problem (1.1) be nonempty, F (v) be a monotone
operator, g(v, w) be a symmetric vector function di�erentiable with respect to w for any v, its
restriction g(v, w)|v=w to the square's diagonal be a convex function, Ω ⊆ IRn be a convex closed
set, and α > 0. Then, the sequence vn constructed by method (6.2) converges monotonically in
norm to an equilibrium solution to problem (1.1); i.e., vn → v∗ ∈ Ω∗ as n →∞.

Proof. Setting w = v∗ in (6.3) and taking into account the second equation in (6.2), we
obtain

〈vn+1 − vn + αF (vn+1) + α∇>
wg(vn+1, vn+1)pn+1, v∗ − vn+1〉 ≥ 0.
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This equality can be transformed as follows:

〈vn+1 − vn, v∗ − vn+1〉+ α〈F (vn+1), v∗ − vn+1〉+
+α〈∇>

wg(vn+1, vn+1)pn+1, v∗ − vn+1〉 ≥ 0.
(6.5)

In view of (3.6) and since g(v, v) is convex, the last term in (6.5) can be transformed so as

〈pn+1,∇wg(vn+1, vn+1)(v∗ − vn+1)〉 =
1

2
〈pn+1,∇g(vn+1, vn+1)(v∗ − vn+1)〉 ≤

≤ 1

2
〈pn+1, g(v∗, v∗)− g(vn+1, vn+1)〉,

(6.6)

then, we have
〈vn+1 − vn, v∗ − vn+1〉+ α〈F (vn+1), v∗ − vn+1〉+

+
α

2
〈pn+1, g(v∗, v∗)− g(vn+1, vn+1)〉 ≥ 0.

(6.7)

Setting w = vn+1 in the �rst inequality in (5.5) yields

〈F (v∗), vn+1 − v∗〉+
1

2
〈p∗, g(vn+1, vn+1)− g(v∗, v∗)〉 ≥ 0. (6.8)

Summing (6.7) and (6.8) gives

〈vn+1 − vn, v∗ − vn+1〉+ α〈F (vn+1)− F (v∗), v∗ − vn+1〉+

+
α

2
〈pn+1 − p∗, g(v∗, v∗)− g(vn+1, vn+1)〉 ≥ 0.

(6.9)

Setting p = p∗ in (6.4) and using 〈pn+1, g(v∗, v∗)〉 ≤ 0 and 〈p∗, g(v∗, v∗)〉 = 0, we can write

1

2
〈pn+1 − pn, p∗ − pn+1〉 − α

2
〈g(vn+1, vn+1)− g(v∗, v∗), p∗ − pn+1〉 ≥ 0. (6.10)

Since F (v) is a monotone operator, the summation of (6.9) and (6.10) produces

〈vn+1 − vn, v∗ − vn+1〉+
1

2
〈pn+1 − pn, p∗ − pn+1〉 ≥ 0.

By using the identity

|x1 − x3|2 = |x1 − x2|2 + 2〈x1 − x2, x2 − x3〉+ |x2 − x3|2, (6.11)

the scalar products on the left of the last inequality can be decomposed into a sum of squares:

|vn+1 − v∗|2 +
1

2
|pn+1 − p∗|2 + |vn+1 − vn|2 +

1

2
|pn+1 − pn|2 ≤ |vn − v∗|2 +

1

2
|pn − p∗|2. (6.12)

Summing (6.12) from n = 0 to n = N yields

|vN+1 − v∗|2 +
1

2
|pN+1 − p∗|2 +

k=N∑

k=0

|vk+1 − vk|2 +
1

2

k=N∑

k=0

|pk+1 − pk|2 ≤

≤ |v0 − v∗|2 +
1

2
|p0 − p∗|2.
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This inequality implies the boundedness of the trajectory; i.e.,

|vN+1 − v∗|2 +
1

2
|pN+1 − p∗|2 ≤ |v0 − v∗|2 +

1

2
|p0 − p∗|2, (6.13)

and also the convergence of the series
∞∑

k=0

|vk+1 − vk|2 < ∞,
∞∑

k=0

|pk+1 − pk|2 < ∞

therefore,
|vn+1 − vn|2 → 0, |pn+1 − pn|2 → 0, n →∞. (6.14)

Since the sequence (vn, pn) is bounded, there exists an element (v′, p′) such that vni → v′

and pni → p′ as ni →∞; moreover,

|vni+1 − vni|2 → 0, |pni+1 − pni|2 → 0.

