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Abstract �� The equilibrium-programming problem is formulated. Its relation to
game settings is discussed. To solve this problem, implicit and explicit proximal-
regularization methods using conventional and modi�ed Lagrange functions are sug-
gested. The convergence of these methods to the equilibrium solutions is proven.

1. FORMULATION OF THE PROBLEM

The equilibrium-programming problem can be formulated as follows. Find a �xed
point v∗ ∈ Ω∗ that satis�es the following extremal inclusion with functional constraints:

v∗ ∈ Argmin{Φ(v∗, w) | g(w) ≤ 0, w ∈ Ω}. (1.1)

Here, the function Φ(v, w) is de�ned on the product space Rn × Rn, and Ω ⊂ Rn is a
convex closed set. We assume that Φ(v, w) is convex with respect to the variable w ∈ Ω
for every v ∈ Ω. The vector-valued function g(w) has the dimension m. Every component
of this function is convex. The variable v ∈ Ω in (1.1) plays the role of a parameter,
and w ∈ Ω is the optimization variable. We also assume that the extremal (marginal)
mapping w(v) ≡ argmin{Φ(v, w) | g(w) ≤ 0, w ∈ Ω} is de�ned for all v ∈ Ω, and the
set of solutions Ω∗ ⊂ Ω to the original problem is nonempty. By virtue of the Kakutani
theorem, the latter assumption is always ful�lled if Ω is a convex compact set and Φ(v, w)
is lower semicontinuous with respect to v and convex with respect to w (see [1]). In this
case, the extremal mapping is upper semicontinuous and translates every point from Ω
into a closed convex set.

Problem (1.1) can be considered as a convolution, which includes many game settings.
Indeed, assume that the inequalities

L(x∗, y) ≤ L(x∗, p∗) ≤ L(z, p∗) ∀z ∈ Q ⊆ Rn ∀y ∈ P ⊆ Rm (1.2)

de�ne a saddle point x∗, p∗, where L(x, p) is a convex-concave function, Q = {z | g1(z) ≤
≤ 0, z ∈ Q1}, P = {y | g2(y) ≤ 0, y ∈ P1}, and g1(z) and g2(y) are convex vector-valued
functions. We use the notation w = (z, y), v = (x, p), G(w) = (g1(z), g2(y)), and the
normalized function Φ(v, w) = L(z, p) − L(x, y). This notation allows one to represent
(1.2) as (1.1) (see [2]). The solution of the saddle system (1.2) with the normalized
function Φ(v, w) = L(z, p)− L(x, y)) is equivalent to the solution of (1.1).

A more general situation of an n-person game with the Nash equilibrium can also be
reduced to (1.1). Indeed, let fi(xi, x−i) be the payo� function of the ith player, i ∈ I.
This function depends both on the strategy of this player xi ∈ Xi, where Xi = (xi)i∈I ,
and on the strategies of all other players x−i = (xj)j∈I\i. An equilibrium of the n-person
game is a solution to the extremal inclusions

x∗i ∈ Argmin{fi(xi, x
∗
−i) | xi ∈ Xi}. (1.3)
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Consider a normalized function

Φ(v, w) =
n∑

i=1

fi(xi, x−i),

where v = (x−i), w = (xi), g(w) = (gi(xi)), i = 1, 2, . . . , n, and Ω = X1 ×X2 × . . .×Xn;
here (v, w) = (xi, x−i) ∈ Ω× Ω. Using this function, we can write (1.3) as (1.1).

Many inverse optimization problems [3] can also be represented as (1.1). Indeed,
consider the inverse problem of convex programming

x∗ ∈ Argmin{〈λ∗, f(x)〉 | g(x) ≤ 0, x ∈ Q}, G(x∗) ≤ d. (1.4)

In this problem, one must choose nonnegative coe�cients of the linear convolution λ =
= λ∗ so that the optimal solution x = x∗ corresponding to these weights belongs to the
preassigned convex set. In particular, this set may contain only one point. It is assumed
that all functions in this problem are convex.

System (1.4) can be represented as a two-person game with the Nash equilibrium:

x∗ ∈ Argmin{〈λ∗, f(x)〉 | g(x) ≤ 0, x ∈ Q},
p∗ ∈ Argmin{〈p,G(x∗)− d〉 | p ≥ 0}. (1.5)

Indeed, from (1.5), we deduce

〈p∗ − p,G(x∗)− d〉 ≤ 0, p ≥ 0. (1.6)

First, we set p = 0 in (1.6), then we set p = 2p∗, which results in 〈p∗, G(x∗) − d〉 = 0.
Now, if we suppose that some component of the vector G(x∗)− d on the right-hand side
of the inequality

0 = 〈p∗, G(x∗)− d〉 ≤ 〈p,G(x∗)− d〉 (1.7)
is negative, then, since p ≤ 0 is arbitrary, it is easy to obtain a contradiction with (1.7).
Hence, G(x∗) − d ≤ 0. Thus, a solution to (1.5) is a solution to (1.4). The converse
statement is also true. Problem (1.5), in turn, can be reduced to (1.1) with the help of
the normalized function. Hence, the original inverse optimization problem (1.4) can be
represented as a problem of calculating a �xed point of the extremal mapping (1.1).

