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The equilibrium programming problem is formulated and its relationship with game for-
mulation is discussed. A forecast method for computing the equilibrium solution is de-
signed and its convergence is proved. The economic interpretation of the initial equilib-
rium problem and its solution are examined.

1. INTRODUCTION

It is now generally recognized that a well-founded theory underlies the methods of sol-
ving optimization problems, whereas there is no such theory to authenticate the methods
of solving game problems, e.g., saddle problems, n-person games under Nash equilibrium,
inverse optimization problems, and economic equilibrium models.

The need for developing a theory of methods of solving equilibrium problems is obvious,
because precisely these are the problems that describe the �ne points underlying the ideas
of compromise between partially (or fully) con�icting factors and interests in terms of
models. The methods of solving equilibrium problems are interpreted as mechanisms
for matching con�icting factors. In this paper, we examine an equilibrium programming
problem whose solution is a �xed point, and design a fairly general approach to computing
this point. The approach is based on an inequality, which compensates for the lack of
monotonicity an equilibrium problems, and a controlled gradient descent in the form of a
forecast, which compensates for the lack of the potentiality property.

2. FORMULATION OF THE PROBLEM

The equilibrium programming problem consists in �nding a �xed point v∗ ∈ Ω∗ that
satis�es the extremal inclusion under functional constraints

v∗ ∈ Argmin{Φ(v∗, w) | g(w) ≤ 0, w ∈ Ω}. (2.1)

The function Φ(v, w) is de�ned on the product space Rn × Rn and Ω ⊂ Rn is a closed
convex set. We assume that the function Φ(v, w) is convex relative to the variable w ∈ Ω
for every v ∈ Ω. The vector function g(w) is of dimension m, and each of its components
is convex for all w ∈ Rn. The variable v ∈ Ω in (2.1) plays the part of a parameter
and w ∈ Ω is the optimization variable. We also assume that the extremal (marginal)
mapping w(v) ≡ argmin{Φ(v, w) | g(w) ≤ 0, w ∈ Ω} is de�ned for all v ∈ Ω and
the set of solutions Ω∗ ⊂ Ω of the initial problem is not empty. The last assumption,
according to the Caccutani theorem, always holds if Ω is a convex compact and Φ(v, w)
is semicontinuous in v from below and convex in w [1].
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Many known problems of analysis, for example, the saddle problems or the n-person
games under Nash equilibrium in general formulation, can be reduced to the form (2.1).
Indeed, let the inequalities

L(x∗, y) ≤ L(x∗, p∗) ≤ L(z, p∗) ∀z ∈ Q ⊆ Rn ∀y ∈ P ⊆ Rm (2.2)
de�ne a saddle point, where L(z, y) is a convex-concave function, Q = {z | g1(z) ≤
≤ 0, z ∈ Q1}, P = {y | g2(y) ≤ 0, y ∈ P1}, and g1(z) and g2(y) are convex vector
functions. Let w = (z, y), v = (x, p), v∗ = (x∗, p∗), g(w) = (g1(z), g2(z)), and let
Φ(v, w) = L(z, p)−L(x, y) be a normalized function. In this notation, problem (2.2) can
always be expressed in the equivalent form (2.1) [2, 3].

The more general n-person game under Nash equilibrium can also be reduced to the
form (2.1). Indeed, the payo� function of the ith player fi(xi, x−i), i ∈ I, depends on
the strategies xi ∈ Xi, where Xi = (xi)i∈I , of the ith player as well as on the strategies
x−i = (xj)j∈I\i of other players. The equilibrium of the n-person game is the solution of
the system of extremal inclusions

x∗i ∈ Argmin{fi(xi, x
∗
−i) | gi(xi) ≤ 0, xi ∈ Xi}. (2.3)

Let us introduce the normalized function

Φ(v, w) =
n∑

i=1

fi(xi, x−i),

where v = (x−i), w = (xi), g(w) = (gi(xi)), i = 1, . . . , n, Ω = X1 × X2 × . . . × Xn, and
(v, w) = (xi, x−i) ∈ Ω× Ω. Using this function, we can express problem (2.3) as (2.1).

Many inverse optimization problems [4] can also be represented as (2.1). For example,
let us consider the inverse convex programming problem

x∗ ∈ Argmin{〈λ∗, f(x)〉 | g(x) ≤ 0, x ∈ Q},
G(x∗) ≤ d.

(2.4)

In this problem, it is required to choose nonnegative coe�cients of the linear convolution
λ = λ∗ such that the optimal solution x∗ corresponding to these weights belongs to a
prede�ned convex set. In particular, this set may be a singleton. It is assumed that the
functions (2.4) are all convex.