Considering (6.3) and (6.4) for all ni →∞ and passing to the limit as produces

〈F (v′) +∇>
wg(v′, v′)p′, w − v′〉 ≥ 0, p′ = π+(p′ + αg(v′, v′)),

〈−g(v′, v′), p− p′〉 ≥ 0 ∀p ≥ 0.

Since these relations coincide with (5.3), we have v′ = v∗ ∈ Ω∗ and p′ = p∗ ≥ 0; i.e., any
limit point of the sequence (vn, pn) is a solution to the problem. The monotonic decreasing of
|vn− v∗|+ |pn−p∗| ensures that the limit point is unique; i.e., vn → v∗ and pn → p∗ as n →∞.
The theorem is proved.

The above proof is a basic scheme that can be extended to approximate solutions of regu-
larized problems and to approximately given Φ(v, w) and g(w).

7. A PREDICTION-TYPE PROXIMAL METHOD WITH RESPECT TO DUAL
VARIABLES

Method (6.2) is convergent due to the use of the modi�ed Lagrange function. In many cases,
however, the modi�ed Lagrange function disturbs the problem's decomposition structure, if any.
For example, the block separable structure allows one to decompose the original problem into
independent subproblems, but it is lost after using the modi�ed Lagrange function. On the
other hand, the use of the ordinary Lagrange function instead of the modi�ed one preserves the
block separable structure of the problem, because the ordinary Lagrange function is a linear
convolution of the objective function with functional constraints. This means that the use of
the ordinary Lagrange function (instead of the modi�ed one) in iterative methods allows one to
decompose the auxiliary optimization problem into a series of independent problems of smaller
sizes at every iteration step. This circumstance is of great importance for game problems, since
they are, as a rule, of large size.

Consider the analogue of (6.2) based on the ordinary Lagrange function. Let (vn, pn) be
the current approximation. Then, the next approximations (vn+1, pn+1) is determined by the
formulas (see [20, 21])

p̄n = π+(pn + αng(vn, vn)),

vn+1 = argmin{1

2
|w − vn|2 + αnL(vn+1, w, p̄n) | w ∈ Ω},

pn+1 = π+(pn + αng(vn+1, vn+1)),

(7.1)
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where
L(v, w, p) = 〈F (v), w − v〉+ 〈p, g(v, w)〉.

The steplength αn in (7.1) is either determined by the condition

0 < ε ≤ αn <
√

2/|g|, ε > 0, (7.2)

where |g| is the constant de�ned in (7.4), or by the condition

αn|g(vn+1, vn+1)− g(vn, vn)| ≤
√

2(1− ε)|vn+1 − vn|. (7.3)

To verify (7.3), we �rst choose an arbitrary α0 (the same for all iteration step, e.g., α0 = 1),
then perform calculations for the �rst two iteration steps by formulas (7.1) (i.e., calculate the
vectors p̄n and vn+1), and next verify the condition. If it is ful�lled, the step length is set equal
to the value found; but if not, the parameter is reduced by multiplying it a number smaller
than unity, etc., until condition (7.3) is satis�ed.

This method for choosing the step length may seem too laborious at �rst glance. Indeed, to
determine αn in the general case, one has to minimize a strongly convex function on a simple
set several times. However, no Lipschitz constants or upper estimates for Lagrange multipliers
are required to be known at advance in this method. Moreover, new parameter values are not
necessarily determined at every iteration step. It may be su�cient to use old parameter values,
sometimes correcting them.