2. SKEW-SYMMETRIC FUNCTIONS

Formula (1.1) implies that any �xed point satis�es the inequality

Φ(v∗, v∗) ≤ Φ(v∗, w) ∀w ∈ D, (2.1)

where D = {w | g(w) ≤ 0, w ∈ Ω} is an admissible set. This inequality is equivalent
to the de�nition of a �xed point. Since Φ∗ = inf{Φ(w, w) | w ∈ D} ≤ Φ(v∗, v∗), formula
(2.1) immediately implies the inequality of Ky Fan [4]

inf{Φ(w,w) | w ∈ D} ≤ Φ(v∗, w). (2.2)

This inequality is equivalent to the Kakutani theorem [1] and describes the existence of a
�xed point of (1.1).
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In [5, 6], an inequality that describes a saddle property of a �xed point was sug-
gested that allows one to approximate the equilibrium solution to (1.1) with any degree
of accuracy by continuous or iterative processes. This inequality has the form

Φ(w, v∗) ≤ Φ(w, w) ∀w ∈ D. (2.3)

If we rewrite (2.3) in a more general form

Φ(w, v∗) ≤ sup{Φ(w, w) | w ∈ D}

and compare it with the Ky Fan inequality (2.2), then we can see that these two inequa-
lities are related by a mutual symmetry. When sup{. . .} = inf{. . .} = Φ(v∗, v∗), these
two inequalities form a saddle system and, therefore, can be considered as a generalized
saddle system.

Because of the nonconstructive character of inequality (2.3) (it contains the unknown
vector v∗), we introduce a class of functions for which condition (2.3) is always ful�lled.

De�nition 1. A function Φ(v, w) from Rn × Rn into R1 is called skew-symmetric
on Θ×Θ if it satis�es the inequality

Φ(w,w)− Φ(w, v)− Φ(v, w) + Φ(v, v) ≥ 0 (2.4)

for all w ∈ Θ and all v ∈ Θ. If the inequality

Φ(w, w)− Φ(w, v∗)− Φ(v∗, w) + Φ(v∗, v∗) ≥ 0 (2.5)

is valid for all w from a neighborhood of the solution v∗ ∈ Ω∗, then the function Φ(v, w)
is called skew-symmetric with respect to the equilibrium point.

Further, we assume that the set Θ coincides with either Ω or D. The class of skew-
symmetric functions thus de�ned is nonempty. It is easy to verify (see [2]) that the
normalized function Φ(v, w) = L(z, p) − L(x, y), w = (z, y), v = (x, p) of the saddle
problem (1.2) is skew-symmetric.

For skew-symmetric functions, (2.3) is always ful�lled. Indeed, setting v = v∗ ∈ Ω∗ in
(2.4) and taking into account (2.1), we obtain (2.3).

Skew-symmetric functions have properties that can be considered as analogues of the
monotonicity of the gradient and the nonnegativity of the second derivative for convex
functions.

Property 1. If a function Φ(v, w) is skew-symmetric and convex with respect to its
second argument, then its partial gradient ∇Φw(v, v) is monotonic on the diagonal of the
square Θ×Θ:

〈∇Φw(w,w)−∇Φw(v, v), w − v〉 ≥ 0 ∀w ∈ Θ, v ∈ Θ.

This inequality follows from (2.4) by virtue of the convexity of Φ(v, w) with respect
to w:

〈∇f(x), y − x〉 ≤ f(y)− f(x) ≤ 〈∇f(y), y − x〉 (2.6)
for all x and y from a certain set.
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If we set v = v∗ (2.6) and use (2.1) in the form

〈∇Φw(v∗, v∗), w − v∗〉 ≥ 0 ∀w ∈ Θ,

then we obtain the following inequality:

〈∇Φw(w,w), w − v∗〉 ≥ 0 ∀w ∈ Θ. (2.7)

Inequality (2.7) is equivalent to (2.3) if the function Φ(v, w) is di�erentiate and convex with
respect to w. For convex optimization problems, there is an analogue of this inequality.
It can be written as 〈∇Φ(w), w − v∗〉 ≥ 0 ∀w ∈ Θ (see [7]).

Property 2. The mixed derivative ∇2Φwv(v, v) of the skew-symmetric function
Φ(v, w) is nonnegative on the diagonal of the square Θ×Θ:

〈∇2Φwv(v, v)h, h〉 ≥ 0 ∀h ∈ Rn. (2.8)

Condition (2.3) imposes a certain constraint on the behavior of the objective func-
tion in a neighborhood of the equilibrium. However, some problems (see the examples
below) satisfy conditions that are even more restrictive than (2.3). Let v∗ be an isolated
equilibrium; then, for certain classes of problems, the following inequality holds:

Φ(w,w)− Φ(w, v∗) ≥ γ|w − v∗|1+ν ∀w ∈ Θ. (2.9)

Here, ν ∈ [0,∞) is a parameter, and γ > 0 is a constant. If ν = 0, then we have a sharp
equilibrium; if ν = 1, then the equilibrium is quadratic.

3. EXAMPLES

In this section, we present examples that illustrate the diversity of problems for which
condition (2.3) is ful�lled.

1. Quadratic equilibrium. Consider the problem of �nding a �xed point of the
quadratic extremal inclusion

v∗ ∈ Argmin

{
1

2
〈Nw,w〉+ 〈Mv∗ + m,w〉 | w ∈ Ω

}
, (3.1)

where N and M are nonnegative matrices; i.e., 〈Nv, v〉 ≥ 0 and 〈Mv, v〉 ≥ 0 for all
v ∈ Rn. We also assume that N is a symmetrical matrix. Consider

Φ(w,w)− Φ(w, v)− Φ(v, w) + Φ(v, v)

=
1

2
〈Nw,w〉+ 〈Mw, w〉+ 〈m,w〉 − 1

2
〈Nv, v〉 − 〈Mv, v〉 − 〈m, v〉−

− 1

2
〈Nw,w〉 − 〈Mv,w〉 − 〈m,w〉+

1

2
〈Nv, v〉+ 〈Mv, v〉+ 〈m, v〉 =

= 〈M(w − v), w − v〉 ≥ 0 ∀w ∈ Ω ∀v ∈ Ω.

