D-GAP FUNCTIONS FOR VARIATIONAL INEQUALITIES OVER PRODUCT SETS*

I. V. Konnov (Kazan University, Kazan) E.O. Volotskaya (Kazan University, Kazan)

Let $G: \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable mapping. The mixed variational inequality problem (MVI) is the problem of finding a point $x^* \in K = \prod_{i=1}^n K_i$ such that

$$G(x^*)^T(x-x^*) + \sum_{i=1}^n [f_i(x_i) - f_i(x_i^*)] \ge 0 \quad \forall x \in K,$$
 (*)

where $f_i: R \to R$ is a convex, but not necessarily differentiable function, $i=1,\ldots,n$. There are a lot of problems in Mathematical Physics, Economics and Operations Research which are involved in this class of MVI's. In order to find a solution to (*), we suggest to apply D-gap functions, which enables one to convert (*) into the problem of finding a stationary point of a differentiable function [1]. Therefore, one can find a solution to MVI with the help of the usual differentiable optimization methods. Due to the decomposable structure of MVI, each iteration of such methods involves only solutions of one-dimensional convex auxiliary problems. We give examples of applications of the approach above to general economic and oligopolistic equilibrium problems.

Reference

1. Konnov I.V. Properties of gap functions for mixed variational inequalities // Sib. J. Numeric. Mathem., 2000, V.3, No 3. P.259–270.

^{*}This research was supported in part by RFBR grant No. 01-01-00070.