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Abstract. – In the paper, Cantor’s diagonal proof of the theorem about the cardinality of power set, |X| < |P(X|, is analyzed. It is shown first that a key point of the proof is an explicit usage of the counter-example method. It means that an only counter-example (Cantor’s new element of P(X) not belonging to a mapping of X onto P(X)) is sufficient in order to formally disprove a common statement (the assumption of Cantor’s proof that there is a mapping of X onto P(X) containing all elements from P(X)), but a total number of all possible counter-examples (a cardinality of P(X)) plays no role in such disproof. It means that it takes place the following unique situation: the formal logic of Cantor’s proof is unobjectionable, but the proof itself has no relation to and does not use a number of elements (a cardinality) of the set, |P(X)|. In addition Cantor’s conclusion in the form |X| < |P(X)| is deduced from the fact that the difference between infinite sets, P(X) and X, amounts to one element, that is such conclusion contradicts fatally the main property of infinite sets. It is proved as well that if the main set-theoretical definition of the notion of an infinite set (as a set which is equivalent to its own subset) is used explicitly, then the Cantor statement, |X| < |P(X)|, becomes unprovable within the framework of traditional Cantor’s proof.


Consider the Cantor theorem on the cardinality of a power-set [2,3] and its traditional ‘diagonal’ proof in the modern set-theoretical ZF-form [4]. Here P(X) is a power-set and |X| is a cardinality of an arbitrary set X, and, for short, RAA = Reductio and Absurdum, CDM = Cantor’s Diagonal Method, AD-element = Anti-Diagonal element.


CANTOR’S THEOREM (1890). |X| < |P(X)|.


PROOF (by RAA-method). It’s obvious that |X| ( |P(X)|.


Assume that ( maps X onto P(X). Define a new subset of X as follows: X*={x ( X | x ( ((x)}. Then X* ( X, and if X* = ((y) for some y ( X, then y( X* ( y ( ((y) ( y ( X* and y ( X* ( y ( ((y) ( y ( X*. The last is impossible.


REMARK-1. The contradiction, which, according to Cohen, proves the theorem, has the following, very special, ‘paradoxical’ form (here L = “y(X*”):



[L ( (L]&[ (L ( L]
(L)


If in (L) we accept L=”I am a liar”, we shall get a classical form of the ‘Liar’-paradox. This coincidence is not accidental and is analyzed in details in [8,9]. 


As Esenin-Volpin remarks correctly, an important (here omitted) stage of this Cantor-Cohen’s proof is the proof of the following theorem: “there is not a 1-1-mapping of X onto P(X)” (see the comment of Esenin-Volpin, page 172, in [4]).


Taking into account this comment, we shall rewrite this Cantor-Cohen’s RAA-proof in an equivalent form which reconstructs this and some other stages omitted in the original proof above and makes it more suitable for further analysis.


To begin with, remind of some main statements of modern set theory.


DEFINITION-1 (Cantor). Two sets, say Z1 и Z2, are equivalent, i.e., |Z1| = |Z2|, iff there is a 1-1-correspondence between elements of these sets [2,3].


Directly from this definition, the following statement follows [1] (pp. 27-28), [6] (p. 20).


LEMMA-1. If there is not a 1-1-correspondence between elements of two sets, say Z1 и Z2, then the sets are not equivalent, i.e., |Z1| ( |Z2|.


DEFINITION-2 (Cantor). A set Z is infinite iff it’s equivalent to its own subset [2,3], [6] (p. 20).


Directly from this definition, the following two statements follow [1] (pp. 27-28), [6] (p. 20).


LEMMA-2. If a difference between numbers of elements of two infinite sets, say Z1 и Z2 , is finite (or ‘countably’ infinite), then the two sets, Z1 и Z2 , are equivalent, i.e., |Z1| = |Z2|.


LEMMA-3. If Z is an infinite set then the addition of a finite (or ‘countably’ infinite) set to Z does not change the cardinality of Z.

Further X is an arbitrary infinite set and symbols in braces are used as referential labels for statements following directly corresponding braces.


So, Cantor proves the following statement.


CANTOR’S THEOREM (1890). {A:} |X| < |P(X)|.

PROOF (by RAA-method). It is obvious that |X| ( |P(X)|.

Assume that {(A:} |X| = |P(X)|. According to Cantor’s Definition-1, it means that there is a 1-1-mapping (bijection) ( which maps X onto P(X), i.e., there is a list,


X’a, Y’b, Z’c, . . . ,
(1)

where X’,Y’,Z’, …, are subsets of X, i.e., are elements of P(X), and the indexes a,b,c, …, are elements of X.