This implies that, if the matrix M is nonnegative, then Φ(w, v) in (3.1) satis�es (2.4). If
M is strongly positive, then (2.9) is valid with ν = 1.
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2. The Cournot diopoly. This basic example is a model of the behavior of two
monopolists that produce the same goods and compete in the same market. Simplifying
the situation (for details, see [8]), we consider the diopoly as a game of two persons whose
loss functions are de�ned by the formulas

f1(z, y) = z(z + y − u), f2(z, y) = y(z + y − u), (3.2)

where z ∈ [0, u], y ∈ [0, u], u > 0, and z and y are the amounts of goods produced by the
�rst and second participant, respectively. If the second participant produces y∗ units of
goods, then the �rst participant brings z∗ = (u−y∗)/2 units of goods to the market, which
minimizes his functional expenses: f1(z, y

∗) = = z(z + y∗ − u). The second participant
pursues the same strategy y∗ = (u − z∗)/2 if he is informed that the �rst player has
brought z∗ units of goods to the market. The �xed point of equilibrium of the diopoly
is the pair z∗ = u/3, y∗ = u/3. The expenses of the players are equal to −u2/9. The
Cournot diopoly is a quadratic game and, consequently, can be represented as (3.1). The
matrix M does not satisfy the condition 〈Mh, h〉 ≥ 0 for all h ∈ Rn. Nevertheless, this
problem satis�es condition (2.3). Let its verify this. We write the normalized function
Φ(v, w) for problem (3.2). For this purpose, we denote the variable y in the �rst formula
(3.2) by p. We can do so, because we minimize f1(z, y) with respect to z. For the same
reason, we denote the variable z in the formula for f2(z, y) by x. We introduce new
variables w = (z, y) and v = (x, p), and write the normalized function for the game (3.2):

Φ(v, w) = (z, y)

(
1 0
0 1

)(
z
y

)
+ (x, p)

(
0 1
1 0

)(
z
y

)
− (u, u)

(
z
y

)
.

Let w = v∗ = (x∗, p∗) and v = w = (z, y); then, (2.3) can be written as

(x∗, p∗)
(

1 0
0 1

)(
x∗

p∗

)
+ (z, y)

(
0 1
1 0

)(
x∗

p∗

)
− (u, u)

(
x∗

p∗

)
≤

≤ (z, y)

(
1 0
0 1

)(
z
y

)
+ (z, y)

(
0 1
1 0

)(
z
y

)
− (u, u)

(
z
y

)
,

This implies the inequality (x∗)2 +(p∗)2 +zp∗+yx∗−ux∗−up∗ ≤ z2 +y2 +2zy−uz−uy.
Since x∗ = u/3 and p∗ = u/3, we have −4u2/9+u(z + y)/3 ≤ (z + y)2−u(z + y). Finally,
0 ≤ [(z + y)− −2u/3]2. Hence, the Cournot Diopoly game satis�es condition (2.3).

3. The prisoner's dilemma. Consider a �nite game in which both participants have
their sets of strategies, each of which consists of two elements: {I, II} and {1, 2}. Assume
that both participants are imprisoned for the crimes committed, and each of them has
two possibilities: sincere confession (strategies II and 2) and a denial (strategies I and
1). Their payo� functions take the following values: 0, a, b, c, where 0 < a < b < c. Each
of these numbers is treated as �a years of imprisonment�. The matrix of the game is

1 2
I a, a c, 0
II 0, c b, b

This matrix implies that, if both participants either simultaneously deny their crimes or
confess, then they are imprisoned for a or b years each. If one of them confesses, while the
other denies his crime, then the �rst participant is released, and the other is imprisoned
for c years.
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The pair of strategies (II, 2) is a (noncooperative) equilibrium state of this game.
Indeed, let us verify (2.1):

f1(II, 2) = b < f1(I, 2) = c, f2(II, 2) = b < f2(II, 1) = c.

A large number of scientists have tested their ideas and methods by applying them to
this game. Let us also test our method. Let us verify that this problem satis�es condition
(2.3). Let Φ(v, w) = f1(z, p) + f2(x, y), where v = (x, p) and w = (z, y); then, (2.3) can
be rewritten as

f1(x
∗, y) + f2(z, p

∗) ≤ f1(z, y) + f2(z, y),

where x∗, p∗ = (II, 2). Hence f1(II, y) + f2(z, 2) ≤ f1(z, y) + f2(z, y). Here, the variable
z ranges over the set {I, II}, and the variable y ranges over [1, 2]. Calculating (2.3) at
the points z = I, y = 1; z = II, y = 1; z = I, y = 2; and z = II, y = 2, successively,
we obtain the following relations: 0 ≤ 2a; b = b; b ≤ c; 2b = 2b. Since these relations are
true, we have proven that the Prisoner's Dilemma game satis�es condition (2.3).

4. PROXIMAL-REGULARIZATION METHODS

Before discussing the methods for solving (1.1), we will make the following remark.
Let us write (2.1) and (2.3) as

Φ(w, v∗)− Φ(w, w) ≤ Φ(v∗, v∗)− Φ(v∗, v∗) ≤ Φ(v∗, w)− Φ(v∗, v∗) ∀w ∈ D. (4.1)

Consider the function Ψ(v, w) = Φ(v, w)− Φ(v, v) and, with its help, write (4.1) as

Ψ(w, v∗) ≤ Ψ(v∗, v∗) ≤ Ψ(v∗, w) ∀w ∈ D.

The last system of inequalities implies that v∗, v∗ is a saddle point for the function Ψ(v, w).
This circumstance is, however, of little use, because the function Ψ(v, w) cannot be applied
for calculating saddle points, since the saddle methods [2] require convexity with respect
to one variable and concavity with respect to another. Although the function Ψ(v, w) is
convex with respect to w, it is not concave with respect to v. If we still wish to develop
methods for calculating a saddle for Ψ(v, w), then these methods must contain the shift
procedure with respect to both v and w; this circumstance implies that the corresponding
method has poor convergence properties, because the function is not concave with respect
to the variable v. In our method, an equilibrium (in particular, a saddle) is approached by
recalculating the iterations with respect to one variable w alone, and the process converges
monotonically to the equilibrium (in the norm of the space) in the general case.