System (2.4) can be represented as a two-person game under Nash equilibrium:
x∗ ∈ Argmin{〈λ∗, f(x)〉 | g(x) ≤ 0, x ∈ Q},
p∗ ∈ Argmin{〈p,G(x∗)− d〉 | p ≥ 0}. (2.5)

Using the normalized function, we can reduce problem (2.5) to the form (2.1). Thus,
the initial inverse optimization problem (2.4) is reduced to computing the �xed point of
the extremal mapping (2.1).

3. ANTISYMMETRIC FUNCTIONS

In the sequel, we primarily use two basic inequalities, of which the �rst �� an equi-
valent de�nition of the �xed point for (2.1) �� is of the form

Φ(v∗) ≤ Φ(v∗, w) ∀w ∈ D, (3.1)
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where D = {w | g(w) ≤ 0, w ∈ Ω} is the admissible set. Since Φ∗ = inf{Φ(w, w) | w ∈
∈ D} ≤ Φ(v∗, v∗), (3.1) immediately yields the Ky Fan inequality [5]

inf{Φ(w,w) | w ∈ D} ≤ Φ(v∗, w). (3.2)

This inequality is equivalent to the Caccutani theorem [1] and asserts the existence of a
�xed point for problem (2.1).

The second inequality de�nes an antisymmetric (saddle) property of the �xed point
[6, 7] and is of the form

Φ(w, v∗) ≤ Φ(w, w) ∀w ∈ D. (3.3)

Rewriting (3.3) in a more general form as

Φ(w, v∗) ≤ sup{Φ(w, w) | w ∈ D} (3.4)

and comparing it with Ky Fan inequality (3.2)

inf{Φ(w,w) | w ∈ D} ≤ Φ(v∗, w), (3.5)

we �nd that both inequalities can be regarded as the generalized de�nition of the saddle
point for sup{. . .} = inf{. . .} = Φ(v∗, v∗).

The geometric meaning of inequality (3.3) is quite obvious. Taking on the diagonal
of the square Ω × Ω two close points with coordinates v∗, v∗ and w,w, where v∗ ∈ Ω∗,
w ∈ Ω, we �nd that these points uniquely de�ne two other points with coordinates w, v∗

and v∗, w. These four points de�ne a small square belonging to the square Ω × Ω. Now
let us consider the Lebesgue set generated by the point w,w:

Rw,w = {u1, u2 | Φ(u1, u2) ≤ Φ(w,w), u1 ∈ D, u2 ∈ D}.

By de�nition, points with coordinates w, w belong to this set. Condition (3.3) implies
that the point with coordinates w, v∗ also belongs to this set. Thus, (3.3) actually implies
that the Lebesgue set (since Φ(v, w) is convex in w) contains the entire interval αv∗+
+(1− α)w, 0 ≤ α ≤ 1.

If the function Φ(v, w) is di�erentiable with respect to all variables, inequality (3.3)
can be re�ned. Using the convexity condition

〈∇f(x), y − x〉 ≤ f(y)− f(x) ≤ 〈∇f(y), y − x〉, (3.6)

which holds for all x and y belonging to some set, let us transform (3.3) as

0 ≤ Φ(w, w)− Φ(w, v∗) ≤ 〈∇Φw(w,w), w − v∗〉 =

= 〈∇Φv(w,w), 0〉+ 〈∇Φw(w, w), w − v∗〉 = 〈∇Φ(w, w), h〉,

where h = (0, w − v∗) and ∇Φ(w, w) = (∇Φv(v, w),∇Φw(v, w)). Hence, if (3.3) is satis-
�ed for all w belonging to some neighborhood of the equilibrium point v∗, the gradient
∇Φ(v, w) makes an acute (more exactly, not obtuse) angle with the vector h for all w
belonging to this neighborhood. This condition for the optimization problem takes the
form 〈∇Φ(w), w − v∗〉 ≥ 0 ∀w ∈ D [8].
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Inequality (3.3) has no constructive value, because it contains an unknown vector
v∗ ∈ Ω∗. Therefore, let us introduce a class of functions for which conditions (3.3) are
always satis�ed [7].

De�nition 1. A function Φ(v, w) belonging to the product Rn × Rn in the space R1

is said to be antisymmetric on Θ×Θ if it satis�es the inequality

Φ(w,w)− Φ(w, v)− Φ(v, w) + Φ(v, v) ≥ 0 (3.7)

for all w ∈ Θ and all v ∈ Θ.
If an inequality of the type

Φ(w, w)− Φ(w, v∗)− Φ(v∗, w) + Φ(v∗, v∗) ≥ 0 (3.8)

holds for all w belonging to some neighborhood of the solution v∗ ∈ Ω∗, the function
Φ(v, w) is said to be antisymmetric relative to equilibrium.