So, the initial RAA-assumption (A  is reduced to the following statement:

{B:} 
“the given list (1) contains all elements from P(X)”, or (X’(P(X) [X’( (1)].


Then a new element X*( P(X) is defined by means of Cantor’s ‘diagonal’ rule (algorithm):


( X’y ((1) [if y( X’y then y(X* and if y( X’y then y(X*]
(R)


So, according to the algorithm (R), the new object X* is a subset of X, i.e., X*(X, and consequently, X*(P(X), but X* differs, by its construction, from every element of the list (1), i.e., X*( (1).


Thus, the fact is proved that

{(B:} 
( X* ( P(X) [X*( (1)].


The contradiction between (B and B proves that B = false. From the proven falsity of B, by modus tollens, it follows that RAA-assumption (A = false, and, by the law of contradiction, that A = true. Q.E.D.


REMARK-2. However, the finale stage of the traditional RAA-proof has a more subtle structure. Indeed, the contradiction between (B and B proves doubtless that B = false, i.e., the given list (1) contains not all elements from P(X). Then, from the arbitrariness of (, it follows that {C:} there is not a 1-1-correspondence between X and P(X). Note, just this C is the theorem, formulated by Esenin-Volpin above. From the C, by Lemma-1, the inequality |X| ( |P(X)| follows, i.e., (A = false. At last, from the proven inequalities, |X| ( |P(X)| and |X| ( |P(X)|, the strict inequality |X| < |P(X)|, i.e., A = true, follows.


Now we shall prove some theorems elucidating some “hidden” logical peculiarities of Cantor’s diagonal argument.


THEOREM 1. Cantor’s conclusion |X| < |P(X)| contradicts Lemma 2 [8,9].


PROOF. Consider a logical schema of traditional Cantor’s RAA-proof (here, for short, F=False, T=True): 

A : (A ( [B ( (B] ( (B=F) ( ((A=F) ( (A=T),

where the notation «U(V» means that a statement V is formally deducible (in the sense of classical logic) from a statement U.


A key point and a specific peculiarity of this RAA-proof is an explicit usage of the counter-example method. Indeed, from the point of view of classical mathematics, Cantor’s anti-diagonal AD-element X* is a counter-example, disproving the common statement B = «a given list (1) contains all elements from P(X)»: 

( X*( P(X) [X* ( (1)] ( ((X’ ( P(X) [X’ ((1)].


From the proven falsity of the statement B (just by means of the counter-example method) it follows (by classical modus tollens rule) that the RAA-assumption (A = “|X| = |P(X)|” is false, and from the last (by the law of contradiction) the inequality |X| ( |P(X)| follows which, together with the obvious inequality, |X| ( |P(X)|, leads to the finale statement A = “|X| < |P(X)|”.


It may seem that from the point of view of formal logic, Cantor’s RAA-proof is unimpeachable and irrefutable, and that is really so. However, the peculiarity just of the counter-example method consists in that an only counter-example is sufficient in order to disprove a common statement, but a total (finite or even infinite) number of all possible counter-examples does not play any role (see a classical example below). 


It’s obvious that for a given (fixed) mapping (, the Cantor’s algorithm (R) is able to produce only one element X* of the set P(X), not belonging to the given list (1), and this unique element X* is sufficient to disprove the common statement B =“the given list (1) contains all elements from P(X)” (the case of infinite number of Cantor’s new AD-elements will be considered below).


The last means that the formally irreproachable Cantor’s conclusion |X|<|P(X)| is based on the fact that infinite set P(X) has only one element greater (Cantor’s AD-element X*) than the infinite set X, i.e., |P(X)| - |X| =1. It’s obvious that such a set theoretical “ground” for Cantor’s conclusion |X|<|P(X)| contradicts set-theoretical Lemma 2, according to which, the equality |P(X)| - |X| =1 entails |X| = |P(X)|. Q.E.D.


REMARK-3. The following example of the counter-example method application in classical mathematics explains well the logic of this situation.


In the XVIII century great Euler formulated the following quite plausible common statement.


EULER’S HYPOTHESIS. For any exponent r ( 3 the Diophantine equation,



nr = n1r + n2r + n3r + … + nsr ,


has no solutions in natural numbers if s < r.