Following the usual scheme of convex programming, we introduce the Lagrange func-
tion for problem (1.1):

L(v∗, w, p) = Φ(v∗, w) + 〈p, g(w)〉, w ∈ Ω, p ≥ 0.

If the functional constraints are regular (e.g., if the Slater conditions are ful�lled), this
problem can be transformed into the problem of calculating a saddle point of the Lagrange
function L(v∗, w, p), i.e.,

Φ(v∗, v∗) + 〈p, g(v∗)〉 ≤ Φ(v∗, v∗) + 〈p∗, g(v∗)〉 ≤
≤ Φ(v∗, w) + 〈p∗, g(w)〉 ∀w ∈ Ω, p ≥ 0.

(4.2)
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Let us write this system in the following equivalent form:
v∗ ∈ Argmin{Φ(v∗, w) + 〈p∗, g(w)〉 | w ∈ Ω},
p∗ = π+(p∗ + αg(v∗)),

(4.3)

where π+(. . .) is the operator that projects a vector to the positive orthant Rn
+.

We consider two sorts of methods for solving the equilibrium problem (4.3): explicit
and implicit ones. Implicit methods are iteration processes such that, at every iteration,
an auxiliary regularized equilibrium problem is solved. In this approach, the original
problem, which is, as a rule, degenerate, is replaced by a sequence of regularized equilib-
rium problems. To solve the latter problems, we use the methods developed in [5, 6] for
calculating the �xed points of extremal mappings. Under some constraints on the data
of the problem, we prove that the sequence of regularized equilibrium solutions converges
to the solution to the original problem.

Explicit methods use more complicated iteration formulas, but, at every iteration, one
has to solve a comparatively simple problem of optimizing a strongly convex function on
a simple set. It is possible to prove that these methods converge if the length of the step
is bounded by a constant.

The proximal-regularization method, based on a modi�ed Lagrange function, is one
of the methods for solving the equilibrium problem (1.1) Its iteration formulas are

vn+1 = argmin

{
1

2
|w − vn|2 + αM(vn+1, w, pn) | w ∈ Ω

}
, (4.4)

pn+1 = π+(pn + αg(vn+1)), (4.5)
where

M(v, w, p) = Φ(v, w) +
1

2α
|π+(p + αg(w))|2 − 1

2α
|p|2

is de�ned for all v, w ∈ Rn × Rn and p ≥ 0. Here, vn, pn is the approximation, and
vn+1, pn+1 is the desired solution. Equation (4.4) contains the unknowns vn+1 on both
its left- and right-hand sides (an implicit scheme). Using the notation R(v, w, vn, pn) =
= |w− vn|2/2+αM(v, w, pn), we can write (4.4) as a problem of calculating a �xed point
of the extremal mapping

vn+1 = argmin{R(vn+1, w, vn, pn) | w ∈ Ω}.
The methods for solving this problem were investigated in [5, 6].

It is natural to consider (4.4), (4.5) as a proximal-regularization method in which the
(degenerate) function Φ(v, w) is regularized with the help of the quadratic term |w−vn|2/2,
and the functional constraints of the problem are taken into account with the help of the
modi�ed Lagrange function.

Let us discuss the problems of the convergence of this method. Recall that the func-
tions Φ(v, w) and g(w) are assumed to be convex with respect to the variable w, but not
necessarily di�erentiable. In the latter case, these functions have subdi�erentials in their
domains. It is well known that, at a minimum point, the subdi�erential of a function
contains a subgradient such that the linear function corresponding to this subgradient
is nonnegative on an admissible convex set. Adapting this situation for (4.4) and (4.5),
where vn+1 and pn+1 are the minimum points of the corresponding functions, we represent
the process as variational inequalities
〈vn+1 − vn + α∇Φw(vn+1, vn+1) + α∇g>(vn+1)π+(pn + αg(vn+1)), w − vn+1〉 ≥ 0, (4.6)
〈pn+1 − pn − αg(vn+1), p− pn+1〉 ≥ 0. (4.7)
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These inequalities are valid for all w ∈ Ω and all p ≥ 0. Here, ∇Φw(v, w) is the vector-
subgradient of the function Φ(v, w) with respect to the variable w, and ∇g>(v) is the
transposed matrix in which every column is the vector-subgradient of the corresponding
scalar function of the vector g(v).

Let us show that method (4.4), (4.5) converges monotonically in the norm to an
equilibrium solution to the problem, assuming that the set Θ in (2.5) is identical with Ω.

Theorem 1. If the set of solutions to (1.1) is nonempty and satis�es condition (2.5)
for all w ∈ Ω, the objective function Φ(v, w) is continuous with respect to v and convex
with respect to w for every v ∈ Ω, g(w) is a convex vector-valued function, and Ω ⊆ Rn

is a convex closed set, then the sequence vn generated by (4.4), (4.5) converges to cm
equilibrium solution monotonically in the norm, i.e., vn → v∗ ∈ Ω∗ as n →∞.