In what follows, we assume that the set Θ is either Ω or D.
The class of symmetric functions introduced above is not empty. It is a simple matter

to verify [2, 9] that the normalized function Φ(v, w) = L(z, p) − L(x, y), w = (z, y),
v = (x, p), of the saddle problem (2.2) is symmetric.

Condition (3.3) is always satis�ed for symmetric functions. Indeed, using (3.1), from
(3.8) we obtain (3.3).

Symmetric functions have certain properties [7], which can be regarded as analogs
of the conditions governing the gradient monotonicity and nonnegativity of the second
derivative of convex functions.

Property 1. If a function Φ(v, w) is antisymmetric and convex in the second variable,
its partial gradient ∇Φw(v, v) is monotonic on the diagonal of the square Θ×Θ:

〈∇Φw(w, w)−∇Φw(v, v), w − v〉 ≥ 0 ∀w ∈ Θ, v ∈ Θ. (3.9)

This inequality can also be derived by estimating the �rst two and last two terms on
the left side of (3.7) with (3.6).

Property 2. The mixed derivative ∇2Φwv(v, v) of the antisymmetric function Φ(v, w)
on the diagonal of the square Θ×Θ is nonnegative:

〈∇2Φwv(v, v)h, h〉 ≥ 0 ∀h ∈ Rn. (3.10)

We can easily verify that functions Φ1(v, w) = 〈v, w〉, Φ2(v, w) =
1

2
|v + w|2, and

Φ3(v, w) = v2 + w2 satisfy conditions (3.9) and (3.10).

4. EXAMPLES

The examples given below show that equilibrium problems obeying condition (3.3)
are rather diverse in nature. Let us determine the �xed point of the quadratic extremal
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inclusion
v∗ ∈ Argmin

{
1

2
〈Nw,w〉+ 〈Mv∗ + m,w〉 | w ∈ Ω

}
, (4.1)

where N and M are nonnegative matrices, i.e., 〈Nv, v〉 ≥ 0 and 〈Mv, v〉 ≥ 0 for all
v ∈ Rn. Assuming that the matrix N is symmetric, let us consider

Φ(w, w)− Φ(w, v)− Φ(v, w) + Φ(v, v) =

=
1

2
− 〈Nw, w〉+ 〈Mw,w〉+ 〈m,w〉 − 1

2
〈Nv, v〉 − 〈Mw, v〉 − 〈m, v〉−

− 1

2
〈Nw, w〉 − 〈Mv, w〉 − 〈m,w〉+

1

2
〈Nv, v〉+ 〈Mv, v〉+ 〈m, v〉 =

= 〈M(w − v), w − v〉 ≥ 0 ∀w ∈ Ω, ∀v ∈ Ω.

(4.2)

Hence, if the matrix M is nonnegative, then condition (3.7) is satis�ed for a function
Φ(w, v) belonging to (4.1).

We now construct the matrices N and M . Let N � (2× 2) be a unit matrix and let
M � (2 × 2) be an antisymmetric matrix with unit components m = (a, a), v = (x, p),
and w = (z, y). Then the function Φ(v, w) takes the form

Φ(v, w) = (z, y)

(
1 0
0 1

)(
z
y

)
+ (x, p)

(
0 −1
1 0

)(
z
y

)
− (a, a)

(
z
y

)
, (4.3)

or Φ(v, w) = z2 + y2 − xy + pz − az − ay. The function Φ(v, w) is a separable structure
for the minimization variable w. Therefore, minimization of the function Φ(v, w) on Ω
breaks down into two independent subproblems with the objective functions

f1(z, p) = z(z + p− a),

f2(x, y) = y(−x + y − a).
(4.4)

The vector v = (x, p) here plays the part of a parameter.
Taking v = v∗, let us formulate a two-person game under Nash equilibrium:

z∗ = argmin{f1(z, y
∗) = z(z + y∗ − a) | z ∈ R1},

y∗ = argmin{f2(z
∗, y) = y(−z∗ + y − a) | y ∈ R1}. (4.5)

For game (4.5), function (4.3) is normalized. Clearly, this is a zero-sum game and condition
(3.7) is satis�ed, since 〈Mh, h〉 ≥ 0 for all h ∈ Rn.