To prove the validity of the method for determining αn by (7.2) and (7.3), we assume that
the operator g(v, v) satis�es the Lipschitz condition

|g(v + h, v + h)− g(v, v)| ≤ |g| |h| (7.4)

for all w,w + h ∈ Ω, where |g| is a constant. Condition (7.4) is used to estimate the di�erence
between two vectors, p̄n and pn+1. In view of (7.4), we �nd from (7.1) that

∣∣∣p̄n − pn+1
∣∣∣ ≤ αn

∣∣∣g(vn, vn)− g(vn+1, vn+1)
∣∣∣ . (7.5)

According to (7.4), any pair of points vn+1 and vn in (7.1) is subject to the condition
∣∣∣g(vn+1, vn+1)− g(vn, vn)

∣∣∣ ≤ |g|
∣∣∣vn+1 − vn

∣∣∣ .

This inequality is always true if the parameter αn in (7.1) is determined by the condition√
2(1− ε)/αn ≥ |g| or, equivalently, by αn ≤

√
2(1− ε)/|g|; i.e.,

|g(vn+1, vn+1)− g(vn, vn)| ≤
√

2(1− ε)

αn

|vn+1 − vn|.

This means that there always exists αn satisfying condition (7.3). In fact, this condition provides
a way of estimating the unknown Lipschitz constant |g| calculations by this method.

Method (7.1) can be represented as the variational inequalities

〈vn+1 − vn + αn(F (vn+1) +∇>
wg(vn+1, vn+1)p̄n), w − vn+1〉 ≥ 0 ∀w ∈ Ω0, (7.6)

〈p̄n − pn − αng(vn, vn), p− p̄n〉 ≥ 0 ∀p ≥ 0, (7.7)
〈pn+1 − pn − αng(vn+1, vn+1), p− pn+1〉 ≥ 0 ∀p ≥ 0. (7.8)
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Of course, the iteration formulas (7.1) are equivalent to (7.6) � (7.8).
Let us prove the monotone (in norm) convergence of method (7.1) to an equilibrium solution

to problem (1.1).

Theorem 2. Let the solution set of problem (1.1) be nonempty, F (v) be a monotone
operator, g(v, w) be a symmetric vector function di�erentiable with respect to w for any v,
its restriction g(v, w)|v=w to the square's diagonal be a convex function, and Ω ⊆ IRn be a
convex closed set.Then, the sequence vn constructed by method (7.1), with αn determined by
(7.2) or (7.3), converges monotonically in norm to an equilibrium solution to problem (1.1);
i.e., vn → v∗ ∈ Ω∗ as n →∞.

Proof. Setting w = v∗ in (7.6) yields

〈vn+1 − vn + αn(F (vn+1) +∇>
wg(vn+1, vn+1)p̄n, v∗ − vn+1〉 ≥ 0. (7.9)

As in (6.6), the last term in (7.9) is transformed as follows:

〈vn+1 − vn, v∗ − vn+1〉+ αn〈F (vn+1), v∗ − vn+1〉+
+

αn

2
〈p̄n, g(v∗, v∗)− g(vn+1, vn+1〉 ≥ 0.

(7.10)

Summing (6.8) and (7.10) gives

〈vn+1 − vn, v∗ − vn+1〉+ αn〈F (vn+1)− F (v∗), v∗−n+1〉+
+

αn

2
〈p̄n − p∗, g(v∗, v∗)− g(vn+1, vn+1)〉 ≥ 0.

(7.11)

Consider inequalities (7.7) and (7.8). Setting p = p∗ in (7.8), we have

〈pn+1 − pn, p∗ − pn+1〉 − αn〈g(vn+1, vn+1), p∗ − pn+1〉 ≥ 0 (7.12)

Setting p = pn+1 in (7.7) yields

〈p̄n − pn, pn+1 − p̄n〉+ αn〈g(vn+1, vn+1)− g(vn, vn), pn+1 − p̄n〉−
−αn〈g(n+1, vn+1), pn+1 − p̄n〉 ≥ 0,

(7.13)

We estimate the second term in (7.13) by means of (7.5) and next summing (7.12) and (7.13)
to obtain

〈pn+1 − pn, p∗ − pn+1〉+ 〈p̄n − pn, pn+1 − p̄n〉+
+α2

n|g(vn+1, vn+1)− g(vn, vn)|2 − αn〈g(vn+1, vn+1), p∗ − p̄n〉 ≥ 0.