By s=2, Euler’s Hypothesis entails Last Fermat Theorem. During about 200 years nobody was able either to prove or disprove the Hypothesis. And only in 1967 a group of American mathematicians with a power computer revealed [7] ... only one counter-example, 

1445  = 275  + 845  + 1105  + 1335 ,

where  r = 5, s = 4, i.e. s < r. This only counter-example disproved Euler’s Hypothesis forever. 


So, in order to disprove a common statement an only counter-example is sufficient. And the fact that a set of such counter-examples may be infinite plays no role. In other words, the disproof of a common statement by means of a given counter-example and the question about a number of such counter-examples, i.e., about the cardinality of the set of all possible counter-examples, are absolutely different, independent problems. 


By the way, there is an essential difference between Cantor’s and classical usage of the counter-example method. Indeed, Cantor deduces (by means of the CDM-algorithm) his counter-example (AD-element X*) directly from the common statement B=“a given list (1) contains all elements from P(X)” which this counter-example must disprove. I believe that Lander L.J. and Parkin T.R. did not ever have in mind a strange idea to formally deduce their famous counter-example directly from Euler’s Hypothesis.


It’s naturally that no mathematical intuition (say, of Kronecker, Cauchy, Hermite, Poincare, Borel, Brouwer, Weyl, and a lot of others) could submit to the fact that the difference in one element between the infinite sets, X and P(X), can be a sufficient cause to state that a cardinality of P(X) is greater than a cardinality of X. As we have just shown, such fact contradicts not only to the scientific intuition of outstanding mathematicians, but to the main property of infinite sets given by Definition-2 and Lemma 2.


So, within the framework of traditional Cantor’s proof, its purposeful contradiction between B and (B in its quite specific ‘deductive’ form [B ( (B] leads only to the conclusion C = ”there is not a 1-1-correspondence between X and P(X)”. The only logical basis to deduce the inequality |X| ( |P(X)| from C is just Lemma-1. From the Theorem-1 it follows that Cantor’s conclusion |X| < |P(X)| contradicts Lemma 2. It means that Cantor’s diagonal proof doesn’t (or rather - can’t) use in reality quantitative properties (cardinalities) of the sets, X and P(X) [8,9,12,13].


Now we shall prove that the explicit usage of the Lemma-3 within the framework of traditional Cantor’s proof leads to the following quite non-trivial result.


THEOREM 2. The Cantor inequality {A:} |X|<|P(X)| is unprovable.


There are at least two ways to prove this theorem [8,9,11-13].


PROOF-1. The only reason to state that |X|<|P(X)| is Cantor’s Theorem. Therefore in order to prove the Theorem 2 it’s sufficient to prove that traditional Cantor’s RAA-proof does not prove the statement |X|<|P(X)|.


Toward this end, consider again the traditional Cantor’s proof, but this time we shall explicitly use the fundamental properties of infinite sets given by Definition-2 and Lemma-3 above.

CANTOR’S THEOREM. {A:} |X|<|P(X)|. 


PROOF-1. Assume that {(A:} |X| = |P(X)|. According to Cantor’s Definition-1, it means that there is a 1-1-mapping ( which maps X onto P(X), i.e., there is a list (1) containing all elements of P(X) which are indexed with all elements of X. The application of the CDM-algorithm (R) to the list (1), produces an only AD-element X* of P(X), not belonging to the list (1). 


At this point of Cantor’s traditional RAA-proof we are forced to agree with Cantor that the given list (1) contains not all elements of P(X), or, more exactly, the given list contains all elements of P(X), except for a given element X*. In other words, at this step of the proof we have the following situation: the existence of the element X* disproves the statement B=”the given list (1) contains all elements from P(X)”, but the RAA-assumption |X| = |P(X)| is so far not disproven.

Therefore, adding new Cantor’s AD-element X* to the given list (1), we shall have a new list, 


X*, X’a, Y’b, Z’c, . . . ,
(2)

containing (at this step of the proof) all elements from P(X), since at this step nobody can (not changing the mapping ( and the list (1)!) produce an element of P(X), not containing in the given list (2). It means that now, by virtue of Lemma-3, again |X| = |P(X)| and therefore we can re-index all elements of P(X) in (2) with the same elements a,b,c, . . . of X. This operation transforms the list (2) into the initial list (1), but now including X*. From the formal point of view, it means that we simply have returned to the initial point of the proof: B = “there is a 1-1-mapping of X onto P(X)”.