Let us consider one more example. Assuming that the matrix M is symmetric but not
positive-de�nite, i.e

Φ(v, w) = (z, y)

(
1 0
0 1

)(
z
y

)
+ (x, p)

(
0 1
1 0

)(
z
y

)
− (a, a)

(
z
y

)
, (4.6)

we obtain Φ(v, w) = z2 + y2 + xy + pz− az− ay. Reasoning as in (4.3) and (4.4), we �nd
that function (4.6) is normalized for the game

z∗ = argmin{f1(z, y
∗) = z(z + y∗ − a) | z ∈ [0, a]},

y∗ = argmin{f2(z
∗, y) = y(z∗ + y − a) | y ∈ [0, a]}, (4.7)
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where a > 0.
This problem is the basic model representing the behavior of two monopolists who

manufacture the same product and compete in the same market area (Cournot duopoly
[10]). Let z and y be the turnout of the �rst and second monopolist, respectively. If
the second monopolist produces y∗ units, the �rst monopolist in ibis case dumps z∗ =

=
1

2
(a− y∗) units that minimize his functional costs f1(z, y

∗) = z(z + y∗ − a). A similar

strategy y∗ =
1

2
(a − z∗) is adopted by the second monopolist if he knows that the �rst

monopolist dumps z∗ units. The �xed point of the duopoly equilibrium is the pair z∗ =

=
1

3
a, y∗ =

1

3
a. The outlays of the monopolists are − a2

9
. Condition (3.3) holds for this

problem. We now verify this fact.
Let w = v∗ = (x∗, p∗) and v = w = (z, y). Then (3.3) can be expressed as

(x∗, p∗)
(

1 0
0 1

)(
x∗

p∗

)
+ (z, y)

(
0 1
1 0

)(
x∗

p∗

)
− (a, a)

(
x∗

p∗

)
≤

≤ (z, y)

(
1 0
0 1

)(
z
y

)
+ (z, y)

(
0 1
1 0

) (
z
y

)
− (a, a)

(
z
y

)
.

Hence, (x∗)2 + (p∗)2 + zp∗ + yx∗ − ax∗ − ap∗ ≤ z2 + y2 + 2zy − az − ay. Since
x∗ =

1

3
a and p∗ =

1

3
a, we �nd that −4

9
a2 +

1

3
a(z + y) ≤ (z + y)2 − a(z + y). Finally,

0 ≤
(

(z + y)− 2

3
a

)2

. Therefore, condition (3.3) is satis�ed for game (4.7).

5. FORECAST-TYPE GRADIENT METHOD

We now examine the methods of solving problem (2.1). First, we make a remark.
Representing inequalities (3.1) and (3.3) as

Φ(w, v∗)− Φ(w, w) ≤ Φ(v∗, v∗)− Φ(v∗, v∗) ≤ Φ(v∗, w)− Φ(v∗, v∗) ∀w ∈ D, (5.1)

and introducing the function Ψ(v, w) = Φ(v, w) − Φ(v, v), let us express system of
inequalities (5.1) as

Ψ(w, v∗) ≤ Ψ(v∗, v∗) ≤ Ψ(v∗, w) ∀w ∈ D. (5.2)

From this system of inequalities, we �nd that the point v∗, v∗ is a saddle point of the
function. A question arises here: is it possible to use the function Ψ(v, w) for computing
the saddle point v∗, v∗, and, thereby, the �xed point v∗. The answer is obvious: in general,
the function Ψ(v, w) cannot be used, because it is concave in v, though it is convex in w.
The method for computing the saddle point of the function Ψ(v, w) [11] must necessarily
contain a procedure for shifting v as well as w. Consequently, the method will not be
satisfactory in convergence, because the function is not concave relative to v. Our methods
incorporate a technique in which equilibrium (in particular, saddle) is approached through
iterations on one variable w; moreover, the process monotonically converges (in the norm
of the space) to equilibrium in the degenerate case.
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Following the familiar logic of convex programming, let us introduce a Lagrange func-
tion for problem (2.1)

L(v∗, w, p) = Φ(v∗, w) + 〈p, g(w)〉, w ∈ Ω, p ≥ 0.

If the functional constraints are regular (for instance, the Slater condition holds), this
problem can be reduced to computing the saddle point of the Lagrange function L(v∗, w, p),
i.e.,

Φ(v∗, v∗) + 〈p, g(v∗)〉 ≤ Φ(v∗, v∗) + 〈p∗, g(v∗)〉 ≤ Φ(v∗, w) + 〈p∗, g(w)〉 (5.3)
for all w ∈ Ω and p ≥ 0.