By using the obvious relations 〈p̄n, g(v∗, v∗)〉 ≤ 0 and 〈p∗, g(v∗, v∗)〉 = 0, this inequality is
represented as

1

2
〈 pn+1 − pn, p∗ − pn+1〉+

1

2
〈p̄n − pn, pn+1 − p̄n〉+

+
α2

n

2
|g(vn+1, vn+1 − g(vn, vn)|2 +

αn

2
〈g(v∗, v∗)− g(vn+1, vn+1), p∗ − p̄n〉 ≥ 0.

(7.14)

Since the operator F (v) is monotone, the summation of (7.11) and (7.14) gives

〈vn+1 − vn, v∗ − vn+1〉+
1

2
〈pn+1 − pn, p∗ − pn+1〉+

+
1

2
〈p̄n − pn, pn+1 − p̄n〉+

α2
n

2
|g(vn+1, vn+1 − g(vn, vn)|2 ≥ 0.

(7.15)
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Using (6.11), we decompose the �rst three scalar products into a sum of squares:

|vn+1 − v∗|2 +
1

2
|pn+1 − p∗|2 + |vn+1 − vn|2 − α2

n

2
|g(vn+1, vn+1)− g(vn, vn)|2+

+
1

2

∣∣∣pn+1 − p̄n
∣∣∣
2
+

1

2
|p̄n − pn|2 ≤ |vn − v∗|2 +

1

2
|pn − p∗|2 .

(7.16)

In view of
1

2
|pn+1 − pn|2 ≤ |pn+1 − p̄n|2 + |p̄n − pn|2, (7.17)

and in view of (7.3), we can represent (7.16) as

|vn+1 − v∗|2 +
1

2

∣∣∣pn+1 − p∗
∣∣∣
2
+ ε

∣∣∣vn+1 − vn
∣∣∣
2
+

1

4

∣∣∣pn+1 − pn
∣∣∣
2 ≤

≤ |vn − v∗|2 +
1

2
|pn − p∗|2 .

(7.18)

However, if the steplength αn in (7.1) is determined by (7.2), then the fourth term in (7.16)
is estimated using (7.4), and we have

|vn+1 − v∗|2 +
1

2
|pn+1 − p∗|2 + (1− (α2

n/2)|g|2)|vn+1 − vn|2 +

+
1

4
|pn+1 − pn|2 ≤ |vn − v∗|2 +

1

2
|pn − p∗|2.

Since 1− (α2
n/2)|g|2 ≥ ε, this inequality has the form of (7.18). Thus, regardless of the method

for determining αn, we arrive at (7.18), which is entirely analogous to (6.12). Thus, the proof
of Theorem 2 can be completed following that of Theorem 1. The theorem is proved.

The above proof can also be extended to the case when the method is applied under distur-
bance.

8. A PREDICTION-TYPE GRADIENT METHOD WITH RESPECT TO PRIMAL AND
DUAL VARIABLES

In the previous sections, we analyzed the so-called implicit iterative schemes, i.e., schemes
whose right- and left-hand sides involve the variables of the auxiliary variational inequalities
solved at every iteration step. Thus, at every iteration step, one has to solve regularized
intermediate variational inequalities or systems of variational inequalities, but with no coupled
constraints. These inequalities also represent rather di�cult problems. For this reason, the
question arises as to whether the situation can be simpli�ed so that every iteration step involves
only one or two auxiliary problems of optimizing a strongly convex function on a simple set
(projection problems) instead of involving rather di�cult variational inequalities. The answer
is a�rmative. Consider one of the possible gradient iterative schemes with a predictive step
with respect to both primal and dual variables. Let (v0, p0) be the initial approximation. The
next approximation is calculated using the recurrence relations (see [22])

p̄n = π+(pn + αng(vn, vn)),
v̄n = πΩ0(v

n − αn(F (vn) +∇>
wg(vn, vn)p̄n)),

pn+1 = pi+(pn + αng(v̄n, v̄n)),
vn+1 = πΩ0(v

n − αn(F (v̄n) +∇>
wg(v̄n, v̄n)p̄n)).