Proof. Setting w = v∗ in (4.6) and taking into account (4.5), we obtain

〈vn+1 − vn + α∇Φw(vn+1, vn+1) + α∇g>(vn+1)pn+1, v∗ − vn+1〉 ≥ 0. (4.8)

Using the convexity inequalities (2.6), we transform (4.8) as follows:

〈vn+1 − vn, v∗ − vn+1〉 + α[Φ(vn+1, v∗)− Φ(vn+1, vn+1)]+

+ α〈pn+1, g(v∗)− g(vn+1)〉 ≥ 0.
(4.9)

Setting w = vn+1 in (4.2), we write the last inequality as

Φ(v∗, vn+1)− Φ(v∗, v∗) + 〈p∗, g(vn+1)− g(v∗)〉 ≥ 0. (4.10)

Summing (4.9) and (4.10), we infer that

〈vn+1 − vn, v∗ − vn+1〉 − α[Φ(vn+1, vn+1)− Φ(vn+1, v∗)]− Φ(v∗, vn+1)+

+ Φ(v∗, v∗)) + α〈pn+1 − p∗, g(v∗)− g(vn+1)〉 ≥ 0.
(4.11)

Further, we put p = p∗ in (4.7):

〈pn+1 − pn, p∗ − pn+1〉 − α〈g(vn+1), p∗ − pn+1〉 ≥ 0. (4.12)

Let us sum (4.11) and (4.12). Taking into account the formulas 〈pn+1, g(v∗)〉 ≤ 0,
〈p∗, g(v∗)〉 = 0, and (2.5), we obtain

〈vn+1 − vn, v∗ − vn+1〉+ 〈pn+1 − pn, p∗ − pn+1〉 ≥ 0.

Using the identity

|x1 − x3|2 = |x1 − x2|2 + 2〈x1 − x2, x2 − x3〉+ |x2 − x3|2, (4.13)

we expand the scalar products on the left-hand side of the obtained inequality in a sum
of squares:

|vn+1 − v∗|2 + |pn+1 − p∗|2 + |vn+1 − vn|2 + |pn+1 − pn|2 ≤
≤ |vn − v∗|2 + |pn − p∗|2. (4.14)
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Summing inequality (4.14) with respect to n from 0 to N , we obtain the inequality

|vN+1 − v∗|2 + |pN+1 − p∗|2 +
k=N∑
k=0

|vk+1 − vk|2 +
k=N∑
k=0

|pk+1 − pk|2 ≤
≤ |v0 − v∗|2 + |p0 − p∗|2.

which implies that the trajectory is bounded, i.e.,

|vN+1 − v∗|2 + |pN+1 − p∗|2 ≤ |v0 − v∗|2 + |p0 − p∗|2, (4.15)

and the series ∞∑

k=0

|vk+1 − vk|2 < ∞,

∞∑

k=0

|pk+1 − pk|2 < ∞,

converge; hence, the following quantities tend to zero:

|vn+1 − vn|2 → 0, |pn+1 − pn|2 → 0, n →∞. (4.16)

Since the sequence vn, pn is bounded, there exists an element v′, p′ such that vni → v′

and pni → p′ as ni →∞; moreover,

|vni+1 − vni|2 → 0, |pni+1 − pni|2 → 0.

Consider inequalities (4.6) and (4.7) for all ni →∞; passing to the limit, we obtain

〈∇Φw(v′, v′) +∇g>(v′)p′, w − v′〉 ≥ 0, p′ = π+(p′ + αg(v′)).

Since these relations are equivalent to (4.2), we have v′ = v∗ ∈ Ω∗ and p′ = p∗ ≥ 0; i.e.,
any limit point of the sequence vn, pn is a solution to the problem. Since the quantity
|vn − v∗| + |pn − p∗| is monotonically decreasing, the limit point is unique; i.e., we have
the convergence vn → v∗, pn → p∗ as n →∞. This completes the proof.

This proof can be easily generalized if one has to deal with approximate solutions to
a regularized problem, and the functions Φ(v, w) and g(w) are given approximately.

5. THE PREDICTION METHOD OF PROXIMAL REGULARIZATION

Method (4.4), (4.5) is based on the modi�ed Lagrange function. This ensures the
convergence of the method. In many cases, however, this circumstance results in the
loss of the decomposition properties; i.e., if the original problem has a block-separable
structure (the normalized form of an n-person game always has such a structure), which
allows one to decompose the original problem into independent subproblems, then the
use of the modi�ed Lagrange function results in the loss of this structure. On the other
hand, if one uses the conventional Lagrange function, rather than the modi�ed one, then
the block-separable structure of the problem is preserved, because the conventional La-
grange function is a mere linear convolution of the objective function and the functional
constraints. The last assertion means that if, in the iteration methods, one uses the con-
ventional Lagrange function (rather than the modi�ed one), then, at every iteration, the
auxiliary optimization problem is decomposed into several independent subproblems of
smaller dimension. This circumstance is of importance for game problems, because, as a
rule, they have large dimensions.
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In this section, we consider an analogue of method (4.4), (4.5) based on the conven-
tional Lagrange function. Assume that we know the approximation vn, pn; then, the next
approximation vn+1, pn+1 can be found by the formulas

p̄n = π+(pn + αg(vn)),

vn+1 = argmin

{
1

2
|w − vn|2 + αL(vn+1, w, p̄n) | w ∈ Ω

}
,

pn+1 = π+(pn + αg(vn+1)),

(5.1)

where
L(v, w, p) = Φ(v, w) + 〈p, g(w)〉.

Further, we use the following inequality:

1

2
|z∗ − x|2 + αf(z∗) ≤ 1

2
|z − x|2 + αf(z)− 1

2
|z − x∗|2, (5.2)

where z ∈ Q and z∗ is the minimum point of the function |z − x|2/2 + αf(z) on the
set Q for a �xed vector x. This inequality is valid for any convex functions that are not
necessarily di�erentiable (see [2]).