If the functions Φ(v, w) and g(w) are di�erentiable, then (5.3) can expressed in equi-
valent form as

v∗ = πΩ(v∗ − α∇Lw(v∗, v∗, p∗)),

p∗ = π+(p∗ + αg(v∗)),
(5.4)

where π+(·) and πΩ(·) are the operators of projection onto the positive orthant Rn
+ and

the set Ω, respectively, and ∇Lw(v, w, p) = ∇Φw(v, w) + ∇g>(w)p. Here ∇Φw(v, w) is
the gradient vector of the function Φ(v, w) with respect to the variable w and ∇g>(v) is
the transposed matrix in which every column is the gradient vector of the corresponding
scalar function of the vector g(v).

We now consider a computation procedure in which two operations of projection onto
a simple set Ω are implemented at each iteration as an auxiliary problem. This method
is a forecast-type gradient technique [7]. Let v0, p0 be the initial approximation. Then
the succeeding approximations can be computed by the recurrent formulas

p̄n = π+(pn + αg(vn)),

ūn = πΩ(vn − α∇Lw(vn, vn, p̄n)),

vn+1 = πΩ(vn − α∇Lw(ūn, ūn, p̄n)),

pn+1 = π+(pn + αg(ūn)),

(5.5)

where

L(v, w, p) = Φ(v, w) + 〈p, g(w)〉, ∇Lw(v, w, p) = ∇Φw(v, w) +∇g>(w)p.

For the operation of projection onto the set D = {w | g(w) ≤ 0, w ∈ Ω}, process
(5.5) is of the form [7]

ūn = πD(vn − α∇Φw(vn, vn)),

vn+1 = πD(vn − α∇Φw(ūn, ūn)).
(5.6)

Below we shall show that this process converges under less stringent conditions than (5.5).
Namely, for process (5.6) to converge, it is necessary that condition (3.3) be satis�ed,
whereas for process (5.5) to converge, it is necessary that the more stringent condition
(3.7) or (3.8) be satis�ed.

Let us express process (5.5) as variational inequalities. The �rst and fourth equations
in (5.5), by the de�nition of the projection operator, can be expressed as

〈p̄n − pn − αg(vn), p− p̄n〉 ≥ 0 ∀p ≥ 0, (5.7)
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and
〈pn+1 − pn − αg(ūn), p− pn+1〉 ≥ 0 ∀p ≥ 0, (5.8)

respectively. Let us express the second and third equations as

〈ūn − vn + α∇Lw(vn, vn, p̄n), w − ūn〉 ≥ 0 ∀w ∈ Ω (5.9)

and
〈vn+1 − vn + α∇Lw(ūn, ūn, p̄n), w − vn+1〉 ≥ 0 ∀w ∈ Ω, (5.10)

respectively.
In the sequel, we assume that the functions ∇Φw(w,w), ∇g>(w), and g(w) satisfy the

Lipschitz conditions

|∇Φw(w + h,w + h)−∇Φw(w,w)| ≤ |∇Φ| |h|, (5.11)
|∇g>(w + h)−∇g>(w)| ≤ |∇g>| |h|, (5.12)
|g(w + h)− g(w)| ≤ |g| |h| (5.13)

for all w and w + h ∈ Ω, where |∇Φ|, |∇g>| and |g| are Lipschitz constants.
Let us estimate the deviation of the vector vn+1 from the vector ūn and vice versa.

Using the properties of the projection operator, estimates (5.11) and (5.12), and the
boundedness condition |pn| ≤ C, from the second and third equations of (5.5), we obtain

|vn+1 − ūn| ≤ α|∇Φw(ūn, ūn) +∇g>(ūn)p̄n −∇Φw(vn, vn)−∇g>(vn)p̄n| ≤
≤ α|∇Φw(ūn, ūn)−∇Φw(vn, vn)|+ α|∇g>(ūn)p̄n −∇g>(vn)p̄n| ≤
≤ α|∇Φ| |ūn − vn|+ α|∇g>| |p̄n| |ūn − vn| ≤ α(|∇Φ|+ |∇g>|C)|ūn − vn|.

Hence,
|ūn − vn+1| ≤ α(|∇Φ|+ |∇g>|C)|ūn − vn|. (5.14)

Let us also estimate the deviations of the vectors p̄n and pn+1 from one another. From
(5.5) and (5.13), we obtain

|p̄n − pn+1| ≤ α|g| |ūn − vn|. (5.15)

We now show that process (5.5) converges steadily in norm to one of the equilibrium
solutions under the assumption that inequality (3.8) holds on Ω, i.e., on a set far wider
than D. Since the sequence vn belongs to Ω, this condition is trivial.