(8.1)
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The step length αn in (8.1) is determined by either the condition

0 < ε ≤ αn < 1/

√
2(|F |2 + C2|∇|2) +

1

2
|g|2, ε > 0, (8.2)

where |F |, |∇|, C, and |g| are the constants de�ned by (8.4) and (8.6), or the condition

α2
n(|F (v̄n)− F (vn) + (∇>

wg(v̄n, v̄n)−∇>
wg(vn, vn))p̄n|2+

+ (1/2)|g(v̄n, v̄n)− g(vn, vn)|2) ≤ (1− ε)|v̄n − vn|2. (8.3)

The step length in (8.2) and (8.3) is chosen following the same scheme as in (7.2) and (7.3).
The di�erence between v̄n and vn+1 and between p̄n and pn+1 in (8.1) are estimated as

|p̄n − pn+1| ≤ αn|g(vn, vn)− g(v̄n, v̄n)|,
|v̄n − vn+1| ≤ αn|F (vn)− F (v̄n) + (∇>

wg(vn, vn)−∇>
wg(v̄n, v̄n))p̄n|. (8.4)

The methods of determining αn by (8.2) and (8.3) are substantiated as follows. Assume
that g(v, w), F (v), and ∇>

wg(v, v) satisfy the Lipschitz conditions

|g(v + h, v + h)− g(v, v)| ≤ |g||h| (8.5)

for all v ∈ Ω and h ∈ Rn (where |g| is a constant) and

|F (v + h)− F (v)| ≤ |F ||h|, |∇>
wg(v + h, v + h)−∇>

wg(v, v))| ≤ |∇||h|, (8.6)

for all v ∈ Ω and h ∈ Rn, where |F | and |∇| are constants; moreover, let |p̄n| ≤ C.
From (8.5) and (8.6), we have

|F (v̄n)− F (vn) + (∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n| ≤ (|F |+ |p̄n||∇|)|v̄n − vn|,
|g(v̄n, v̄n)− g(vn, vn)| ≤ |g||v̄n − vn|.

Since |p̄n| ≤ C,

|F (v̄n)− F (vn) + (∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n|2+
+(1/2)|g(v̄n, v̄n)− g(vn, vn)|2 ≤ {|F |+ `|∇|)2 + (1/2)|g|2}|v̄n − vn|2. (8.7)

Obviously, if (|F |+ `|∇|)2 + (1/2)|g|2 ≤ (1− ε)/α2
n, i.e.,

α2
n ≤

1− ε

(|F |+ C|∇|)2 + (1/2)|g|2 ,

then there exists αn satisfying (8.3).
Method (8.1) can be represented as variational inequalities. By the de�nition of the projec-

tion operator, the �rst and third equations in (8.1) are written as

〈p̄n − pn − αng(vn, vn), p− p̄n〉 ≥ 0 ∀p ≥ 0, (8.8)

and
〈pn+1 − pn − αng(ūn, ūn), p− pn+1〉 ≥ 0 ∀p ≥ 0. (8.9)

The second and fourth equations are represented as

〈v̄n − vn + αn(F (vn) +∇>
wg(vn, vn)p̄n), w − v̄n〉 ≥ 0 ∀w ∈ Ω0, (8.10)
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and
〈vn+1 − vn + αn(F (v̄n) +∇>

wg(v̄n, v̄n)p̄n), w − vn+1〉 ≥ 0 ∀w ∈ Ω0, (8.11)
Let us show that method (8.1) converges monotonically in norm to an equilibrium solution.