Repeated applications of CDM to (1), lead to the following non-finite, tautological, and quite senseless  “reasoning” (here B = “a given list (1) contains all elements from P(X)”):



(A ( B ( (B ( B ( (B ( B ( . . . 
(*)

It’s obvious, that until the potentially infinite “reasoning” (*) is finished, the RAA-assumption |X| = |P(X)| of Cantor’s proof is irrefutable from the logical and set-theoretical points of view, and, consequently, the Cantor statement |X| < |P(X)| is unprovable. Q.E.D.


Now we shall consider a case when the application of the CDM-algorithm (R) to the list (1) produces an infinite set of new Cantor’s AD-elements not belonging to the list (1). In this case the following result takes place.


PROOF-2. Consider again traditional Cantor’s proof. 

CANTOR’S THEOREM. {A:} |X| < |P(X)|.


PROOF-1. Assume that {(A:} |X| = |P(X)|. According to Cantor’s Definition-1, it means that there is a 1-1-mapping ( which maps X onto P(X), i.e., {B:} “there is a list (1) containing all elements of P(X)” which are indexed with all elements of X. The application of the algorithm (R) to the list (1), produces an only AD-element X* of P(X) not belonging to the list (1). But now we shall allow any re-indexings of elements in (1) by means of elements of X which (these re-indexings) don’t change a number and order of elements of P(X) in the initial list (1). It’s obvious that in such case Cantor’s CDM-algorithm will produce an infinite set of AD-elements of P(X) which don’t belong to the given list (1).


At this point of Cantor’s traditional RAA-proof, we again are forced to agree with Cantor that {(B:} “the given list (1) contains not all elements of P(X)”. 

To clarify the situation, represent the set P(X) as a sum P(X) = P11 + P12, where P11 is a set of elements of P(X) «really» included in the list (1), and the set P12 is a complement to P11 in P(X): P12 = P(X) - P11. It’s obvious that |P11|=|X|, and the complement P12 contains all AD-elements which can be produced by the CDM-application to the list (1) for different (. The last means that now the veritable cardinality of P(X) is defined by and is equal to the cardinality of the complement P12, i.e., |P(X)| = |P12|.


Consider the following two cases. 


(i) |P12| = |X|. If that is so, then |P(X)| = |P11 + P12| =|X|, and therefore to disprove the RAA-assumption {(A:} |X| = |P(X)| is impossible.


(ii) |P12| > |X|. However, since Cantor’s proof so far is not completed the very existence of a cardinality which is greater than |X| is so far not proven, and therefore a hypothetical statement, |P12| > |X|, must be proved. It can be done by the only way – by means of the CDM, i.e., one must now prove the initial Cantor’s Theorem with the new symbol P12 instead of the old symbol P(X).


CANTOR’S THEOREM. {A:} |X| < |P12|. 


PROOF-2. Assume that {(A:} |X| = |P12|. According to Cantor’s Definition-1, it means that there is a 1-1-mapping (1 which maps X onto P12. The application of the algorithm (R) of CDM to (1, produces an infinite set of elements of P12 which don’t belong to the (1.


Represent the set P12 as a sum P12 = P21 + P22, where P21 is a set of elements of P12 «really» included in the (1, but the set P22 is a complement to P21 in P12: P22 = P12 – P21. It’s obvious that |P21|=|X|, and the complement P22 contains all AD-elements which can be produced by the CDM-application to the (1. The last means that now the veritable cardinality of P12 is defined by and is equal to the cardinality of the complement P22, i.e., |P12| = |P22|.


Consider the following two cases. 


(i) |P22| = |X|. If that is so, then |P12| = |P21 + P22| =|X|, and therefore to disprove the RAA-assumption {(A:} |X| = |P12| is impossible.


(ii) |P22| > |X|. However, since Cantor’s proof so far is not completed the very existence of a cardinality which is greater than |X| is so far not proven, and therefore a hypothetical statement, |P22| > |X|, must be proved. It can be done by the only way – by means of the CDM, i.e., one must now prove the initial Cantor’s Theorem with the new symbol P22 instead of the old symbol P12.


And so on ad infinitum.


Thus, the traditional Cantor “proof”, from the set-theoretical point of view (!), either isn’t able to disprove the RAA-assumption |X| = |P(X)|, or is reduced to the infinite system of “nested” (“embedded”) proofs of the initial Cantor Theorem by the sequential replacement of the initial symbol P(X) by symbols P12, P22, P32, …, i.e., to the following non-finite, tautological, and quite senseless  “reasoning” (here Di = «it needs to prove that |X| < |Pi2| »):



D1 ( D2 ( D3 ( … 
(**)


It’s obvious, that until the potentially infinite “reasoning” (**) is finished, the RAA-assumption |X| = |P(X)| of Cantor’s RAA-proof is irrefutable from the logical and set-theoretical points of view, and, consequently, the Cantor statement |X| < |P(X)| is unprovable. Q.E.D.