Theorem 1. If the set of solutions of problem (2.1) is not empty and satis�es
condition (3.7) or (3.8), which hold on the set Ω, the aim function Φ(v, w) is continuous
in v and convex in w for any v ∈ Ω, Ω ∈ Rn is a closed convex set, the functions Φ(v, w)
and g(w) satisfy conditions (5.11) � (5.13), and |pn| ≤ C, then the sequence vn generated
by method (5.5) with parameter 0 < α <

1√
2((|∇Φ|+ |∇g>|C)2 + |g|2)

converges steadily

in norm to one of the equilibrium solutions, i.e., vn → v∗ ∈ Ω∗ as n →∞.

Proof. Take w = v∗ in (5.10). Then

〈vn+1 − vn + α∇Lw(ūn, ūn, p̄n), v∗ − vn+1〉 ≥ 0. (5.16)
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Hence,

〈vn+1 − vn, v∗ − vn+1〉+ α〈∇Lw(ūn, ūn, p̄n), v∗ − ūn〉−
− α〈∇Lw(vn, vn, p̄n)−∇Lw(ūn, ūn, p̄n), ūn − vn+1〉+
+ α〈∇Lw(vn, vn, p̄n), ūn − vn+1〉 ≥ 0.

(5.17)

Since inequalities (3.6) are convex, we transform certain terms in (5.17). Let us �rst
estimate the second term

〈∇Lw(ūn, ūn, p̄n), v∗ − ūn〉 = 〈∇Φw(ūn, ūn) +∇g>(ūn)p̄n, v∗ − ūn〉 ≤
≤ Φ(ūn, v∗)− Φ(ūn, ūn) + 〈p̄n, g(v∗)− g(ūn)〉,

and then the third term

〈∇Lw(vn, vn, p̄n)−∇Lw(ūn, ūn, p̄n), ūn − vn+1〉 =

= 〈∇Φw(vn, vn) +∇g>(vn)p̄n −∇Φw(ūn, ūn)−∇g>(ūn)p̄n, ūn − vn+1〉 =

= 〈∇Φw(vn, vn)−∇Φw(ūn, ūn), ūn − vn+1〉+ 〈(∇g>(vn)−∇g>(ūn))p̄n, ūn − vn+1〉 =

= |∇Φ| |vn − ūn| |ūn − vn+1|+ |∇g> |vn − ūn|C|ūn − vn+1| ≤
≤ α(|∇Φ|+ |∇g>|C)2|ūn − vn|2.

Using these transformations, we represent (5.17) as

〈vn+1 − vn, v∗ − vn+1〉+ α(Φ(ūn, v∗)− Φ(ūn, ūn)) + α〈p̄n, g(v∗)− g(ūn)〉+
+ α2(|∇Φ|+ |∇g>|C)2|ūn − vn|2 + α〈∇Lw(vn, vn, p̄n), ūn − vn+1〉 ≥ 0.

(5.18)

In inequality (5.9), let us take w = vn+1. Then

〈ūn − vn + α∇Lw(vn, vn, p̄n), vn+1 − ūn〉 ≥ 0. (5.19)

Hence
〈ūn − vn, vn+1 − ūn〉+ α〈∇Lw(vn, vn, p̄n), vn+1 − ūn〉 ≥ 0. (5.20)

Adding inequalities (5.18) and (5.20), we obtain

〈vn+1 − vn, v∗ − vn+1〉+ α(Φ(ūn, v∗)− Φ(ūn, ūn)) + α〈p̄n, g(v∗)− g(ūn)〉+
+ α2(|∇Φ|+ |∇g>|C)2|ūn − vn|2 + 〈ūn − vn, vn+1 − ūn〉 ≥ 0.

(5.21)

Taking w = ūn, let us rewrite inequality (5.3) as

Φ(v∗, v∗) + 〈p∗, g(v∗)〉 ≤ Φ(v∗, ūn) + 〈p∗, g(ūn)〉. (5.22)

Adding (5.21) and (5.22), by virtue of (3.8), we obtain

〈vn+1 − vn, v∗ − vn+1〉+ 〈ūn − vn, vn+1 − ūn〉+
+ α〈p̄n − p∗, g(v∗)− g(ūn)〉+ α2(|∇Φ|+ |∇g>|C)2|ūn − vn|2 ≥ 0.

(5.23)

Now let us repeat the above steps with inequalities (5.7) and (5.8). Take p = p∗ in
(5.8)

〈pn+1 − pn, p∗ − pn+1〉 − α〈g(ūn), p∗ − pn+1〉 ≥ 0 (5.24)
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and take p = pn+1 in (5.7)
〈p̄n − pn, pn+1 − p̄n〉+ α〈g(ūn)− g(vn), pn+1 − p̄n〉−

− α〈g(ūn), pn+1 − p̄n〉 ≥ 0.
(5.25)

Estimating the second term in the above inequality by (5.13) and (5.15) and then
adding up inequalities (5.24) and (5.25), we obtain

〈pn+1 − pn, p∗ − pn+1〉+ 〈p̄n − pn, pn+1 − p̄n〉+
+ α2|g|2 |ūn − vn|2 − α〈g(ūn), p∗ − p̄n〉 ≥ 0.