Theorem 3. Let the solution set of problem (1.1) be nonempty, F (v) be a monotone
operator, g(v, w) be a symmetric vector function di�erentiable and convex with respect to w
for any v, its restriction g(v, w)|v=w to the square's diagonal be a convex function, Ω ⊆ IRn

be a convex closed set, and |pn| ≤ C for all n. Then, the sequence vnn constructed by method
(8.1) with αn determined by (8.2) or (8.3) converges monotonically in norm to an equilibrium
solution to problem (1.1); i.e., vn → v∗ ∈ Ω∗ as n →∞.

Proof. Setting w = v∗ in (8.11) yields

〈vn+1 − vn, v∗ − vn+1〉+ αn〈F (v̄n), v∗ − vn+1〉+ αn〈∇>
wg(v̄n, v̄n)p̄n, v∗ − vn+1〉 ≥ 0. (8.12)

Setting w = vn+1 in (8.10), we have

〈v̄n − vn + αn(F (vn) +∇>
wg(vn, vn)p̄n), vn+1 − v̄n〉 ≥ 0.

It follows that
〈v̄n − vn, vn+1 − v̄n〉+ αn〈F (v̄n), vn+1 − v̄n〉−

−αn〈F (v̄n)− F (vn), vn+1 − v̄n〉+ αn〈∇>
wg(v̄n, v̄n)p̄n, vn+1 − v̄n〉−

−αn〈(∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n, vn+1 − v̄n〉 ≥ 0,

or, in view of (8.4),

〈v̄n − vn, vn+1 − v̄n〉+ αn〈F (v̄n), vn+1 − v̄n〉+
+αn〈∇>

wg(v̄n, v̄n)p̄n, vn+1 − v̄n〉+
+α2

n|F (v̄n)− F (vn) + (∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n|2 ≥ 0.

(8.13)

Summing (8.12) and (8.13) produces

〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+ αn〈F (v̄n), v∗ − v̄n〉+
+αn〈p̄n,∇wg(v̄n, v̄n)(v∗ − v̄n)〉+ α2

n|F (v̄n)− F (vn)+

+(∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n|2 ≥ 0.

(8.14)

As in (6.6), the fourth term in (8.14) is transformed as follows:

〈p̄n,∇wg(v̄n, v̄n)(v∗ − v̄n)〉 =
1

2
〈p̄n,∇g(v̄n, v̄n)(v∗ − v̄n)〉 ≤ 1

2
〈p̄n, g(v∗, v∗)− g(v̄n, v̄n)〉,

then,
〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+ αn〈F (v̄n), v∗ − v̄n〉+

+(αn/2)〈p̄n, g(v∗, v∗)− g(v̄n, v̄n)〉+
+α2

n|F (v̄n)− F (vn) + (∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n|2 ≥ 0.

Setting w = v̄n in the �rst inequality of (5.5), we have

〈F (v∗), v̄n − v∗〉+
1

2
〈p∗, g(v̄n, v̄n)− g(v∗, v∗)〉 ≥ 0.
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Summing the last two inequalities yields

〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+ αn〈F (v̄n)− F (v∗), v∗ − v̄n〉+
+

αn

2
〈p̄n − p∗, g(v∗, v∗)− g(v̄n, v̄n)〉+ α2

n|F (v̄n)− F (vn)+

+(∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n|2 ≥ 0.

(8.15)

Consider inequalities (8.8) and (8.9). Setting p = p∗ in (8.9), we have

〈pn+1 − pn, p∗ − pn+1〉 − α〈g(v̄n, v̄n), p∗ − pn+1〉 ≥ 0 (8.16)

Setting p = pn+1 in (8.8) yields

〈p̄n − pn, pn+1 − p̄n〉+ αn〈g(v̄n, v̄n)− g(vn, vn), pn+1 − p̄n〉−
−αn〈g(v̄n, v̄n), pn+1 − p̄n〉 ≥ 0.