Let us represent (5.1) as variational inequalities. We write the second of equations
(5.1) as (5.2):

1

2
|vn+1 − vn|2 + αΦ(vn+1, vn+1) + α〈p̄n, g(vn+1)〉 ≤

≤ 1

2
|w − vn|2 + αΦ(vn+1, w) + α〈p̄n, g(w)〉 − 1

2
|vn+1 − w|2 ∀w ∈ Ω,

(5.3)

the �rst and third equations (5.1) can be written as

〈p̄n − pn − αg(vn), p− p̄n〉 ≥ 0 ∀p ≥ 0, (5.4)

〈pn+1 − pn − αg(vn+1), p− pn+1〉 ≥ 0 ∀p ≥ 0. (5.5)

Assume that the vector-valued function g(w) satis�es the Lipschitz condition

|g(w + h)− g(w)| ≤ |g| |h| (5.6)

for all w,w + h ∈ Ω, where |g| is a constant. Let us evaluate the di�erence between the
two vectors p̄n and pn+1. Taking into account (5.6), we derive from (5.1) the following
estimate:

|p̄n − pn+1| ≤ α|g(vn)− g(vn+1)| ≤ α|g| |vn − vn+1|. (5.7)
Let us prove that (5.1) converges to an equilibrium solution the problem monotonically

in the norm.
Theorem 2. If the set of solutions to (1.1) is nonempty ami satis�es condition

(2.5) for all w ∈ Ω, the objective function Φ(v, w) is continuous with respect to v and
convex with respect to w for every v ∈ Ω, the convex vector-valued function g(w) satis�es
condition (5.6), and Ω ⊆ Rn is a convex closed set, then the sequence vn generated by (5.1)
with the parameter 0 < α < (

√
2|g|)−1 converges to an equilibrium solution monotonically

in the norm, i.e., vn → v∗ ∈ Ω∗ as n →∞.
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Proof. Setting w = v∗ in (5.3), we obtain

1

2
|vn+1 − vn|2 + αΦ(vn+1, vn+1) + α〈p̄n, g(vn+1)〉 ≤

≤ 1

2
|v∗ − vn|2 + αΦ(vn+1, v∗) + α〈p̄n, g(v∗)〉 − 1

2
|vn+1 − v∗|2

and setting w = vn+1 in (4.2), we obtain

Φ(v∗, v∗) + 〈p∗, g(v∗)〉 ≤ Φ(v∗, vn+1) + 〈p∗, g(vn+1)〉.

Now, we sum these two inequalities:

1

2
|vn+1 − v∗|2 +

1

2
|vn+1 − vn|2+

+ α[Φ(vn+1, vn+1)− Φ(vn+1, v∗)− Φ(v∗, vn+1) + Φ(v∗, v∗)]+

+ α〈p̄n − p∗, g(vn+1)− g(v∗)〉 ≤ 1

2
|v∗ − vn|2.

(5.8)

Consider inequalities (5.4) and (5.5). Let us set p = p∗ in (5.5)

〈pn+1 − pn, p∗ − pn+1〉 − α〈g(vn+1), p∗ − pn+1〉 ≥ 0 (5.9)

and p = pn+1 in (5.4)

〈p̄n − pn, pn+1 − p̄n〉 + α〈g(vn+1)− g(vn), pn+1 − p̄n〉−
− α〈g(n+1), pn+1 − p̄n〉 ≥ 0,

(5.10)

Evaluating the second summand in this inequality with the help of (5.6) and (5.7) and
adding inequalities (5.9) and (5.10), we obtain the following inequality:

〈pn+1 − pn, p∗ − pn+1〉+ 〈p̄n − pn, pn+1 − p̄n〉+
+ α2|g|2 |vn+1 − vn|2 − α〈g(vn+1), p∗ − p̄n〉 ≥ 0.

Using identity (4.13), we expand the �rst two scalar products in a sum of squares:

1

2
|pn+1 − p∗|2 +

1

2
|pn+1 − p̄n|2 +

1

2
|p̄n − pn|2−

− α2|g|2 |vn+1 − vn|2 + α〈g(vn+1), p∗ − p̄n〉 ≤ 1

2
|pn − p∗|2.

(5.11)

Then, we sum (5.8) and (5.11). Using (2.5) and the relations 〈p̄n, g(v∗)〉 ≤ 0and 〈p∗, g(v∗)〉 =
0, we obtain

|vn+1 − v∗|2 + (1− 2α2|g|2)|vn+1 − v∗|2 + |pn+1 − p∗|2+
+ |pn+1 − p̄n|2 + |p̄n − pn|2 ≤ |vn − v∗|2 + |pn − p∗|2. (5.12)

Inequality (5.12) is a direct analogue of (4.14); hence, for 0 < α < (
√

2|g|)−1, the proof
of the theorem can be completed by using the proof scheme of Theorem 2.

This proof can be generalized for the case when the auxiliary regularized solution is
calculated approximately, and the initial data of the problem are also given approximately.
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6. PREDICTION PROXIMAL-TYPE METHOD

In the preceding sections, we considered implicit iteration schemes, i.e., the schemes
that the variables for which the auxiliary equations are solved at every iteration step both
on the right- and left-hand sides of these equations. Hence, at every iteration, one has to
solve a regularized equilibrium auxiliary problem, which is by no means easy. Therefore,
the question arises whether it is possible to organize the calculation so that, at every
iteration, the auxiliary problem would consist of one or several conventional problems
of the minimization of a strongly convex function on a simple set. The answer to this
question is positive. To verify that, consider one of several possible proximal iteration
schemes. Indeed, let v0, p0 be an initial approximation; then, the next approximations
can be calculated by the following recurrence formulas:

p̄n = π+(pn + αg(vn)),

ūn = argmin

{
1

2
|w − vn|2 + αL(vn, w, p̄n) | w ∈ Ω

}
,

vn+1 = argmin

{
1

2
1|w − vn|2 + αL(ūn, w, p̄n) | w ∈ Ω

}
,

pn+1 = π+(pn + αg(ūn)),

(6.1)

where
L(v, w, p) = Φ(v, w) + 〈p, g(w)〉.

Let us represent this process as a set of variational inequalities. According to the
de�nition of the projection operator, we can write the �rst and the fourth equations of
(6.1) as

〈p̄n − pn − αg(vn), p− p̄n〉 ≥ 0 ∀p ≥ 0 (6.2)
and

〈pn+1 − pn − αg(ūn), p− pn+1〉 ≥ 0 ∀p ≥ 0. (6.3)
respectively.