(5.26)

Now, adding up (5.23) and (5.26), since 〈p̄n, g(v∗)〉 ≤ 0, 〈p∗, g(v∗)〉 = 0, we obtain
〈vn+1 − vn, v∗ − vn+1〉+ 〈ūn − vn, vn+1 − ūn〉+ 〈pn+1 − pn, p∗ − pn+1〉+

+ 〈p̄n − pn, pn+1 − p̄n〉+ α2{(|∇Φ|+ |∇g>|C)2 + |g|2}|ūn − vn|2 ≥ 0.
(5.27)

Using the identity
|x1 − x3|2 = |x1 − x2|2 + 2〈x1 − x2, x2 − x3〉+ |x2 − x3|2, (5.28)

let us expand the scalar products on the left side of the inequality as the sum of squares:
|vn+1 − v∗|2 + |pn+1 − p∗|2 + |vn+1 − ūn|2 + d|ūn − vn|2+

+ |pn+1 − p̄n|2 + |p̄n − pn|2 ≤ |vn − v∗|2 + |pn − p∗|2. (5.29)

By the conditions of the theorem, we have d = 1− 2α2{(|∇Φ|+ |∇g>|C)2 + |g|2} > 0.
Summing inequality (5.29) from n = 0 to n = N , we obtain

|vN+1 − v∗|2 + |pN+1 − p∗|2 +
k=N∑
k=0

|vk+1 − ūk|2 + d
k=N∑
k=0

|ūk − vk|2+

+
k=N∑
k=0

|pk+1 − p̄k|2 +
k=N∑
k=0

|p̄k − pk|2 ≤ |v0 − v∗|2 + |p0 − p∗|2.

This inequality implies that the trajectory
|vN+1 − v∗|2 + |pN+1 − p∗|2 ≤ |v0 − v∗|2 + |p0 − p∗|2

is bounded and the sequences
∞∑

k=0

|vk+1 − ūk|2 < ∞,

∞∑

k=0

|ūk − vk|2 < ∞,

∞∑

k=0

|pk+1 − p̄k|2 < ∞,

∞∑

k=0

|p̄k − pk|2 < ∞,

converge and, consequently,
|vn+1 − ūn|2 → 0, |ūn − vn|2 → 0, |pn+1 − p̄n|2 → 0, |p̄n − pn|2 → 0, n →∞.

Since the sequence vn, pn is bounded, there exists an element v′, p′ such that vni → v′,
pni → p′ as ni →∞, and

|vni+1 − ūni|2 → 0, |ūni − vni|2 → 0, |pni+1 − p̄ni|2 → 0, |p̄ni − pni|2 → 0.

Taking the limit in (5.5), for all ni →∞, we obtain
v′ = πΩ(v′ − α∇Lw(v′, v′, p′)), p′ = π+(p′ + αg(v′)).

Since these relations coincide with (5.4), we �nd that v′ = v∗ ∈ Ω∗, p′ = p∗ ≥ 0, i.e., every
limit point of the sequence vn, pn is a solution of the problem. The monotonic decrement
of |vn − v∗| + |pn − p∗| guarantees the uniqueness of the limit, i.e., the convergence of
vn → v∗, pn → p∗ as n →∞.
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6. ECONOMIC INTERPRETATION

We examine the economic interpretation of the equilibrium problem and then the
interpretation of the forecast method of solving this problem. For the sake of convenience
in reasoning in terms of pro�t and cost, we assume that the objective function and the
functional constraints in (2.1) are concave, i.e.,

v∗ ∈ Argmax{Φ(v∗, w) | g(v∗, w) ≥ b, w ∈ Ω}, (6.1)
where b ≥ 0. This problem represents the model of the interaction of two participants,
one of which is called the controller, or simply control, and the other the production. Let
v ∈ Ω be a set of alternatives of the �rst participant and let w ∈ Ω be a set of alternatives
of the second participant. The move of the �rst participant consists in choosing v ∈ Ω,
which can be regarded as a production plan, production target, or production control. The
response of production to a move of the �rst participant is always unique and consists in
generating a set of solutions of problem (6.1). This set (maybe a singleton) consists of the
optimal production plans for which the objective function Φ(v, w) for �xed v maximizes
the income or pro�t from the products of this plan. Realization of one of the optimal
plans is pro�table for production and, accordingly, realization of the plan proposed by
the control is not pro�table. To resolve this con�ict, the �rst participant must choose a
control consistent with the optimal production plan. In formal terms, this is the �xed
point of problem (6.1).