(8.17)

Estimating the second term in (8.17) by means of (8.4) and summing (8.16) and (8.17), we
obtain

〈pn+1 − pn, p∗ − pn+1〉+ 〈p̄n − pn, pn+1 − p̄n〉+
+α2

n|g(v̄n, v̄n)− g(vn, vn)|2 − αn〈g(v̄n, v̄n), p∗ − p̄n〉 ≥ 0.

By using the relations 〈p̄n, g(v∗, v∗)〉 ≤ 0 and 〈p∗, g(v∗, v∗)〉 = 0, this inequality can be
rewritten as

1

2
〈pn+1 − pn, p∗ − pn+1〉+

1

2
〈p̄n − pn, pn+1 − p̄n〉+

+
α2

n

2
|g(v̄n, v̄n)− g(vn, vn)|2 +

αn

2
〈g(v∗, v∗)− g(v̄n, v̄n), p∗ − p̄n〉 ≥ 0.

(8.18)

Summing (8.15) and (8.18) and taking into account the monotonicity of F (v) gives

〈vn+1 − vn, v∗ − vn+1〉+ 〈v̄n − vn, vn+1 − v̄n〉+
+(1/2)〈pn+1 − pn, p∗ − pn+1〉+ (1/2)〈p̄n − pn, pn+1 − p̄n〉+
+α2

n(|F (v̄n)− F (vn) + (∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n|2+
+(1/2)|g(v̄n, v̄n)− g(vn, vn)|2) ≥ 0.

Using (6.11), we decompose the �rst four scalar products into a sum of squares to obtain

|vn+1 − v∗|2 + (1/2)|pn+1 − p∗|2 + |vn+1 − v̄n|2 + |v̄n − vn|2+
+(1/2)|pn+1 − p̄n|2 + (1/2)|p̄n − pn|2+
+α2

n(|F (v̄n)− F (vn) + (∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n|2+
+(1/2)|g(v̄n, v̄n)− g(vn, vn)|2) ≤ |vn − v∗|2 + (1/2)|pn − p∗|2.

By virtue of (7.17), the last inequality can be represented as

|vn+1 − v∗|2 + (1/2)|pn+1 − p∗|2 + (1/4)|pn+1 − pn|2 + |vn+1 − v̄n|2+
+|v̄n − vn|2 − α2

n(|F (v̄n)− F (vn) + (∇>
wg(v̄n, v̄n)−∇>

wg(vn, vn))p̄n|2+
+(1/2)|g(v̄n, v̄n)− g(vn, vn)|2) ≤ |vn − v∗|2 + (1/2)|pn − p∗|2.

(8.19)

Estimating the sum of the �fth and sixth terms in (8.19) with the use of (8.3), we have

|vn+1 − v∗|2 +
1

2
|pn+1 − p∗|2 +

1

4
|pn+1 − pn|2 + |vn+1 − v̄n|2 + ε|v̄n − vn|2 ≤

≤ |vn − v∗|2 +
1

2
|pn − p∗|2.

(8.20)
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However, if the step length αn in (8.1) is determined by (8.2), the sixth term in (8.19) is
estimated by using (8.5) and (8.6), in conjunction with 〈x, y〉 ≤ |x|2 + |y|2, and we have

|vn+1 − v∗|2 +
1

2
|pn+1 − p∗|2 +

1

4
|pn+1 − pn|2 + |vn+1 − v̄n|2+

+(1− α2
n(2(|F |2 + C2|∇|2) +

1

2
|g|2)|v̄n − vn|2 ≤ |vn − v∗|2 +

1

2
|pn − p∗|2.

(8.21)

Since 1− α2
n(2(|F |2 + C2|∇|2) + (1/2)|g|2) ≥ ε, we conclude that (8.21) has the form of (8.20).

Thus, regardless of the method for determining αn, we arrive at (8.20), which is entirely analo-
gous to (6.12). Therefore, the proof of Theorem 3 can be completed following that of Theorem 1.
The theorem is proved.

The above proof can also be extended to situation under disturbance.
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