Writing the second and the third equations as (5.2), we obtain
1

2
|ūn − vn|2 + αΦ(vn, ūn) + α〈p̄n, g(ūn)〉 ≤

≤ 1

2
|w − vn|2 + αΦ(vn, w) + α〈p̄n, g(w)〉 − 1

2
|w − ūn|2 ∀w ∈ Ω

(6.4)

and
1

2
|vn+1 − vn|2 + αΦ(ūn, vn+1) + α〈p̄n, g(vn+1)〉 ≤

≤ 1

2
|w − vn|2 + αΦ(ūn, w) + α〈p̄n, g(w)〉 − 1

2
|vn+1 − w|2 ∀w ∈ Ω.

(6.5)

Throughout the rest of this paper, we assume that the function Φ(v, w) satis�es the
following Lipschitz-type condition:

|[Φ(w + h, v + k)− Φ(w + h, v)]− [Φ(w, v + k)− Φ(w, v)]| ≤ |Φ| |h| |k| (6.6)

for all w,w + h ∈ Ω and v, v + k ∈ Ω, where |Φ| is a constant. A class of functions that
satisfy this condition is nonempty [2]. Moreover, the vector-valued function g(w) satis�es
the condition

|g(w + h)− g(w)| ≤ |g| |h| (6.7)
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for all w,w + h ∈ Ω, where |g| is a constant.
Let us evaluate the di�erence between the vectors vn+1 and ūn. For this purpose, we

put w = vn+1 in (6.4) and w = ūn in (6.5); this yields

1

2
|ūn − vn|2 + αΦ(vn, ūn) + α〈p̄n, g(ūn)〉 ≤

≤ 1

2
|vn+1 − vn|2 + αΦ(vn, vn+1) + α〈p̄n, g(vn+1)〉 − 1

2
|vn+1 − ūn|2,

and
1

2
|vn+1 − vn|2 + αΦ(ūn, vn+1) + α〈p̄n, g(vn+1)〉 ≤

≤ 1

2
|ūn − vn|2 + αΦ(ūn, ūn) + α〈p̄n, g(ūn)〉 − 1

2
|ūn − vn+1|2.

Let us sum up the two inequalities thus obtained:

|ūn − vn+1|2 + α[Φ(vn, ūn)− Φ(vn, vn+1)− Φ(ūn, ūn) + Φ(ūn, vn+1)] ≤ 0.

Taking into account (6.6), we obtain

|ūn − vn+1| ≤ α|Φ| |vn − ūn|. (6.8)

Now, let us show that (6.1) converges to an equilibrium solution monotonically in the
norm.

Theorem 3. If the set of solutions to (1.1) is nonempty and satis�es condition (2.5)
for all w ∈ Ω, the objective function Φ(v, w) is continuous with respect to v and convex
with respect to w for every v ∈ Ω, Ω ⊆ Rn is a convex closed set, and the functions
Φ(v, w) and g(w) are convex with respect to w and satisfy conditions (6.6) and (6.7),
then the sequence vn generated by (6.1) with the parameter 0 < α < (

√
2(|Φ|2 + |g|2))−1

converges to an equilibrium solution monotonically in the norm, i.e., vn → v∗ ∈ Ω∗ as
n →∞.

Proof. Setting w = v∗ in (6.5), we obtain

1

2
|vn+1 − vn|2 + αΦ(ūn, vn+1) + α〈p̄n, g(vn+1)〉 ≤

≤ 1

2
|v∗ − vn|2 + αΦ(ūn, v∗) + α〈p̄n, g(v∗)〉 − 1

2
|vn+1 − v∗|2.

Hence,
1

2
|vn+1 − v∗|2 +

1

2
|vn+1 − vn|2 + α[Φ(ūn, vn+1)− Φ(ūn, v∗)]+

+ α〈p̄n, g(vn+1)− g(v∗)〉 ≤ 1

2
|vn − v∗|2.

(6.9)

Setting w = vn+1 in (6.4), we infer that

1

2
|ūn − vn|2 + αΦ(vn, ūn) + α〈p̄n, g(ūn)〉 ≤

≤ 1

2
|vn+1 − vn|2 + αΦ(vn, vn+1) + α〈p̄n, g(vn+1)〉 − 1

2
|vn+1 − ūn|2.
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Hence,
1

2
|vn+1 − ūn|2 +

1

2
|ūn − vn|2 + α[Φ(vn, ūn)− Φ(vn, vn+1)]+

+ α〈p̄n, g(ūn)− g(vn+1)〉 ≤ 1

2
|vn+1 − vn|2.

(6.10)

Summing inequalities (6.9) and (6.10), we obtain
1

2
|vn+1 − v∗|2 +

1

2
|vn+1 − ūn|2 +

1

2
|ūn − vn|2 + α[Φ(ūn, ūn)− Φ(ūn, v∗)]−

− α[Φ(ūn, ūn)− Φ(ūn, vn+1)− Φ(vn, ūn) + Φ(vn, vn+1)]+

+ α〈p̄n, g(ūn)− g(v∗)〉 ≤ 1

2
|vn − v∗|2.

(6.11)

Setting w = ūn in (4.2), we write the inequality thus obtained as

Φ(v∗, v∗) + 〈p∗, g(v∗)〉 ≤ Φ(v∗, ūn) + 〈p∗, g(ūn)〉.
We add this inequality to (6.11). Taking into account (6.6) � (6.8), we obtain

1

2
|vn+1 − v∗|2 +

1

2
|vn+1 − ūn|2 +

(
1

2
− α2|Φ|2

)
|ūn − vn|2+

+ α[Φ(ūn, ūn)− Φ(ūn, v∗)− Φ(v∗, ūn) + Φ(v∗, v∗)]+

+ α〈p̄n − p∗, g(ūn)− g(v∗)〉 ≤ |vn − v∗|2.
(6.12)

Consider (6.2) and (6.3). Setting p = p∗ in (6.3), we obtain

〈pn+1 − pn, p∗ − pn+1〉 − α〈g(ūn), p∗ − pn+1〉 ≥ 0, (6.13)

and setting p = pn+1 in (6.2), we obtain

〈p̄n − pn, pn+1 − p̄n〉 + α〈g(ūn)− g(vn), pn+1 − p̄n〉−
− α〈g(ūn), pn+1 − p̄n〉 ≥ 0.