Thus, from the Theorem 2 it follows, in particular, that the infinite sets X and P(X) are equivalent, i.e., |X| = |P(X)|, but there is no rule (algorithm) to establish a 1-1-correspondence between elements of these sets. 


Here is a direct proof of such a non-trivial possibility.


THEOREM 3. If X is equivalent to P(X), then there is not a rule (algorithm) to produce a 1-1-correspondence between elements of X and P(X).


PROOF (by RAA-method). Let be |X| = |P(X)|, but there is a rule (algorithm) producing a 1-1-correspondence between elements of X and P(X), i.e., there is a list (1) containing all elements from P(X). Applying Cantor’s diagonal algorithm (R) to the list (1), we shall construct a new AD-element X* which doesn’t belong to the list (1). Contradiction. Q.E.D.


So, there are TWO legitimate reasons of the non-existence of a 1-1-correspondence between X and P(X):


(i) |X| < |P(X)| (according to Cantor’s Definition-1 of the notion of the non-equivalency of sets);


(ii) |X| = |P(X)|, but there is not a rule (algorithm) to produce a real 1-1-correspondence between X and P(X).


It is obvious that the case (ii) demands a more careful analysis of the logical legitimacy of Cantor’s Definition-1 of the infinite sets equivalency and the Lemma-1 as its deductive consequence, but such analysis is not a point of this paper. 


W.Hodges, in his famous paper “An Editor Recalls Some Hopeless Papers” [5], gives a brilliant analysis of main “attacks against Cantor’s diagonal argument”. His verdict is as follows: “Cantor's argument is short, lucid, and there is nothing wrong with Cantor's argument.”

However, only first of this W.Hodges statements is correct - Cantor's argument is really very short for a mathematical theorem and occupies about five (!) strings. But these “five strings” include explicitly, but mostly implicitly, almost all main, crucial, fundamental problems of logic, mathematics, and even psychology of mathematical cognition. Most of these problems (such as what is a logical nature of actual and potential infinity, whether the usage of actual infinity in mathematics is admissible, what the existence of infinite sets means, what does it mean to solve the “Liar”, who is a real inventor of the diagonal method, etc.) are not solved hitherto by modern axiomatic set theory. Therefore the second W.Hodges statement is very doubtful. At last, his third statement is simply wrong. Possibly, because he so far did not ever meet “attacks against Cantor's theorem about the cardinalities of power sets” [5] and just therefore even he (not to mention other professional meta-mathematicians) showed no knowledge of the fact that the explicit usage of the counter-example method is an imprescriptible and crucial peculiarity of Cantor’s diagonal method within its any meta-mathematical applications. This only fact changes profoundly the idea itself on the logical nature of Cantor’s diagonal argument.
CONCLUSIONS.


1. The key point of Cantor’s RAA-proof of the power-set theorem, stating that |X| < |P(X)|, is an explicit usage of the counter-example method.


2. The formal logic of Cantor’s RAA-proof seems to be unimpeachable and irrefutable. Indeed, from the point of view of the logic, an only counter-example (Cantor’s AD-element X* ( (1)) is sufficient in order to disprove the RAA-assumption |X| = |P(X)| of Cantor’s diagonal proof. It means that there takes place the following unique (in all history of mathematics) situation: the formal logic of Cantor’s proof is unobjectionable, but the proof itself has no relation to and does not use quantitative properties, i.e., a number of elements or a cardinality, of the set, |P(X)|. In addition Cantor’s conclusion in the form |X| < |P(X)| is deduced from the fact that the difference between infinite sets, P(X) and X, amounts to one element, i.e., |P(X)| - |X| =1. It is obvious that this Cantor conclusion contradicts fatally the main property of infinite sets in the form of Lemma 2, according to which from the fact |P(X)| - |X| =1 it follows that |X| = |P(X)|, i.e., that the sets X and |P(X)| are equivalent.


3. It is proved that if the main set-theoretical definition of the notion of an infinite set (as a set which is equivalent to its own subset) is used explicitly, then the Cantor statement, |X| < |P(X)|, becomes unprovable within the framework of traditional Cantor’s proof. It is proved as well that if |X| = |P(X)| then there is not an algorithm allowing to establish really a 1-1-correspondence between equivalent sets, |X| and |P(X)|. 
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