In this problem, the production objective function Φ(v, w) depends on the parameter
v ∈ Ω which is controlled by the planning organ. If v = v0 ∈ Ω is �xed, di�erent pro�ts
can be obtained by varying the production plan w ∈ Ω. In this situation, the normal
response of production is to maximize its income. On the contrary, if the production level
w = w0 ∈ Ω is �xed, the planning organ changes the pro�t level by changing the control
parameter v ∈ Ω. The possibility at the disposal of the planning organ of regulating the
production pro�t is de�ned to be the tax or surcharges paid to the planning organ by the
production. In this situation, every value of the function Φ(v, w) on the diagonal of the
square Ω×Ω is regarded as the compromise cost, because all equilibrium solutions lie on
this diagonal.

In these representations, inequalities (3.1) and (3.3) have the following economic mean-
ing. In terms of problem (6.1), inequality (3.1)

Φ(v∗, v∗) ≥ Φ(v∗, w) ∀w ∈ Ω

implies that in the equilibrium state it is not pro�table for production to deviate from its
optimal plan. Accordingly, inequality (3.3)

Φ(w, v∗) ≥ Φ(w, w) ∀w ∈ Ω

implies that in the equilibrium state, production tax must not be very high, i.e., the pro�t
remaining after the payment of taxes must not be less than the compromise cost. If this
condition is satis�ed, the economic system will be stable (asymptotically stable).

This two-participant interaction scheme does not take account of the interest of the
third participant, call the �market�. Formally, the third participant is introduced into the
game through the Lagrange function

L(v, w, p) = Φ(v, w) + 〈p, g(w)− b〉 ∀v, w ∈ Ω× Ω, ∀p ≥ 0. (6.2)
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The market acts on the economic system through the price p ≥ 0. Production procures
m types of resources g(w) in these prices with regard for the changing stocks described by
a vector b. If gi(w) > bi for some i = 1, 2, . . . , m, the super�uous resources remain after
the realization of the plan w; but if gi(w) < bi, i = 1, 2, . . . , m, then the initial resources
are obviously insu�cient and the lacking resources must be procured to complete the
plan w. Every terms of the type pi(gi(w) − bi) in the Lagrange function, depending
on the sign, denotes additional pro�t due to the same of super�uous resources or the
expenses spent on procuring the lacking resources. The Lagrange function represented
the aggregate pro�t resulting from the income due to the sale of the �nal product Φ(v, w)
and either the addition pro�t due to the sale of super�uous resources or the expenses
spent on the procurement of lacking resources. If the market dictates a certain price level,
then production in response to the market policy, as in the case of a given control action,
tends to maximize the aggregate pro�t, i.e., the Lagrange function [12].

The market derives its pro�t from the sale of resources to production under the con-
dition that the latter have chosen its optimal plan w ∈ Ω for a given control v ∈ Ω.
In order to obtain maximum pro�t, the market minimize the Lagrange price function
min{L(v, w, p) | p ≥ 0} by varying the price p ≥ 0. If there exists a saddle point w∗, p∗

for some v ∈ Ω, then we have the competing equilibrium

min
p≥0

L(v, w∗p) = max
w∈Ω

L(v, w, p∗).

This relation equalizes the interests of production and market. In order to attain com-
plete balance of interests on all participants in an economic system, the control and the
production plan must be consistent with regard for the market trends.

Our method (5.5) is a mechanism for matching partially con�icting interests of the
participants of an economic system. This method can be regarded as a multimove game
with repeated gradient-type moves. Since production and market make the same type of
moves, they can be easily predicted by the planning organ. Let the state of the economic
system at the nth move be known and described by the vector of production output and
price vn, pn. A the succeeding move, the plan makes a price forecast and computes the
vector p̄n by formulas (5.5) (�rst row). Then it computes the production output forecast
ūn with reference to the price forecast. This forecast is passed on to production as a
target. Production then realizes this target and computes the real vector of production
output by the formula

vn+1 = πΩ(vn − α∇Lw(ūn, vn, p̄n)).

The e�ectiveness of this move will be slightly higher if production is based not on the
real output vector vn, but on the forecast ūn. Precisely, this variant is at the base of
formulas (5.5) (third row). At the �nal (n + 1)th iteration, the market computes the
real price vector pn+1 on the basis of real vn+1 or forecast ūn production output. The
control behavior strategy based on forecast is e�ective, because the game converges to the
equilibrium state of the economic system with increasing number of moves.
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