(6.14)

We evaluate the second summand in this inequality using (6.7) and then sum up inequa-
lities (6.13) and (6.14):

〈pn+1 − pn, p∗ − pn+1〉+ 〈p̄n − pn, pn+1 − p̄n〉+
+ α2|g|2 |ūn − vn|2 − α〈g(ūn), p∗ − p̄n〉 ≥ 0,

Using (4.13), we expand the �rst two scalar products in a sum of squares:
1

2
|pn+1 − p∗|2 +

1

2
|pn+1 − p̄n|2 +

1

2
|p̄n − pn|2 − α2|g|2 |ūn − vn|2+

+ α〈g(ūn), p∗ − p̄n〉 ≤ 1

2
|pn − p∗|2.

(6.15)

Then, we sum up (6.12) and (6.15). Taking into account the formulas 〈pn+1, g(v∗)〉 ≤ 0,
〈p∗, g(v∗)〉 = 0, and (2.5), we obtain

1

2
|vn+1 − v∗|2 +

1

2
|pn+1 − p∗|2 +

1

2
|vn+1 − ūn|2+

+

[(
1

2
− α2(|Φ|2 + |g|2)

)]
|ūn − vn|2 +

1

2
|pn+1 − p̄n|2 +

1

2
|p̄n − pn|2 ≤

≤ 1

2
|vn − v∗|2 +

1

2
|pn − p∗|2.

(6.16)
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Summing (6.16) from n = 0 to n = N , we obtain

|vN+1 − v∗|2 + |pN+1 − p∗|2 + 2d
k=N∑
k=0

|ūk − vk|2 +
k=N∑
k=0

|vk+1 − ūk|2+

+
k=N∑
k=0

|pk+1 − p̄k|2 +
k=N∑
k=0

|p̄k − pk|2 ≤ |v0 − v∗|2 + |p0 − p∗|2,

where d = 1/2−α2(|Φ|2+|g|2) > 0. The inequality thus obtained implies the boundedness
of the trajectory

|vN+1 − v∗|2 + |pN+1 − p∗|2 ≤ |v0 − v∗|2 + |p0 − p∗|2,

and the convergence of the series
∞∑

k=0

|ūk− vk|2 < ∞,

∞∑

k=0

|vk+1− ūk|2 < ∞,

∞∑

k=0

|pk+1− p̄k|2 < ∞,

∞∑

k=0

|p̄k−pk|2 < ∞,

hence,

|ūn − vn|2 → 0, |vn+1 − ūn|2 → 0, |pn+1 − p̄n|2 → 0, |p̄n − pn|2 → 0, n →∞.

Since the sequence vn, pn is bounded, there exists an element v′, p′ such that vni → v′

and pni → p′ as ni →∞; moreover,

|vni+1 − ūni|2 → 0, |ūni − vni|2 → 0, |pni+1 − p̄ni|2 → 0, |p̄ni − pni|2 → 0.

Consider inequalities (6.3) and (6.5) for all ni →∞; passing to the limit yields

p′ = π+(p′ + αg(v′)), Φ(v′, v′) + 〈p′, g(v′)〉 ≤ Φ(v′, w) + 〈p′, g(w)〉

Since these relations are equivalent to (4.3), we have v′ = v∗ ∈ Ω∗ and p′ = p∗ ≥ 0; i.e.,
any limit point of the sequence vn, pn is a solution to the problem. Since |vn−v∗|+|pn−p∗|
is monotonically decreasing, there exists precisely one unique limit point, i.e., vn → v∗

and pn → p∗ as n →∞. This completes the proof.
Condition (2.5) plays an important role in the proof of the convergence of the methods

(4.4), (5.1), and (6.1). This condition is more restrictive than (2.3). For some problems
(e.g., the Cournot diopoly), condition (2.3) may be ful�lled, but condition (2.5) may not.
Nevertheless, the above methods can be applied in this case if one uses the following
consideration. The left-hand sides of inequalities (4.9), (5.8), and (6.11) contain two
terms for which some problems arise. The �rst term, namely, the summand Φ(ūn, v∗) −
Φ(ūn, ūn), hardly causes any trouble, because it can be estimated with the help of (2.3).
The situation with the second term, namely, 〈pn+1, g(v∗) − g(ūn)〉, is somewhat more
complicated, because this term must be nonpositive. Therefore, we apply the estimate
〈pn+1, g(v∗) − g(ūn)〉 ≤ 0, using the inequality 〈pn+1, g(v∗)〉 ≤ 0 and assuming that the
quantity g(ūn) (or, better still, 〈pn+1, g(ūn)〉) is nonnegative, because any of the methods
under consideration is external with respect to the admissible domain D = {w | g(w) ≤ 0}.
This means that, if the initial approximation v0 satis�es the condition g(v0) ≥ 0, then all
subsequent approximations satisfy it with high probability, i.e., g(vn) ≥ 0. Moreover, it
is possible to verify the last condition when implementing the method.
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Taking into account the above consideration, we can write the analogues of inequality
(4.15) in Theorems 2 and 3 as follows:

|vn+1 − v∗|2 + d1|ūn − vn|2 + d2|vn+1 − ūn|2 ≤ |vn − v∗|2.

This inequality implies that the sequence vn converges to an equilibrium solution v∗ ∈ Ω∗.
To prove this statement, it is su�cient to use the above proofs, beginning with formulas
(4.9), (5.8), and (6.11).
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